1 // SPDX-License-Identifier: GPL-2.0 2 /* Support for MMIO probes. 3 * Benfit many code from kprobes 4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. 5 * 2007 Alexander Eichner 6 * 2008 Pekka Paalanen <pq@iki.fi> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/rculist.h> 13 #include <linux/spinlock.h> 14 #include <linux/hash.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/uaccess.h> 18 #include <linux/ptrace.h> 19 #include <linux/preempt.h> 20 #include <linux/percpu.h> 21 #include <linux/kdebug.h> 22 #include <linux/mutex.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <linux/errno.h> 28 #include <asm/debugreg.h> 29 #include <linux/mmiotrace.h> 30 31 #define KMMIO_PAGE_HASH_BITS 4 32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) 33 34 struct kmmio_fault_page { 35 struct list_head list; 36 struct kmmio_fault_page *release_next; 37 unsigned long addr; /* the requested address */ 38 pteval_t old_presence; /* page presence prior to arming */ 39 bool armed; 40 41 /* 42 * Number of times this page has been registered as a part 43 * of a probe. If zero, page is disarmed and this may be freed. 44 * Used only by writers (RCU) and post_kmmio_handler(). 45 * Protected by kmmio_lock, when linked into kmmio_page_table. 46 */ 47 int count; 48 49 bool scheduled_for_release; 50 }; 51 52 struct kmmio_delayed_release { 53 struct rcu_head rcu; 54 struct kmmio_fault_page *release_list; 55 }; 56 57 struct kmmio_context { 58 struct kmmio_fault_page *fpage; 59 struct kmmio_probe *probe; 60 unsigned long saved_flags; 61 unsigned long addr; 62 int active; 63 }; 64 65 static DEFINE_SPINLOCK(kmmio_lock); 66 67 /* Protected by kmmio_lock */ 68 unsigned int kmmio_count; 69 70 /* Read-protected by RCU, write-protected by kmmio_lock. */ 71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; 72 static LIST_HEAD(kmmio_probes); 73 74 static struct list_head *kmmio_page_list(unsigned long addr) 75 { 76 unsigned int l; 77 pte_t *pte = lookup_address(addr, &l); 78 79 if (!pte) 80 return NULL; 81 addr &= page_level_mask(l); 82 83 return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; 84 } 85 86 /* Accessed per-cpu */ 87 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); 88 89 /* 90 * this is basically a dynamic stabbing problem: 91 * Could use the existing prio tree code or 92 * Possible better implementations: 93 * The Interval Skip List: A Data Structure for Finding All Intervals That 94 * Overlap a Point (might be simple) 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup 96 */ 97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ 98 static struct kmmio_probe *get_kmmio_probe(unsigned long addr) 99 { 100 struct kmmio_probe *p; 101 list_for_each_entry_rcu(p, &kmmio_probes, list) { 102 if (addr >= p->addr && addr < (p->addr + p->len)) 103 return p; 104 } 105 return NULL; 106 } 107 108 /* You must be holding RCU read lock. */ 109 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) 110 { 111 struct list_head *head; 112 struct kmmio_fault_page *f; 113 unsigned int l; 114 pte_t *pte = lookup_address(addr, &l); 115 116 if (!pte) 117 return NULL; 118 addr &= page_level_mask(l); 119 head = kmmio_page_list(addr); 120 list_for_each_entry_rcu(f, head, list) { 121 if (f->addr == addr) 122 return f; 123 } 124 return NULL; 125 } 126 127 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) 128 { 129 pmdval_t v = pmd_val(*pmd); 130 if (clear) { 131 *old = v & _PAGE_PRESENT; 132 v &= ~_PAGE_PRESENT; 133 } else /* presume this has been called with clear==true previously */ 134 v |= *old; 135 set_pmd(pmd, __pmd(v)); 136 } 137 138 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) 139 { 140 pteval_t v = pte_val(*pte); 141 if (clear) { 142 *old = v & _PAGE_PRESENT; 143 v &= ~_PAGE_PRESENT; 144 } else /* presume this has been called with clear==true previously */ 145 v |= *old; 146 set_pte_atomic(pte, __pte(v)); 147 } 148 149 static int clear_page_presence(struct kmmio_fault_page *f, bool clear) 150 { 151 unsigned int level; 152 pte_t *pte = lookup_address(f->addr, &level); 153 154 if (!pte) { 155 pr_err("no pte for addr 0x%08lx\n", f->addr); 156 return -1; 157 } 158 159 switch (level) { 160 case PG_LEVEL_2M: 161 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); 162 break; 163 case PG_LEVEL_4K: 164 clear_pte_presence(pte, clear, &f->old_presence); 165 break; 166 default: 167 pr_err("unexpected page level 0x%x.\n", level); 168 return -1; 169 } 170 171 __flush_tlb_one(f->addr); 172 return 0; 173 } 174 175 /* 176 * Mark the given page as not present. Access to it will trigger a fault. 177 * 178 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the 179 * protection is ignored here. RCU read lock is assumed held, so the struct 180 * will not disappear unexpectedly. Furthermore, the caller must guarantee, 181 * that double arming the same virtual address (page) cannot occur. 182 * 183 * Double disarming on the other hand is allowed, and may occur when a fault 184 * and mmiotrace shutdown happen simultaneously. 185 */ 186 static int arm_kmmio_fault_page(struct kmmio_fault_page *f) 187 { 188 int ret; 189 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); 190 if (f->armed) { 191 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n", 192 f->addr, f->count, !!f->old_presence); 193 } 194 ret = clear_page_presence(f, true); 195 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), 196 f->addr); 197 f->armed = true; 198 return ret; 199 } 200 201 /** Restore the given page to saved presence state. */ 202 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) 203 { 204 int ret = clear_page_presence(f, false); 205 WARN_ONCE(ret < 0, 206 KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); 207 f->armed = false; 208 } 209 210 /* 211 * This is being called from do_page_fault(). 212 * 213 * We may be in an interrupt or a critical section. Also prefecthing may 214 * trigger a page fault. We may be in the middle of process switch. 215 * We cannot take any locks, because we could be executing especially 216 * within a kmmio critical section. 217 * 218 * Local interrupts are disabled, so preemption cannot happen. 219 * Do not enable interrupts, do not sleep, and watch out for other CPUs. 220 */ 221 /* 222 * Interrupts are disabled on entry as trap3 is an interrupt gate 223 * and they remain disabled throughout this function. 224 */ 225 int kmmio_handler(struct pt_regs *regs, unsigned long addr) 226 { 227 struct kmmio_context *ctx; 228 struct kmmio_fault_page *faultpage; 229 int ret = 0; /* default to fault not handled */ 230 unsigned long page_base = addr; 231 unsigned int l; 232 pte_t *pte = lookup_address(addr, &l); 233 if (!pte) 234 return -EINVAL; 235 page_base &= page_level_mask(l); 236 237 /* 238 * Preemption is now disabled to prevent process switch during 239 * single stepping. We can only handle one active kmmio trace 240 * per cpu, so ensure that we finish it before something else 241 * gets to run. We also hold the RCU read lock over single 242 * stepping to avoid looking up the probe and kmmio_fault_page 243 * again. 244 */ 245 preempt_disable(); 246 rcu_read_lock(); 247 248 faultpage = get_kmmio_fault_page(page_base); 249 if (!faultpage) { 250 /* 251 * Either this page fault is not caused by kmmio, or 252 * another CPU just pulled the kmmio probe from under 253 * our feet. The latter case should not be possible. 254 */ 255 goto no_kmmio; 256 } 257 258 ctx = &get_cpu_var(kmmio_ctx); 259 if (ctx->active) { 260 if (page_base == ctx->addr) { 261 /* 262 * A second fault on the same page means some other 263 * condition needs handling by do_page_fault(), the 264 * page really not being present is the most common. 265 */ 266 pr_debug("secondary hit for 0x%08lx CPU %d.\n", 267 addr, smp_processor_id()); 268 269 if (!faultpage->old_presence) 270 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", 271 addr, smp_processor_id()); 272 } else { 273 /* 274 * Prevent overwriting already in-flight context. 275 * This should not happen, let's hope disarming at 276 * least prevents a panic. 277 */ 278 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", 279 smp_processor_id(), addr); 280 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); 281 disarm_kmmio_fault_page(faultpage); 282 } 283 goto no_kmmio_ctx; 284 } 285 ctx->active++; 286 287 ctx->fpage = faultpage; 288 ctx->probe = get_kmmio_probe(page_base); 289 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 290 ctx->addr = page_base; 291 292 if (ctx->probe && ctx->probe->pre_handler) 293 ctx->probe->pre_handler(ctx->probe, regs, addr); 294 295 /* 296 * Enable single-stepping and disable interrupts for the faulting 297 * context. Local interrupts must not get enabled during stepping. 298 */ 299 regs->flags |= X86_EFLAGS_TF; 300 regs->flags &= ~X86_EFLAGS_IF; 301 302 /* Now we set present bit in PTE and single step. */ 303 disarm_kmmio_fault_page(ctx->fpage); 304 305 /* 306 * If another cpu accesses the same page while we are stepping, 307 * the access will not be caught. It will simply succeed and the 308 * only downside is we lose the event. If this becomes a problem, 309 * the user should drop to single cpu before tracing. 310 */ 311 312 put_cpu_var(kmmio_ctx); 313 return 1; /* fault handled */ 314 315 no_kmmio_ctx: 316 put_cpu_var(kmmio_ctx); 317 no_kmmio: 318 rcu_read_unlock(); 319 preempt_enable_no_resched(); 320 return ret; 321 } 322 323 /* 324 * Interrupts are disabled on entry as trap1 is an interrupt gate 325 * and they remain disabled throughout this function. 326 * This must always get called as the pair to kmmio_handler(). 327 */ 328 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) 329 { 330 int ret = 0; 331 struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); 332 333 if (!ctx->active) { 334 /* 335 * debug traps without an active context are due to either 336 * something external causing them (f.e. using a debugger while 337 * mmio tracing enabled), or erroneous behaviour 338 */ 339 pr_warning("unexpected debug trap on CPU %d.\n", 340 smp_processor_id()); 341 goto out; 342 } 343 344 if (ctx->probe && ctx->probe->post_handler) 345 ctx->probe->post_handler(ctx->probe, condition, regs); 346 347 /* Prevent racing against release_kmmio_fault_page(). */ 348 spin_lock(&kmmio_lock); 349 if (ctx->fpage->count) 350 arm_kmmio_fault_page(ctx->fpage); 351 spin_unlock(&kmmio_lock); 352 353 regs->flags &= ~X86_EFLAGS_TF; 354 regs->flags |= ctx->saved_flags; 355 356 /* These were acquired in kmmio_handler(). */ 357 ctx->active--; 358 BUG_ON(ctx->active); 359 rcu_read_unlock(); 360 preempt_enable_no_resched(); 361 362 /* 363 * if somebody else is singlestepping across a probe point, flags 364 * will have TF set, in which case, continue the remaining processing 365 * of do_debug, as if this is not a probe hit. 366 */ 367 if (!(regs->flags & X86_EFLAGS_TF)) 368 ret = 1; 369 out: 370 put_cpu_var(kmmio_ctx); 371 return ret; 372 } 373 374 /* You must be holding kmmio_lock. */ 375 static int add_kmmio_fault_page(unsigned long addr) 376 { 377 struct kmmio_fault_page *f; 378 379 f = get_kmmio_fault_page(addr); 380 if (f) { 381 if (!f->count) 382 arm_kmmio_fault_page(f); 383 f->count++; 384 return 0; 385 } 386 387 f = kzalloc(sizeof(*f), GFP_ATOMIC); 388 if (!f) 389 return -1; 390 391 f->count = 1; 392 f->addr = addr; 393 394 if (arm_kmmio_fault_page(f)) { 395 kfree(f); 396 return -1; 397 } 398 399 list_add_rcu(&f->list, kmmio_page_list(f->addr)); 400 401 return 0; 402 } 403 404 /* You must be holding kmmio_lock. */ 405 static void release_kmmio_fault_page(unsigned long addr, 406 struct kmmio_fault_page **release_list) 407 { 408 struct kmmio_fault_page *f; 409 410 f = get_kmmio_fault_page(addr); 411 if (!f) 412 return; 413 414 f->count--; 415 BUG_ON(f->count < 0); 416 if (!f->count) { 417 disarm_kmmio_fault_page(f); 418 if (!f->scheduled_for_release) { 419 f->release_next = *release_list; 420 *release_list = f; 421 f->scheduled_for_release = true; 422 } 423 } 424 } 425 426 /* 427 * With page-unaligned ioremaps, one or two armed pages may contain 428 * addresses from outside the intended mapping. Events for these addresses 429 * are currently silently dropped. The events may result only from programming 430 * mistakes by accessing addresses before the beginning or past the end of a 431 * mapping. 432 */ 433 int register_kmmio_probe(struct kmmio_probe *p) 434 { 435 unsigned long flags; 436 int ret = 0; 437 unsigned long size = 0; 438 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 439 unsigned int l; 440 pte_t *pte; 441 442 spin_lock_irqsave(&kmmio_lock, flags); 443 if (get_kmmio_probe(p->addr)) { 444 ret = -EEXIST; 445 goto out; 446 } 447 448 pte = lookup_address(p->addr, &l); 449 if (!pte) { 450 ret = -EINVAL; 451 goto out; 452 } 453 454 kmmio_count++; 455 list_add_rcu(&p->list, &kmmio_probes); 456 while (size < size_lim) { 457 if (add_kmmio_fault_page(p->addr + size)) 458 pr_err("Unable to set page fault.\n"); 459 size += page_level_size(l); 460 } 461 out: 462 spin_unlock_irqrestore(&kmmio_lock, flags); 463 /* 464 * XXX: What should I do here? 465 * Here was a call to global_flush_tlb(), but it does not exist 466 * anymore. It seems it's not needed after all. 467 */ 468 return ret; 469 } 470 EXPORT_SYMBOL(register_kmmio_probe); 471 472 static void rcu_free_kmmio_fault_pages(struct rcu_head *head) 473 { 474 struct kmmio_delayed_release *dr = container_of( 475 head, 476 struct kmmio_delayed_release, 477 rcu); 478 struct kmmio_fault_page *f = dr->release_list; 479 while (f) { 480 struct kmmio_fault_page *next = f->release_next; 481 BUG_ON(f->count); 482 kfree(f); 483 f = next; 484 } 485 kfree(dr); 486 } 487 488 static void remove_kmmio_fault_pages(struct rcu_head *head) 489 { 490 struct kmmio_delayed_release *dr = 491 container_of(head, struct kmmio_delayed_release, rcu); 492 struct kmmio_fault_page *f = dr->release_list; 493 struct kmmio_fault_page **prevp = &dr->release_list; 494 unsigned long flags; 495 496 spin_lock_irqsave(&kmmio_lock, flags); 497 while (f) { 498 if (!f->count) { 499 list_del_rcu(&f->list); 500 prevp = &f->release_next; 501 } else { 502 *prevp = f->release_next; 503 f->release_next = NULL; 504 f->scheduled_for_release = false; 505 } 506 f = *prevp; 507 } 508 spin_unlock_irqrestore(&kmmio_lock, flags); 509 510 /* This is the real RCU destroy call. */ 511 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); 512 } 513 514 /* 515 * Remove a kmmio probe. You have to synchronize_rcu() before you can be 516 * sure that the callbacks will not be called anymore. Only after that 517 * you may actually release your struct kmmio_probe. 518 * 519 * Unregistering a kmmio fault page has three steps: 520 * 1. release_kmmio_fault_page() 521 * Disarm the page, wait a grace period to let all faults finish. 522 * 2. remove_kmmio_fault_pages() 523 * Remove the pages from kmmio_page_table. 524 * 3. rcu_free_kmmio_fault_pages() 525 * Actually free the kmmio_fault_page structs as with RCU. 526 */ 527 void unregister_kmmio_probe(struct kmmio_probe *p) 528 { 529 unsigned long flags; 530 unsigned long size = 0; 531 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 532 struct kmmio_fault_page *release_list = NULL; 533 struct kmmio_delayed_release *drelease; 534 unsigned int l; 535 pte_t *pte; 536 537 pte = lookup_address(p->addr, &l); 538 if (!pte) 539 return; 540 541 spin_lock_irqsave(&kmmio_lock, flags); 542 while (size < size_lim) { 543 release_kmmio_fault_page(p->addr + size, &release_list); 544 size += page_level_size(l); 545 } 546 list_del_rcu(&p->list); 547 kmmio_count--; 548 spin_unlock_irqrestore(&kmmio_lock, flags); 549 550 if (!release_list) 551 return; 552 553 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); 554 if (!drelease) { 555 pr_crit("leaking kmmio_fault_page objects.\n"); 556 return; 557 } 558 drelease->release_list = release_list; 559 560 /* 561 * This is not really RCU here. We have just disarmed a set of 562 * pages so that they cannot trigger page faults anymore. However, 563 * we cannot remove the pages from kmmio_page_table, 564 * because a probe hit might be in flight on another CPU. The 565 * pages are collected into a list, and they will be removed from 566 * kmmio_page_table when it is certain that no probe hit related to 567 * these pages can be in flight. RCU grace period sounds like a 568 * good choice. 569 * 570 * If we removed the pages too early, kmmio page fault handler might 571 * not find the respective kmmio_fault_page and determine it's not 572 * a kmmio fault, when it actually is. This would lead to madness. 573 */ 574 call_rcu(&drelease->rcu, remove_kmmio_fault_pages); 575 } 576 EXPORT_SYMBOL(unregister_kmmio_probe); 577 578 static int 579 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) 580 { 581 struct die_args *arg = args; 582 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); 583 584 if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) 585 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { 586 /* 587 * Reset the BS bit in dr6 (pointed by args->err) to 588 * denote completion of processing 589 */ 590 *dr6_p &= ~DR_STEP; 591 return NOTIFY_STOP; 592 } 593 594 return NOTIFY_DONE; 595 } 596 597 static struct notifier_block nb_die = { 598 .notifier_call = kmmio_die_notifier 599 }; 600 601 int kmmio_init(void) 602 { 603 int i; 604 605 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) 606 INIT_LIST_HEAD(&kmmio_page_table[i]); 607 608 return register_die_notifier(&nb_die); 609 } 610 611 void kmmio_cleanup(void) 612 { 613 int i; 614 615 unregister_die_notifier(&nb_die); 616 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { 617 WARN_ONCE(!list_empty(&kmmio_page_table[i]), 618 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); 619 } 620 } 621