xref: /openbmc/linux/arch/x86/mm/kmmio.c (revision e639c869)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3  * Benfit many code from kprobes
4  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5  *     2007 Alexander Eichner
6  *     2008 Pekka Paalanen <pq@iki.fi>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
30 
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33 
34 struct kmmio_fault_page {
35 	struct list_head list;
36 	struct kmmio_fault_page *release_next;
37 	unsigned long addr; /* the requested address */
38 	pteval_t old_presence; /* page presence prior to arming */
39 	bool armed;
40 
41 	/*
42 	 * Number of times this page has been registered as a part
43 	 * of a probe. If zero, page is disarmed and this may be freed.
44 	 * Used only by writers (RCU) and post_kmmio_handler().
45 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46 	 */
47 	int count;
48 
49 	bool scheduled_for_release;
50 };
51 
52 struct kmmio_delayed_release {
53 	struct rcu_head rcu;
54 	struct kmmio_fault_page *release_list;
55 };
56 
57 struct kmmio_context {
58 	struct kmmio_fault_page *fpage;
59 	struct kmmio_probe *probe;
60 	unsigned long saved_flags;
61 	unsigned long addr;
62 	int active;
63 };
64 
65 static DEFINE_SPINLOCK(kmmio_lock);
66 
67 /* Protected by kmmio_lock */
68 unsigned int kmmio_count;
69 
70 /* Read-protected by RCU, write-protected by kmmio_lock. */
71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72 static LIST_HEAD(kmmio_probes);
73 
74 static struct list_head *kmmio_page_list(unsigned long addr)
75 {
76 	unsigned int l;
77 	pte_t *pte = lookup_address(addr, &l);
78 
79 	if (!pte)
80 		return NULL;
81 	addr &= page_level_mask(l);
82 
83 	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
84 }
85 
86 /* Accessed per-cpu */
87 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
88 
89 /*
90  * this is basically a dynamic stabbing problem:
91  * Could use the existing prio tree code or
92  * Possible better implementations:
93  * The Interval Skip List: A Data Structure for Finding All Intervals That
94  * Overlap a Point (might be simple)
95  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
96  */
97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
98 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
99 {
100 	struct kmmio_probe *p;
101 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
102 		if (addr >= p->addr && addr < (p->addr + p->len))
103 			return p;
104 	}
105 	return NULL;
106 }
107 
108 /* You must be holding RCU read lock. */
109 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110 {
111 	struct list_head *head;
112 	struct kmmio_fault_page *f;
113 	unsigned int l;
114 	pte_t *pte = lookup_address(addr, &l);
115 
116 	if (!pte)
117 		return NULL;
118 	addr &= page_level_mask(l);
119 	head = kmmio_page_list(addr);
120 	list_for_each_entry_rcu(f, head, list) {
121 		if (f->addr == addr)
122 			return f;
123 	}
124 	return NULL;
125 }
126 
127 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128 {
129 	pmdval_t v = pmd_val(*pmd);
130 	if (clear) {
131 		*old = v & _PAGE_PRESENT;
132 		v &= ~_PAGE_PRESENT;
133 	} else	/* presume this has been called with clear==true previously */
134 		v |= *old;
135 	set_pmd(pmd, __pmd(v));
136 }
137 
138 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
139 {
140 	pteval_t v = pte_val(*pte);
141 	if (clear) {
142 		*old = v & _PAGE_PRESENT;
143 		v &= ~_PAGE_PRESENT;
144 	} else	/* presume this has been called with clear==true previously */
145 		v |= *old;
146 	set_pte_atomic(pte, __pte(v));
147 }
148 
149 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
150 {
151 	unsigned int level;
152 	pte_t *pte = lookup_address(f->addr, &level);
153 
154 	if (!pte) {
155 		pr_err("no pte for addr 0x%08lx\n", f->addr);
156 		return -1;
157 	}
158 
159 	switch (level) {
160 	case PG_LEVEL_2M:
161 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
162 		break;
163 	case PG_LEVEL_4K:
164 		clear_pte_presence(pte, clear, &f->old_presence);
165 		break;
166 	default:
167 		pr_err("unexpected page level 0x%x.\n", level);
168 		return -1;
169 	}
170 
171 	__flush_tlb_one(f->addr);
172 	return 0;
173 }
174 
175 /*
176  * Mark the given page as not present. Access to it will trigger a fault.
177  *
178  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
179  * protection is ignored here. RCU read lock is assumed held, so the struct
180  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
181  * that double arming the same virtual address (page) cannot occur.
182  *
183  * Double disarming on the other hand is allowed, and may occur when a fault
184  * and mmiotrace shutdown happen simultaneously.
185  */
186 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
187 {
188 	int ret;
189 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
190 	if (f->armed) {
191 		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
192 			   f->addr, f->count, !!f->old_presence);
193 	}
194 	ret = clear_page_presence(f, true);
195 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
196 		  f->addr);
197 	f->armed = true;
198 	return ret;
199 }
200 
201 /** Restore the given page to saved presence state. */
202 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
203 {
204 	int ret = clear_page_presence(f, false);
205 	WARN_ONCE(ret < 0,
206 			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
207 	f->armed = false;
208 }
209 
210 /*
211  * This is being called from do_page_fault().
212  *
213  * We may be in an interrupt or a critical section. Also prefecthing may
214  * trigger a page fault. We may be in the middle of process switch.
215  * We cannot take any locks, because we could be executing especially
216  * within a kmmio critical section.
217  *
218  * Local interrupts are disabled, so preemption cannot happen.
219  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
220  */
221 /*
222  * Interrupts are disabled on entry as trap3 is an interrupt gate
223  * and they remain disabled throughout this function.
224  */
225 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
226 {
227 	struct kmmio_context *ctx;
228 	struct kmmio_fault_page *faultpage;
229 	int ret = 0; /* default to fault not handled */
230 	unsigned long page_base = addr;
231 	unsigned int l;
232 	pte_t *pte = lookup_address(addr, &l);
233 	if (!pte)
234 		return -EINVAL;
235 	page_base &= page_level_mask(l);
236 
237 	/*
238 	 * Preemption is now disabled to prevent process switch during
239 	 * single stepping. We can only handle one active kmmio trace
240 	 * per cpu, so ensure that we finish it before something else
241 	 * gets to run. We also hold the RCU read lock over single
242 	 * stepping to avoid looking up the probe and kmmio_fault_page
243 	 * again.
244 	 */
245 	preempt_disable();
246 	rcu_read_lock();
247 
248 	faultpage = get_kmmio_fault_page(page_base);
249 	if (!faultpage) {
250 		/*
251 		 * Either this page fault is not caused by kmmio, or
252 		 * another CPU just pulled the kmmio probe from under
253 		 * our feet. The latter case should not be possible.
254 		 */
255 		goto no_kmmio;
256 	}
257 
258 	ctx = &get_cpu_var(kmmio_ctx);
259 	if (ctx->active) {
260 		if (page_base == ctx->addr) {
261 			/*
262 			 * A second fault on the same page means some other
263 			 * condition needs handling by do_page_fault(), the
264 			 * page really not being present is the most common.
265 			 */
266 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
267 				 addr, smp_processor_id());
268 
269 			if (!faultpage->old_presence)
270 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
271 					addr, smp_processor_id());
272 		} else {
273 			/*
274 			 * Prevent overwriting already in-flight context.
275 			 * This should not happen, let's hope disarming at
276 			 * least prevents a panic.
277 			 */
278 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
279 				 smp_processor_id(), addr);
280 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
281 			disarm_kmmio_fault_page(faultpage);
282 		}
283 		goto no_kmmio_ctx;
284 	}
285 	ctx->active++;
286 
287 	ctx->fpage = faultpage;
288 	ctx->probe = get_kmmio_probe(page_base);
289 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
290 	ctx->addr = page_base;
291 
292 	if (ctx->probe && ctx->probe->pre_handler)
293 		ctx->probe->pre_handler(ctx->probe, regs, addr);
294 
295 	/*
296 	 * Enable single-stepping and disable interrupts for the faulting
297 	 * context. Local interrupts must not get enabled during stepping.
298 	 */
299 	regs->flags |= X86_EFLAGS_TF;
300 	regs->flags &= ~X86_EFLAGS_IF;
301 
302 	/* Now we set present bit in PTE and single step. */
303 	disarm_kmmio_fault_page(ctx->fpage);
304 
305 	/*
306 	 * If another cpu accesses the same page while we are stepping,
307 	 * the access will not be caught. It will simply succeed and the
308 	 * only downside is we lose the event. If this becomes a problem,
309 	 * the user should drop to single cpu before tracing.
310 	 */
311 
312 	put_cpu_var(kmmio_ctx);
313 	return 1; /* fault handled */
314 
315 no_kmmio_ctx:
316 	put_cpu_var(kmmio_ctx);
317 no_kmmio:
318 	rcu_read_unlock();
319 	preempt_enable_no_resched();
320 	return ret;
321 }
322 
323 /*
324  * Interrupts are disabled on entry as trap1 is an interrupt gate
325  * and they remain disabled throughout this function.
326  * This must always get called as the pair to kmmio_handler().
327  */
328 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
329 {
330 	int ret = 0;
331 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
332 
333 	if (!ctx->active) {
334 		/*
335 		 * debug traps without an active context are due to either
336 		 * something external causing them (f.e. using a debugger while
337 		 * mmio tracing enabled), or erroneous behaviour
338 		 */
339 		pr_warning("unexpected debug trap on CPU %d.\n",
340 			   smp_processor_id());
341 		goto out;
342 	}
343 
344 	if (ctx->probe && ctx->probe->post_handler)
345 		ctx->probe->post_handler(ctx->probe, condition, regs);
346 
347 	/* Prevent racing against release_kmmio_fault_page(). */
348 	spin_lock(&kmmio_lock);
349 	if (ctx->fpage->count)
350 		arm_kmmio_fault_page(ctx->fpage);
351 	spin_unlock(&kmmio_lock);
352 
353 	regs->flags &= ~X86_EFLAGS_TF;
354 	regs->flags |= ctx->saved_flags;
355 
356 	/* These were acquired in kmmio_handler(). */
357 	ctx->active--;
358 	BUG_ON(ctx->active);
359 	rcu_read_unlock();
360 	preempt_enable_no_resched();
361 
362 	/*
363 	 * if somebody else is singlestepping across a probe point, flags
364 	 * will have TF set, in which case, continue the remaining processing
365 	 * of do_debug, as if this is not a probe hit.
366 	 */
367 	if (!(regs->flags & X86_EFLAGS_TF))
368 		ret = 1;
369 out:
370 	put_cpu_var(kmmio_ctx);
371 	return ret;
372 }
373 
374 /* You must be holding kmmio_lock. */
375 static int add_kmmio_fault_page(unsigned long addr)
376 {
377 	struct kmmio_fault_page *f;
378 
379 	f = get_kmmio_fault_page(addr);
380 	if (f) {
381 		if (!f->count)
382 			arm_kmmio_fault_page(f);
383 		f->count++;
384 		return 0;
385 	}
386 
387 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
388 	if (!f)
389 		return -1;
390 
391 	f->count = 1;
392 	f->addr = addr;
393 
394 	if (arm_kmmio_fault_page(f)) {
395 		kfree(f);
396 		return -1;
397 	}
398 
399 	list_add_rcu(&f->list, kmmio_page_list(f->addr));
400 
401 	return 0;
402 }
403 
404 /* You must be holding kmmio_lock. */
405 static void release_kmmio_fault_page(unsigned long addr,
406 				struct kmmio_fault_page **release_list)
407 {
408 	struct kmmio_fault_page *f;
409 
410 	f = get_kmmio_fault_page(addr);
411 	if (!f)
412 		return;
413 
414 	f->count--;
415 	BUG_ON(f->count < 0);
416 	if (!f->count) {
417 		disarm_kmmio_fault_page(f);
418 		if (!f->scheduled_for_release) {
419 			f->release_next = *release_list;
420 			*release_list = f;
421 			f->scheduled_for_release = true;
422 		}
423 	}
424 }
425 
426 /*
427  * With page-unaligned ioremaps, one or two armed pages may contain
428  * addresses from outside the intended mapping. Events for these addresses
429  * are currently silently dropped. The events may result only from programming
430  * mistakes by accessing addresses before the beginning or past the end of a
431  * mapping.
432  */
433 int register_kmmio_probe(struct kmmio_probe *p)
434 {
435 	unsigned long flags;
436 	int ret = 0;
437 	unsigned long size = 0;
438 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
439 	unsigned int l;
440 	pte_t *pte;
441 
442 	spin_lock_irqsave(&kmmio_lock, flags);
443 	if (get_kmmio_probe(p->addr)) {
444 		ret = -EEXIST;
445 		goto out;
446 	}
447 
448 	pte = lookup_address(p->addr, &l);
449 	if (!pte) {
450 		ret = -EINVAL;
451 		goto out;
452 	}
453 
454 	kmmio_count++;
455 	list_add_rcu(&p->list, &kmmio_probes);
456 	while (size < size_lim) {
457 		if (add_kmmio_fault_page(p->addr + size))
458 			pr_err("Unable to set page fault.\n");
459 		size += page_level_size(l);
460 	}
461 out:
462 	spin_unlock_irqrestore(&kmmio_lock, flags);
463 	/*
464 	 * XXX: What should I do here?
465 	 * Here was a call to global_flush_tlb(), but it does not exist
466 	 * anymore. It seems it's not needed after all.
467 	 */
468 	return ret;
469 }
470 EXPORT_SYMBOL(register_kmmio_probe);
471 
472 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
473 {
474 	struct kmmio_delayed_release *dr = container_of(
475 						head,
476 						struct kmmio_delayed_release,
477 						rcu);
478 	struct kmmio_fault_page *f = dr->release_list;
479 	while (f) {
480 		struct kmmio_fault_page *next = f->release_next;
481 		BUG_ON(f->count);
482 		kfree(f);
483 		f = next;
484 	}
485 	kfree(dr);
486 }
487 
488 static void remove_kmmio_fault_pages(struct rcu_head *head)
489 {
490 	struct kmmio_delayed_release *dr =
491 		container_of(head, struct kmmio_delayed_release, rcu);
492 	struct kmmio_fault_page *f = dr->release_list;
493 	struct kmmio_fault_page **prevp = &dr->release_list;
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&kmmio_lock, flags);
497 	while (f) {
498 		if (!f->count) {
499 			list_del_rcu(&f->list);
500 			prevp = &f->release_next;
501 		} else {
502 			*prevp = f->release_next;
503 			f->release_next = NULL;
504 			f->scheduled_for_release = false;
505 		}
506 		f = *prevp;
507 	}
508 	spin_unlock_irqrestore(&kmmio_lock, flags);
509 
510 	/* This is the real RCU destroy call. */
511 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
512 }
513 
514 /*
515  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
516  * sure that the callbacks will not be called anymore. Only after that
517  * you may actually release your struct kmmio_probe.
518  *
519  * Unregistering a kmmio fault page has three steps:
520  * 1. release_kmmio_fault_page()
521  *    Disarm the page, wait a grace period to let all faults finish.
522  * 2. remove_kmmio_fault_pages()
523  *    Remove the pages from kmmio_page_table.
524  * 3. rcu_free_kmmio_fault_pages()
525  *    Actually free the kmmio_fault_page structs as with RCU.
526  */
527 void unregister_kmmio_probe(struct kmmio_probe *p)
528 {
529 	unsigned long flags;
530 	unsigned long size = 0;
531 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
532 	struct kmmio_fault_page *release_list = NULL;
533 	struct kmmio_delayed_release *drelease;
534 	unsigned int l;
535 	pte_t *pte;
536 
537 	pte = lookup_address(p->addr, &l);
538 	if (!pte)
539 		return;
540 
541 	spin_lock_irqsave(&kmmio_lock, flags);
542 	while (size < size_lim) {
543 		release_kmmio_fault_page(p->addr + size, &release_list);
544 		size += page_level_size(l);
545 	}
546 	list_del_rcu(&p->list);
547 	kmmio_count--;
548 	spin_unlock_irqrestore(&kmmio_lock, flags);
549 
550 	if (!release_list)
551 		return;
552 
553 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
554 	if (!drelease) {
555 		pr_crit("leaking kmmio_fault_page objects.\n");
556 		return;
557 	}
558 	drelease->release_list = release_list;
559 
560 	/*
561 	 * This is not really RCU here. We have just disarmed a set of
562 	 * pages so that they cannot trigger page faults anymore. However,
563 	 * we cannot remove the pages from kmmio_page_table,
564 	 * because a probe hit might be in flight on another CPU. The
565 	 * pages are collected into a list, and they will be removed from
566 	 * kmmio_page_table when it is certain that no probe hit related to
567 	 * these pages can be in flight. RCU grace period sounds like a
568 	 * good choice.
569 	 *
570 	 * If we removed the pages too early, kmmio page fault handler might
571 	 * not find the respective kmmio_fault_page and determine it's not
572 	 * a kmmio fault, when it actually is. This would lead to madness.
573 	 */
574 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
575 }
576 EXPORT_SYMBOL(unregister_kmmio_probe);
577 
578 static int
579 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
580 {
581 	struct die_args *arg = args;
582 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
583 
584 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
585 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
586 			/*
587 			 * Reset the BS bit in dr6 (pointed by args->err) to
588 			 * denote completion of processing
589 			 */
590 			*dr6_p &= ~DR_STEP;
591 			return NOTIFY_STOP;
592 		}
593 
594 	return NOTIFY_DONE;
595 }
596 
597 static struct notifier_block nb_die = {
598 	.notifier_call = kmmio_die_notifier
599 };
600 
601 int kmmio_init(void)
602 {
603 	int i;
604 
605 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
606 		INIT_LIST_HEAD(&kmmio_page_table[i]);
607 
608 	return register_die_notifier(&nb_die);
609 }
610 
611 void kmmio_cleanup(void)
612 {
613 	int i;
614 
615 	unregister_die_notifier(&nb_die);
616 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
617 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
618 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
619 	}
620 }
621