xref: /openbmc/linux/arch/x86/mm/kmmio.c (revision bec36eca)
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #include <linux/list.h>
9 #include <linux/rculist.h>
10 #include <linux/spinlock.h>
11 #include <linux/hash.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/uaccess.h>
16 #include <linux/ptrace.h>
17 #include <linux/preempt.h>
18 #include <linux/percpu.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 #include <linux/io.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <linux/errno.h>
25 #include <asm/debugreg.h>
26 #include <linux/mmiotrace.h>
27 
28 #define KMMIO_PAGE_HASH_BITS 4
29 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
30 
31 struct kmmio_fault_page {
32 	struct list_head list;
33 	struct kmmio_fault_page *release_next;
34 	unsigned long page; /* location of the fault page */
35 	bool old_presence; /* page presence prior to arming */
36 	bool armed;
37 
38 	/*
39 	 * Number of times this page has been registered as a part
40 	 * of a probe. If zero, page is disarmed and this may be freed.
41 	 * Used only by writers (RCU) and post_kmmio_handler().
42 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
43 	 */
44 	int count;
45 };
46 
47 struct kmmio_delayed_release {
48 	struct rcu_head rcu;
49 	struct kmmio_fault_page *release_list;
50 };
51 
52 struct kmmio_context {
53 	struct kmmio_fault_page *fpage;
54 	struct kmmio_probe *probe;
55 	unsigned long saved_flags;
56 	unsigned long addr;
57 	int active;
58 };
59 
60 static DEFINE_SPINLOCK(kmmio_lock);
61 
62 /* Protected by kmmio_lock */
63 unsigned int kmmio_count;
64 
65 /* Read-protected by RCU, write-protected by kmmio_lock. */
66 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
67 static LIST_HEAD(kmmio_probes);
68 
69 static struct list_head *kmmio_page_list(unsigned long page)
70 {
71 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
72 }
73 
74 /* Accessed per-cpu */
75 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
76 
77 /*
78  * this is basically a dynamic stabbing problem:
79  * Could use the existing prio tree code or
80  * Possible better implementations:
81  * The Interval Skip List: A Data Structure for Finding All Intervals That
82  * Overlap a Point (might be simple)
83  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
84  */
85 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
86 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
87 {
88 	struct kmmio_probe *p;
89 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
90 		if (addr >= p->addr && addr <= (p->addr + p->len))
91 			return p;
92 	}
93 	return NULL;
94 }
95 
96 /* You must be holding RCU read lock. */
97 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
98 {
99 	struct list_head *head;
100 	struct kmmio_fault_page *p;
101 
102 	page &= PAGE_MASK;
103 	head = kmmio_page_list(page);
104 	list_for_each_entry_rcu(p, head, list) {
105 		if (p->page == page)
106 			return p;
107 	}
108 	return NULL;
109 }
110 
111 static void set_pmd_presence(pmd_t *pmd, bool present, bool *old)
112 {
113 	pmdval_t v = pmd_val(*pmd);
114 	*old = !!(v & _PAGE_PRESENT);
115 	v &= ~_PAGE_PRESENT;
116 	if (present)
117 		v |= _PAGE_PRESENT;
118 	set_pmd(pmd, __pmd(v));
119 }
120 
121 static void set_pte_presence(pte_t *pte, bool present, bool *old)
122 {
123 	pteval_t v = pte_val(*pte);
124 	*old = !!(v & _PAGE_PRESENT);
125 	v &= ~_PAGE_PRESENT;
126 	if (present)
127 		v |= _PAGE_PRESENT;
128 	set_pte_atomic(pte, __pte(v));
129 }
130 
131 static int set_page_presence(unsigned long addr, bool present, bool *old)
132 {
133 	unsigned int level;
134 	pte_t *pte = lookup_address(addr, &level);
135 
136 	if (!pte) {
137 		pr_err("kmmio: no pte for page 0x%08lx\n", addr);
138 		return -1;
139 	}
140 
141 	switch (level) {
142 	case PG_LEVEL_2M:
143 		set_pmd_presence((pmd_t *)pte, present, old);
144 		break;
145 	case PG_LEVEL_4K:
146 		set_pte_presence(pte, present, old);
147 		break;
148 	default:
149 		pr_err("kmmio: unexpected page level 0x%x.\n", level);
150 		return -1;
151 	}
152 
153 	__flush_tlb_one(addr);
154 	return 0;
155 }
156 
157 /*
158  * Mark the given page as not present. Access to it will trigger a fault.
159  *
160  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
161  * protection is ignored here. RCU read lock is assumed held, so the struct
162  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
163  * that double arming the same virtual address (page) cannot occur.
164  *
165  * Double disarming on the other hand is allowed, and may occur when a fault
166  * and mmiotrace shutdown happen simultaneously.
167  */
168 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
169 {
170 	int ret;
171 	WARN_ONCE(f->armed, KERN_ERR "kmmio page already armed.\n");
172 	if (f->armed) {
173 		pr_warning("kmmio double-arm: page 0x%08lx, ref %d, old %d\n",
174 					f->page, f->count, f->old_presence);
175 	}
176 	ret = set_page_presence(f->page, false, &f->old_presence);
177 	WARN_ONCE(ret < 0, KERN_ERR "kmmio arming 0x%08lx failed.\n", f->page);
178 	f->armed = true;
179 	return ret;
180 }
181 
182 /** Restore the given page to saved presence state. */
183 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
184 {
185 	bool tmp;
186 	int ret = set_page_presence(f->page, f->old_presence, &tmp);
187 	WARN_ONCE(ret < 0,
188 			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
189 	f->armed = false;
190 }
191 
192 /*
193  * This is being called from do_page_fault().
194  *
195  * We may be in an interrupt or a critical section. Also prefecthing may
196  * trigger a page fault. We may be in the middle of process switch.
197  * We cannot take any locks, because we could be executing especially
198  * within a kmmio critical section.
199  *
200  * Local interrupts are disabled, so preemption cannot happen.
201  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
202  */
203 /*
204  * Interrupts are disabled on entry as trap3 is an interrupt gate
205  * and they remain disabled thorough out this function.
206  */
207 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
208 {
209 	struct kmmio_context *ctx;
210 	struct kmmio_fault_page *faultpage;
211 	int ret = 0; /* default to fault not handled */
212 
213 	/*
214 	 * Preemption is now disabled to prevent process switch during
215 	 * single stepping. We can only handle one active kmmio trace
216 	 * per cpu, so ensure that we finish it before something else
217 	 * gets to run. We also hold the RCU read lock over single
218 	 * stepping to avoid looking up the probe and kmmio_fault_page
219 	 * again.
220 	 */
221 	preempt_disable();
222 	rcu_read_lock();
223 
224 	faultpage = get_kmmio_fault_page(addr);
225 	if (!faultpage) {
226 		/*
227 		 * Either this page fault is not caused by kmmio, or
228 		 * another CPU just pulled the kmmio probe from under
229 		 * our feet. The latter case should not be possible.
230 		 */
231 		goto no_kmmio;
232 	}
233 
234 	ctx = &get_cpu_var(kmmio_ctx);
235 	if (ctx->active) {
236 		if (addr == ctx->addr) {
237 			/*
238 			 * A second fault on the same page means some other
239 			 * condition needs handling by do_page_fault(), the
240 			 * page really not being present is the most common.
241 			 */
242 			pr_debug("kmmio: secondary hit for 0x%08lx CPU %d.\n",
243 					addr, smp_processor_id());
244 
245 			if (!faultpage->old_presence)
246 				pr_info("kmmio: unexpected secondary hit for "
247 					"address 0x%08lx on CPU %d.\n", addr,
248 					smp_processor_id());
249 		} else {
250 			/*
251 			 * Prevent overwriting already in-flight context.
252 			 * This should not happen, let's hope disarming at
253 			 * least prevents a panic.
254 			 */
255 			pr_emerg("kmmio: recursive probe hit on CPU %d, "
256 					"for address 0x%08lx. Ignoring.\n",
257 					smp_processor_id(), addr);
258 			pr_emerg("kmmio: previous hit was at 0x%08lx.\n",
259 						ctx->addr);
260 			disarm_kmmio_fault_page(faultpage);
261 		}
262 		goto no_kmmio_ctx;
263 	}
264 	ctx->active++;
265 
266 	ctx->fpage = faultpage;
267 	ctx->probe = get_kmmio_probe(addr);
268 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
269 	ctx->addr = addr;
270 
271 	if (ctx->probe && ctx->probe->pre_handler)
272 		ctx->probe->pre_handler(ctx->probe, regs, addr);
273 
274 	/*
275 	 * Enable single-stepping and disable interrupts for the faulting
276 	 * context. Local interrupts must not get enabled during stepping.
277 	 */
278 	regs->flags |= X86_EFLAGS_TF;
279 	regs->flags &= ~X86_EFLAGS_IF;
280 
281 	/* Now we set present bit in PTE and single step. */
282 	disarm_kmmio_fault_page(ctx->fpage);
283 
284 	/*
285 	 * If another cpu accesses the same page while we are stepping,
286 	 * the access will not be caught. It will simply succeed and the
287 	 * only downside is we lose the event. If this becomes a problem,
288 	 * the user should drop to single cpu before tracing.
289 	 */
290 
291 	put_cpu_var(kmmio_ctx);
292 	return 1; /* fault handled */
293 
294 no_kmmio_ctx:
295 	put_cpu_var(kmmio_ctx);
296 no_kmmio:
297 	rcu_read_unlock();
298 	preempt_enable_no_resched();
299 	return ret;
300 }
301 
302 /*
303  * Interrupts are disabled on entry as trap1 is an interrupt gate
304  * and they remain disabled thorough out this function.
305  * This must always get called as the pair to kmmio_handler().
306  */
307 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
308 {
309 	int ret = 0;
310 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
311 
312 	if (!ctx->active) {
313 		pr_debug("kmmio: spurious debug trap on CPU %d.\n",
314 							smp_processor_id());
315 		goto out;
316 	}
317 
318 	if (ctx->probe && ctx->probe->post_handler)
319 		ctx->probe->post_handler(ctx->probe, condition, regs);
320 
321 	/* Prevent racing against release_kmmio_fault_page(). */
322 	spin_lock(&kmmio_lock);
323 	if (ctx->fpage->count)
324 		arm_kmmio_fault_page(ctx->fpage);
325 	spin_unlock(&kmmio_lock);
326 
327 	regs->flags &= ~X86_EFLAGS_TF;
328 	regs->flags |= ctx->saved_flags;
329 
330 	/* These were acquired in kmmio_handler(). */
331 	ctx->active--;
332 	BUG_ON(ctx->active);
333 	rcu_read_unlock();
334 	preempt_enable_no_resched();
335 
336 	/*
337 	 * if somebody else is singlestepping across a probe point, flags
338 	 * will have TF set, in which case, continue the remaining processing
339 	 * of do_debug, as if this is not a probe hit.
340 	 */
341 	if (!(regs->flags & X86_EFLAGS_TF))
342 		ret = 1;
343 out:
344 	put_cpu_var(kmmio_ctx);
345 	return ret;
346 }
347 
348 /* You must be holding kmmio_lock. */
349 static int add_kmmio_fault_page(unsigned long page)
350 {
351 	struct kmmio_fault_page *f;
352 
353 	page &= PAGE_MASK;
354 	f = get_kmmio_fault_page(page);
355 	if (f) {
356 		if (!f->count)
357 			arm_kmmio_fault_page(f);
358 		f->count++;
359 		return 0;
360 	}
361 
362 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
363 	if (!f)
364 		return -1;
365 
366 	f->count = 1;
367 	f->page = page;
368 
369 	if (arm_kmmio_fault_page(f)) {
370 		kfree(f);
371 		return -1;
372 	}
373 
374 	list_add_rcu(&f->list, kmmio_page_list(f->page));
375 
376 	return 0;
377 }
378 
379 /* You must be holding kmmio_lock. */
380 static void release_kmmio_fault_page(unsigned long page,
381 				struct kmmio_fault_page **release_list)
382 {
383 	struct kmmio_fault_page *f;
384 
385 	page &= PAGE_MASK;
386 	f = get_kmmio_fault_page(page);
387 	if (!f)
388 		return;
389 
390 	f->count--;
391 	BUG_ON(f->count < 0);
392 	if (!f->count) {
393 		disarm_kmmio_fault_page(f);
394 		f->release_next = *release_list;
395 		*release_list = f;
396 	}
397 }
398 
399 /*
400  * With page-unaligned ioremaps, one or two armed pages may contain
401  * addresses from outside the intended mapping. Events for these addresses
402  * are currently silently dropped. The events may result only from programming
403  * mistakes by accessing addresses before the beginning or past the end of a
404  * mapping.
405  */
406 int register_kmmio_probe(struct kmmio_probe *p)
407 {
408 	unsigned long flags;
409 	int ret = 0;
410 	unsigned long size = 0;
411 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
412 
413 	spin_lock_irqsave(&kmmio_lock, flags);
414 	if (get_kmmio_probe(p->addr)) {
415 		ret = -EEXIST;
416 		goto out;
417 	}
418 	kmmio_count++;
419 	list_add_rcu(&p->list, &kmmio_probes);
420 	while (size < size_lim) {
421 		if (add_kmmio_fault_page(p->addr + size))
422 			pr_err("kmmio: Unable to set page fault.\n");
423 		size += PAGE_SIZE;
424 	}
425 out:
426 	spin_unlock_irqrestore(&kmmio_lock, flags);
427 	/*
428 	 * XXX: What should I do here?
429 	 * Here was a call to global_flush_tlb(), but it does not exist
430 	 * anymore. It seems it's not needed after all.
431 	 */
432 	return ret;
433 }
434 EXPORT_SYMBOL(register_kmmio_probe);
435 
436 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
437 {
438 	struct kmmio_delayed_release *dr = container_of(
439 						head,
440 						struct kmmio_delayed_release,
441 						rcu);
442 	struct kmmio_fault_page *p = dr->release_list;
443 	while (p) {
444 		struct kmmio_fault_page *next = p->release_next;
445 		BUG_ON(p->count);
446 		kfree(p);
447 		p = next;
448 	}
449 	kfree(dr);
450 }
451 
452 static void remove_kmmio_fault_pages(struct rcu_head *head)
453 {
454 	struct kmmio_delayed_release *dr =
455 		container_of(head, struct kmmio_delayed_release, rcu);
456 	struct kmmio_fault_page *p = dr->release_list;
457 	struct kmmio_fault_page **prevp = &dr->release_list;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&kmmio_lock, flags);
461 	while (p) {
462 		if (!p->count) {
463 			list_del_rcu(&p->list);
464 			prevp = &p->release_next;
465 		} else {
466 			*prevp = p->release_next;
467 		}
468 		p = p->release_next;
469 	}
470 	spin_unlock_irqrestore(&kmmio_lock, flags);
471 
472 	/* This is the real RCU destroy call. */
473 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
474 }
475 
476 /*
477  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
478  * sure that the callbacks will not be called anymore. Only after that
479  * you may actually release your struct kmmio_probe.
480  *
481  * Unregistering a kmmio fault page has three steps:
482  * 1. release_kmmio_fault_page()
483  *    Disarm the page, wait a grace period to let all faults finish.
484  * 2. remove_kmmio_fault_pages()
485  *    Remove the pages from kmmio_page_table.
486  * 3. rcu_free_kmmio_fault_pages()
487  *    Actally free the kmmio_fault_page structs as with RCU.
488  */
489 void unregister_kmmio_probe(struct kmmio_probe *p)
490 {
491 	unsigned long flags;
492 	unsigned long size = 0;
493 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
494 	struct kmmio_fault_page *release_list = NULL;
495 	struct kmmio_delayed_release *drelease;
496 
497 	spin_lock_irqsave(&kmmio_lock, flags);
498 	while (size < size_lim) {
499 		release_kmmio_fault_page(p->addr + size, &release_list);
500 		size += PAGE_SIZE;
501 	}
502 	list_del_rcu(&p->list);
503 	kmmio_count--;
504 	spin_unlock_irqrestore(&kmmio_lock, flags);
505 
506 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
507 	if (!drelease) {
508 		pr_crit("kmmio: leaking kmmio_fault_page objects.\n");
509 		return;
510 	}
511 	drelease->release_list = release_list;
512 
513 	/*
514 	 * This is not really RCU here. We have just disarmed a set of
515 	 * pages so that they cannot trigger page faults anymore. However,
516 	 * we cannot remove the pages from kmmio_page_table,
517 	 * because a probe hit might be in flight on another CPU. The
518 	 * pages are collected into a list, and they will be removed from
519 	 * kmmio_page_table when it is certain that no probe hit related to
520 	 * these pages can be in flight. RCU grace period sounds like a
521 	 * good choice.
522 	 *
523 	 * If we removed the pages too early, kmmio page fault handler might
524 	 * not find the respective kmmio_fault_page and determine it's not
525 	 * a kmmio fault, when it actually is. This would lead to madness.
526 	 */
527 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
528 }
529 EXPORT_SYMBOL(unregister_kmmio_probe);
530 
531 static int kmmio_die_notifier(struct notifier_block *nb, unsigned long val,
532 								void *args)
533 {
534 	struct die_args *arg = args;
535 
536 	if (val == DIE_DEBUG && (arg->err & DR_STEP))
537 		if (post_kmmio_handler(arg->err, arg->regs) == 1)
538 			return NOTIFY_STOP;
539 
540 	return NOTIFY_DONE;
541 }
542 
543 static struct notifier_block nb_die = {
544 	.notifier_call = kmmio_die_notifier
545 };
546 
547 static int __init init_kmmio(void)
548 {
549 	int i;
550 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
551 		INIT_LIST_HEAD(&kmmio_page_table[i]);
552 	return register_die_notifier(&nb_die);
553 }
554 fs_initcall(init_kmmio); /* should be before device_initcall() */
555