1 /* Support for MMIO probes. 2 * Benfit many code from kprobes 3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. 4 * 2007 Alexander Eichner 5 * 2008 Pekka Paalanen <pq@iki.fi> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/list.h> 11 #include <linux/rculist.h> 12 #include <linux/spinlock.h> 13 #include <linux/hash.h> 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/uaccess.h> 17 #include <linux/ptrace.h> 18 #include <linux/preempt.h> 19 #include <linux/percpu.h> 20 #include <linux/kdebug.h> 21 #include <linux/mutex.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <asm/cacheflush.h> 25 #include <asm/tlbflush.h> 26 #include <linux/errno.h> 27 #include <asm/debugreg.h> 28 #include <linux/mmiotrace.h> 29 30 #define KMMIO_PAGE_HASH_BITS 4 31 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) 32 33 struct kmmio_fault_page { 34 struct list_head list; 35 struct kmmio_fault_page *release_next; 36 unsigned long page; /* location of the fault page */ 37 pteval_t old_presence; /* page presence prior to arming */ 38 bool armed; 39 40 /* 41 * Number of times this page has been registered as a part 42 * of a probe. If zero, page is disarmed and this may be freed. 43 * Used only by writers (RCU) and post_kmmio_handler(). 44 * Protected by kmmio_lock, when linked into kmmio_page_table. 45 */ 46 int count; 47 48 bool scheduled_for_release; 49 }; 50 51 struct kmmio_delayed_release { 52 struct rcu_head rcu; 53 struct kmmio_fault_page *release_list; 54 }; 55 56 struct kmmio_context { 57 struct kmmio_fault_page *fpage; 58 struct kmmio_probe *probe; 59 unsigned long saved_flags; 60 unsigned long addr; 61 int active; 62 }; 63 64 static DEFINE_SPINLOCK(kmmio_lock); 65 66 /* Protected by kmmio_lock */ 67 unsigned int kmmio_count; 68 69 /* Read-protected by RCU, write-protected by kmmio_lock. */ 70 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; 71 static LIST_HEAD(kmmio_probes); 72 73 static struct list_head *kmmio_page_list(unsigned long page) 74 { 75 return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)]; 76 } 77 78 /* Accessed per-cpu */ 79 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); 80 81 /* 82 * this is basically a dynamic stabbing problem: 83 * Could use the existing prio tree code or 84 * Possible better implementations: 85 * The Interval Skip List: A Data Structure for Finding All Intervals That 86 * Overlap a Point (might be simple) 87 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup 88 */ 89 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ 90 static struct kmmio_probe *get_kmmio_probe(unsigned long addr) 91 { 92 struct kmmio_probe *p; 93 list_for_each_entry_rcu(p, &kmmio_probes, list) { 94 if (addr >= p->addr && addr < (p->addr + p->len)) 95 return p; 96 } 97 return NULL; 98 } 99 100 /* You must be holding RCU read lock. */ 101 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) 102 { 103 struct list_head *head; 104 struct kmmio_fault_page *f; 105 106 page &= PAGE_MASK; 107 head = kmmio_page_list(page); 108 list_for_each_entry_rcu(f, head, list) { 109 if (f->page == page) 110 return f; 111 } 112 return NULL; 113 } 114 115 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) 116 { 117 pmdval_t v = pmd_val(*pmd); 118 if (clear) { 119 *old = v & _PAGE_PRESENT; 120 v &= ~_PAGE_PRESENT; 121 } else /* presume this has been called with clear==true previously */ 122 v |= *old; 123 set_pmd(pmd, __pmd(v)); 124 } 125 126 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) 127 { 128 pteval_t v = pte_val(*pte); 129 if (clear) { 130 *old = v & _PAGE_PRESENT; 131 v &= ~_PAGE_PRESENT; 132 } else /* presume this has been called with clear==true previously */ 133 v |= *old; 134 set_pte_atomic(pte, __pte(v)); 135 } 136 137 static int clear_page_presence(struct kmmio_fault_page *f, bool clear) 138 { 139 unsigned int level; 140 pte_t *pte = lookup_address(f->page, &level); 141 142 if (!pte) { 143 pr_err("no pte for page 0x%08lx\n", f->page); 144 return -1; 145 } 146 147 switch (level) { 148 case PG_LEVEL_2M: 149 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); 150 break; 151 case PG_LEVEL_4K: 152 clear_pte_presence(pte, clear, &f->old_presence); 153 break; 154 default: 155 pr_err("unexpected page level 0x%x.\n", level); 156 return -1; 157 } 158 159 __flush_tlb_one(f->page); 160 return 0; 161 } 162 163 /* 164 * Mark the given page as not present. Access to it will trigger a fault. 165 * 166 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the 167 * protection is ignored here. RCU read lock is assumed held, so the struct 168 * will not disappear unexpectedly. Furthermore, the caller must guarantee, 169 * that double arming the same virtual address (page) cannot occur. 170 * 171 * Double disarming on the other hand is allowed, and may occur when a fault 172 * and mmiotrace shutdown happen simultaneously. 173 */ 174 static int arm_kmmio_fault_page(struct kmmio_fault_page *f) 175 { 176 int ret; 177 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); 178 if (f->armed) { 179 pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n", 180 f->page, f->count, !!f->old_presence); 181 } 182 ret = clear_page_presence(f, true); 183 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"), 184 f->page); 185 f->armed = true; 186 return ret; 187 } 188 189 /** Restore the given page to saved presence state. */ 190 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) 191 { 192 int ret = clear_page_presence(f, false); 193 WARN_ONCE(ret < 0, 194 KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page); 195 f->armed = false; 196 } 197 198 /* 199 * This is being called from do_page_fault(). 200 * 201 * We may be in an interrupt or a critical section. Also prefecthing may 202 * trigger a page fault. We may be in the middle of process switch. 203 * We cannot take any locks, because we could be executing especially 204 * within a kmmio critical section. 205 * 206 * Local interrupts are disabled, so preemption cannot happen. 207 * Do not enable interrupts, do not sleep, and watch out for other CPUs. 208 */ 209 /* 210 * Interrupts are disabled on entry as trap3 is an interrupt gate 211 * and they remain disabled throughout this function. 212 */ 213 int kmmio_handler(struct pt_regs *regs, unsigned long addr) 214 { 215 struct kmmio_context *ctx; 216 struct kmmio_fault_page *faultpage; 217 int ret = 0; /* default to fault not handled */ 218 219 /* 220 * Preemption is now disabled to prevent process switch during 221 * single stepping. We can only handle one active kmmio trace 222 * per cpu, so ensure that we finish it before something else 223 * gets to run. We also hold the RCU read lock over single 224 * stepping to avoid looking up the probe and kmmio_fault_page 225 * again. 226 */ 227 preempt_disable(); 228 rcu_read_lock(); 229 230 faultpage = get_kmmio_fault_page(addr); 231 if (!faultpage) { 232 /* 233 * Either this page fault is not caused by kmmio, or 234 * another CPU just pulled the kmmio probe from under 235 * our feet. The latter case should not be possible. 236 */ 237 goto no_kmmio; 238 } 239 240 ctx = &get_cpu_var(kmmio_ctx); 241 if (ctx->active) { 242 if (addr == ctx->addr) { 243 /* 244 * A second fault on the same page means some other 245 * condition needs handling by do_page_fault(), the 246 * page really not being present is the most common. 247 */ 248 pr_debug("secondary hit for 0x%08lx CPU %d.\n", 249 addr, smp_processor_id()); 250 251 if (!faultpage->old_presence) 252 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", 253 addr, smp_processor_id()); 254 } else { 255 /* 256 * Prevent overwriting already in-flight context. 257 * This should not happen, let's hope disarming at 258 * least prevents a panic. 259 */ 260 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", 261 smp_processor_id(), addr); 262 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); 263 disarm_kmmio_fault_page(faultpage); 264 } 265 goto no_kmmio_ctx; 266 } 267 ctx->active++; 268 269 ctx->fpage = faultpage; 270 ctx->probe = get_kmmio_probe(addr); 271 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 272 ctx->addr = addr; 273 274 if (ctx->probe && ctx->probe->pre_handler) 275 ctx->probe->pre_handler(ctx->probe, regs, addr); 276 277 /* 278 * Enable single-stepping and disable interrupts for the faulting 279 * context. Local interrupts must not get enabled during stepping. 280 */ 281 regs->flags |= X86_EFLAGS_TF; 282 regs->flags &= ~X86_EFLAGS_IF; 283 284 /* Now we set present bit in PTE and single step. */ 285 disarm_kmmio_fault_page(ctx->fpage); 286 287 /* 288 * If another cpu accesses the same page while we are stepping, 289 * the access will not be caught. It will simply succeed and the 290 * only downside is we lose the event. If this becomes a problem, 291 * the user should drop to single cpu before tracing. 292 */ 293 294 put_cpu_var(kmmio_ctx); 295 return 1; /* fault handled */ 296 297 no_kmmio_ctx: 298 put_cpu_var(kmmio_ctx); 299 no_kmmio: 300 rcu_read_unlock(); 301 preempt_enable_no_resched(); 302 return ret; 303 } 304 305 /* 306 * Interrupts are disabled on entry as trap1 is an interrupt gate 307 * and they remain disabled throughout this function. 308 * This must always get called as the pair to kmmio_handler(). 309 */ 310 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) 311 { 312 int ret = 0; 313 struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); 314 315 if (!ctx->active) { 316 /* 317 * debug traps without an active context are due to either 318 * something external causing them (f.e. using a debugger while 319 * mmio tracing enabled), or erroneous behaviour 320 */ 321 pr_warning("unexpected debug trap on CPU %d.\n", 322 smp_processor_id()); 323 goto out; 324 } 325 326 if (ctx->probe && ctx->probe->post_handler) 327 ctx->probe->post_handler(ctx->probe, condition, regs); 328 329 /* Prevent racing against release_kmmio_fault_page(). */ 330 spin_lock(&kmmio_lock); 331 if (ctx->fpage->count) 332 arm_kmmio_fault_page(ctx->fpage); 333 spin_unlock(&kmmio_lock); 334 335 regs->flags &= ~X86_EFLAGS_TF; 336 regs->flags |= ctx->saved_flags; 337 338 /* These were acquired in kmmio_handler(). */ 339 ctx->active--; 340 BUG_ON(ctx->active); 341 rcu_read_unlock(); 342 preempt_enable_no_resched(); 343 344 /* 345 * if somebody else is singlestepping across a probe point, flags 346 * will have TF set, in which case, continue the remaining processing 347 * of do_debug, as if this is not a probe hit. 348 */ 349 if (!(regs->flags & X86_EFLAGS_TF)) 350 ret = 1; 351 out: 352 put_cpu_var(kmmio_ctx); 353 return ret; 354 } 355 356 /* You must be holding kmmio_lock. */ 357 static int add_kmmio_fault_page(unsigned long page) 358 { 359 struct kmmio_fault_page *f; 360 361 page &= PAGE_MASK; 362 f = get_kmmio_fault_page(page); 363 if (f) { 364 if (!f->count) 365 arm_kmmio_fault_page(f); 366 f->count++; 367 return 0; 368 } 369 370 f = kzalloc(sizeof(*f), GFP_ATOMIC); 371 if (!f) 372 return -1; 373 374 f->count = 1; 375 f->page = page; 376 377 if (arm_kmmio_fault_page(f)) { 378 kfree(f); 379 return -1; 380 } 381 382 list_add_rcu(&f->list, kmmio_page_list(f->page)); 383 384 return 0; 385 } 386 387 /* You must be holding kmmio_lock. */ 388 static void release_kmmio_fault_page(unsigned long page, 389 struct kmmio_fault_page **release_list) 390 { 391 struct kmmio_fault_page *f; 392 393 page &= PAGE_MASK; 394 f = get_kmmio_fault_page(page); 395 if (!f) 396 return; 397 398 f->count--; 399 BUG_ON(f->count < 0); 400 if (!f->count) { 401 disarm_kmmio_fault_page(f); 402 if (!f->scheduled_for_release) { 403 f->release_next = *release_list; 404 *release_list = f; 405 f->scheduled_for_release = true; 406 } 407 } 408 } 409 410 /* 411 * With page-unaligned ioremaps, one or two armed pages may contain 412 * addresses from outside the intended mapping. Events for these addresses 413 * are currently silently dropped. The events may result only from programming 414 * mistakes by accessing addresses before the beginning or past the end of a 415 * mapping. 416 */ 417 int register_kmmio_probe(struct kmmio_probe *p) 418 { 419 unsigned long flags; 420 int ret = 0; 421 unsigned long size = 0; 422 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 423 424 spin_lock_irqsave(&kmmio_lock, flags); 425 if (get_kmmio_probe(p->addr)) { 426 ret = -EEXIST; 427 goto out; 428 } 429 kmmio_count++; 430 list_add_rcu(&p->list, &kmmio_probes); 431 while (size < size_lim) { 432 if (add_kmmio_fault_page(p->addr + size)) 433 pr_err("Unable to set page fault.\n"); 434 size += PAGE_SIZE; 435 } 436 out: 437 spin_unlock_irqrestore(&kmmio_lock, flags); 438 /* 439 * XXX: What should I do here? 440 * Here was a call to global_flush_tlb(), but it does not exist 441 * anymore. It seems it's not needed after all. 442 */ 443 return ret; 444 } 445 EXPORT_SYMBOL(register_kmmio_probe); 446 447 static void rcu_free_kmmio_fault_pages(struct rcu_head *head) 448 { 449 struct kmmio_delayed_release *dr = container_of( 450 head, 451 struct kmmio_delayed_release, 452 rcu); 453 struct kmmio_fault_page *f = dr->release_list; 454 while (f) { 455 struct kmmio_fault_page *next = f->release_next; 456 BUG_ON(f->count); 457 kfree(f); 458 f = next; 459 } 460 kfree(dr); 461 } 462 463 static void remove_kmmio_fault_pages(struct rcu_head *head) 464 { 465 struct kmmio_delayed_release *dr = 466 container_of(head, struct kmmio_delayed_release, rcu); 467 struct kmmio_fault_page *f = dr->release_list; 468 struct kmmio_fault_page **prevp = &dr->release_list; 469 unsigned long flags; 470 471 spin_lock_irqsave(&kmmio_lock, flags); 472 while (f) { 473 if (!f->count) { 474 list_del_rcu(&f->list); 475 prevp = &f->release_next; 476 } else { 477 *prevp = f->release_next; 478 f->release_next = NULL; 479 f->scheduled_for_release = false; 480 } 481 f = *prevp; 482 } 483 spin_unlock_irqrestore(&kmmio_lock, flags); 484 485 /* This is the real RCU destroy call. */ 486 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); 487 } 488 489 /* 490 * Remove a kmmio probe. You have to synchronize_rcu() before you can be 491 * sure that the callbacks will not be called anymore. Only after that 492 * you may actually release your struct kmmio_probe. 493 * 494 * Unregistering a kmmio fault page has three steps: 495 * 1. release_kmmio_fault_page() 496 * Disarm the page, wait a grace period to let all faults finish. 497 * 2. remove_kmmio_fault_pages() 498 * Remove the pages from kmmio_page_table. 499 * 3. rcu_free_kmmio_fault_pages() 500 * Actually free the kmmio_fault_page structs as with RCU. 501 */ 502 void unregister_kmmio_probe(struct kmmio_probe *p) 503 { 504 unsigned long flags; 505 unsigned long size = 0; 506 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 507 struct kmmio_fault_page *release_list = NULL; 508 struct kmmio_delayed_release *drelease; 509 510 spin_lock_irqsave(&kmmio_lock, flags); 511 while (size < size_lim) { 512 release_kmmio_fault_page(p->addr + size, &release_list); 513 size += PAGE_SIZE; 514 } 515 list_del_rcu(&p->list); 516 kmmio_count--; 517 spin_unlock_irqrestore(&kmmio_lock, flags); 518 519 if (!release_list) 520 return; 521 522 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); 523 if (!drelease) { 524 pr_crit("leaking kmmio_fault_page objects.\n"); 525 return; 526 } 527 drelease->release_list = release_list; 528 529 /* 530 * This is not really RCU here. We have just disarmed a set of 531 * pages so that they cannot trigger page faults anymore. However, 532 * we cannot remove the pages from kmmio_page_table, 533 * because a probe hit might be in flight on another CPU. The 534 * pages are collected into a list, and they will be removed from 535 * kmmio_page_table when it is certain that no probe hit related to 536 * these pages can be in flight. RCU grace period sounds like a 537 * good choice. 538 * 539 * If we removed the pages too early, kmmio page fault handler might 540 * not find the respective kmmio_fault_page and determine it's not 541 * a kmmio fault, when it actually is. This would lead to madness. 542 */ 543 call_rcu(&drelease->rcu, remove_kmmio_fault_pages); 544 } 545 EXPORT_SYMBOL(unregister_kmmio_probe); 546 547 static int 548 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) 549 { 550 struct die_args *arg = args; 551 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); 552 553 if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) 554 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { 555 /* 556 * Reset the BS bit in dr6 (pointed by args->err) to 557 * denote completion of processing 558 */ 559 *dr6_p &= ~DR_STEP; 560 return NOTIFY_STOP; 561 } 562 563 return NOTIFY_DONE; 564 } 565 566 static struct notifier_block nb_die = { 567 .notifier_call = kmmio_die_notifier 568 }; 569 570 int kmmio_init(void) 571 { 572 int i; 573 574 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) 575 INIT_LIST_HEAD(&kmmio_page_table[i]); 576 577 return register_die_notifier(&nb_die); 578 } 579 580 void kmmio_cleanup(void) 581 { 582 int i; 583 584 unregister_die_notifier(&nb_die); 585 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { 586 WARN_ONCE(!list_empty(&kmmio_page_table[i]), 587 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); 588 } 589 } 590