xref: /openbmc/linux/arch/x86/mm/kmmio.c (revision 4dc7ccf7)
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/list.h>
11 #include <linux/rculist.h>
12 #include <linux/spinlock.h>
13 #include <linux/hash.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
30 
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33 
34 struct kmmio_fault_page {
35 	struct list_head list;
36 	struct kmmio_fault_page *release_next;
37 	unsigned long page; /* location of the fault page */
38 	pteval_t old_presence; /* page presence prior to arming */
39 	bool armed;
40 
41 	/*
42 	 * Number of times this page has been registered as a part
43 	 * of a probe. If zero, page is disarmed and this may be freed.
44 	 * Used only by writers (RCU) and post_kmmio_handler().
45 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46 	 */
47 	int count;
48 };
49 
50 struct kmmio_delayed_release {
51 	struct rcu_head rcu;
52 	struct kmmio_fault_page *release_list;
53 };
54 
55 struct kmmio_context {
56 	struct kmmio_fault_page *fpage;
57 	struct kmmio_probe *probe;
58 	unsigned long saved_flags;
59 	unsigned long addr;
60 	int active;
61 };
62 
63 static DEFINE_SPINLOCK(kmmio_lock);
64 
65 /* Protected by kmmio_lock */
66 unsigned int kmmio_count;
67 
68 /* Read-protected by RCU, write-protected by kmmio_lock. */
69 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
70 static LIST_HEAD(kmmio_probes);
71 
72 static struct list_head *kmmio_page_list(unsigned long page)
73 {
74 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
75 }
76 
77 /* Accessed per-cpu */
78 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
79 
80 /*
81  * this is basically a dynamic stabbing problem:
82  * Could use the existing prio tree code or
83  * Possible better implementations:
84  * The Interval Skip List: A Data Structure for Finding All Intervals That
85  * Overlap a Point (might be simple)
86  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
87  */
88 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
89 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
90 {
91 	struct kmmio_probe *p;
92 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
93 		if (addr >= p->addr && addr < (p->addr + p->len))
94 			return p;
95 	}
96 	return NULL;
97 }
98 
99 /* You must be holding RCU read lock. */
100 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
101 {
102 	struct list_head *head;
103 	struct kmmio_fault_page *f;
104 
105 	page &= PAGE_MASK;
106 	head = kmmio_page_list(page);
107 	list_for_each_entry_rcu(f, head, list) {
108 		if (f->page == page)
109 			return f;
110 	}
111 	return NULL;
112 }
113 
114 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
115 {
116 	pmdval_t v = pmd_val(*pmd);
117 	if (clear) {
118 		*old = v & _PAGE_PRESENT;
119 		v &= ~_PAGE_PRESENT;
120 	} else	/* presume this has been called with clear==true previously */
121 		v |= *old;
122 	set_pmd(pmd, __pmd(v));
123 }
124 
125 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
126 {
127 	pteval_t v = pte_val(*pte);
128 	if (clear) {
129 		*old = v & _PAGE_PRESENT;
130 		v &= ~_PAGE_PRESENT;
131 	} else	/* presume this has been called with clear==true previously */
132 		v |= *old;
133 	set_pte_atomic(pte, __pte(v));
134 }
135 
136 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
137 {
138 	unsigned int level;
139 	pte_t *pte = lookup_address(f->page, &level);
140 
141 	if (!pte) {
142 		pr_err("no pte for page 0x%08lx\n", f->page);
143 		return -1;
144 	}
145 
146 	switch (level) {
147 	case PG_LEVEL_2M:
148 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
149 		break;
150 	case PG_LEVEL_4K:
151 		clear_pte_presence(pte, clear, &f->old_presence);
152 		break;
153 	default:
154 		pr_err("unexpected page level 0x%x.\n", level);
155 		return -1;
156 	}
157 
158 	__flush_tlb_one(f->page);
159 	return 0;
160 }
161 
162 /*
163  * Mark the given page as not present. Access to it will trigger a fault.
164  *
165  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
166  * protection is ignored here. RCU read lock is assumed held, so the struct
167  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
168  * that double arming the same virtual address (page) cannot occur.
169  *
170  * Double disarming on the other hand is allowed, and may occur when a fault
171  * and mmiotrace shutdown happen simultaneously.
172  */
173 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
174 {
175 	int ret;
176 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
177 	if (f->armed) {
178 		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
179 			   f->page, f->count, !!f->old_presence);
180 	}
181 	ret = clear_page_presence(f, true);
182 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
183 		  f->page);
184 	f->armed = true;
185 	return ret;
186 }
187 
188 /** Restore the given page to saved presence state. */
189 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
190 {
191 	int ret = clear_page_presence(f, false);
192 	WARN_ONCE(ret < 0,
193 			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
194 	f->armed = false;
195 }
196 
197 /*
198  * This is being called from do_page_fault().
199  *
200  * We may be in an interrupt or a critical section. Also prefecthing may
201  * trigger a page fault. We may be in the middle of process switch.
202  * We cannot take any locks, because we could be executing especially
203  * within a kmmio critical section.
204  *
205  * Local interrupts are disabled, so preemption cannot happen.
206  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
207  */
208 /*
209  * Interrupts are disabled on entry as trap3 is an interrupt gate
210  * and they remain disabled throughout this function.
211  */
212 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
213 {
214 	struct kmmio_context *ctx;
215 	struct kmmio_fault_page *faultpage;
216 	int ret = 0; /* default to fault not handled */
217 
218 	/*
219 	 * Preemption is now disabled to prevent process switch during
220 	 * single stepping. We can only handle one active kmmio trace
221 	 * per cpu, so ensure that we finish it before something else
222 	 * gets to run. We also hold the RCU read lock over single
223 	 * stepping to avoid looking up the probe and kmmio_fault_page
224 	 * again.
225 	 */
226 	preempt_disable();
227 	rcu_read_lock();
228 
229 	faultpage = get_kmmio_fault_page(addr);
230 	if (!faultpage) {
231 		/*
232 		 * Either this page fault is not caused by kmmio, or
233 		 * another CPU just pulled the kmmio probe from under
234 		 * our feet. The latter case should not be possible.
235 		 */
236 		goto no_kmmio;
237 	}
238 
239 	ctx = &get_cpu_var(kmmio_ctx);
240 	if (ctx->active) {
241 		if (addr == ctx->addr) {
242 			/*
243 			 * A second fault on the same page means some other
244 			 * condition needs handling by do_page_fault(), the
245 			 * page really not being present is the most common.
246 			 */
247 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
248 				 addr, smp_processor_id());
249 
250 			if (!faultpage->old_presence)
251 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
252 					addr, smp_processor_id());
253 		} else {
254 			/*
255 			 * Prevent overwriting already in-flight context.
256 			 * This should not happen, let's hope disarming at
257 			 * least prevents a panic.
258 			 */
259 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
260 				 smp_processor_id(), addr);
261 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
262 			disarm_kmmio_fault_page(faultpage);
263 		}
264 		goto no_kmmio_ctx;
265 	}
266 	ctx->active++;
267 
268 	ctx->fpage = faultpage;
269 	ctx->probe = get_kmmio_probe(addr);
270 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
271 	ctx->addr = addr;
272 
273 	if (ctx->probe && ctx->probe->pre_handler)
274 		ctx->probe->pre_handler(ctx->probe, regs, addr);
275 
276 	/*
277 	 * Enable single-stepping and disable interrupts for the faulting
278 	 * context. Local interrupts must not get enabled during stepping.
279 	 */
280 	regs->flags |= X86_EFLAGS_TF;
281 	regs->flags &= ~X86_EFLAGS_IF;
282 
283 	/* Now we set present bit in PTE and single step. */
284 	disarm_kmmio_fault_page(ctx->fpage);
285 
286 	/*
287 	 * If another cpu accesses the same page while we are stepping,
288 	 * the access will not be caught. It will simply succeed and the
289 	 * only downside is we lose the event. If this becomes a problem,
290 	 * the user should drop to single cpu before tracing.
291 	 */
292 
293 	put_cpu_var(kmmio_ctx);
294 	return 1; /* fault handled */
295 
296 no_kmmio_ctx:
297 	put_cpu_var(kmmio_ctx);
298 no_kmmio:
299 	rcu_read_unlock();
300 	preempt_enable_no_resched();
301 	return ret;
302 }
303 
304 /*
305  * Interrupts are disabled on entry as trap1 is an interrupt gate
306  * and they remain disabled throughout this function.
307  * This must always get called as the pair to kmmio_handler().
308  */
309 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
310 {
311 	int ret = 0;
312 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
313 
314 	if (!ctx->active) {
315 		/*
316 		 * debug traps without an active context are due to either
317 		 * something external causing them (f.e. using a debugger while
318 		 * mmio tracing enabled), or erroneous behaviour
319 		 */
320 		pr_warning("unexpected debug trap on CPU %d.\n",
321 			   smp_processor_id());
322 		goto out;
323 	}
324 
325 	if (ctx->probe && ctx->probe->post_handler)
326 		ctx->probe->post_handler(ctx->probe, condition, regs);
327 
328 	/* Prevent racing against release_kmmio_fault_page(). */
329 	spin_lock(&kmmio_lock);
330 	if (ctx->fpage->count)
331 		arm_kmmio_fault_page(ctx->fpage);
332 	spin_unlock(&kmmio_lock);
333 
334 	regs->flags &= ~X86_EFLAGS_TF;
335 	regs->flags |= ctx->saved_flags;
336 
337 	/* These were acquired in kmmio_handler(). */
338 	ctx->active--;
339 	BUG_ON(ctx->active);
340 	rcu_read_unlock();
341 	preempt_enable_no_resched();
342 
343 	/*
344 	 * if somebody else is singlestepping across a probe point, flags
345 	 * will have TF set, in which case, continue the remaining processing
346 	 * of do_debug, as if this is not a probe hit.
347 	 */
348 	if (!(regs->flags & X86_EFLAGS_TF))
349 		ret = 1;
350 out:
351 	put_cpu_var(kmmio_ctx);
352 	return ret;
353 }
354 
355 /* You must be holding kmmio_lock. */
356 static int add_kmmio_fault_page(unsigned long page)
357 {
358 	struct kmmio_fault_page *f;
359 
360 	page &= PAGE_MASK;
361 	f = get_kmmio_fault_page(page);
362 	if (f) {
363 		if (!f->count)
364 			arm_kmmio_fault_page(f);
365 		f->count++;
366 		return 0;
367 	}
368 
369 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
370 	if (!f)
371 		return -1;
372 
373 	f->count = 1;
374 	f->page = page;
375 
376 	if (arm_kmmio_fault_page(f)) {
377 		kfree(f);
378 		return -1;
379 	}
380 
381 	list_add_rcu(&f->list, kmmio_page_list(f->page));
382 
383 	return 0;
384 }
385 
386 /* You must be holding kmmio_lock. */
387 static void release_kmmio_fault_page(unsigned long page,
388 				struct kmmio_fault_page **release_list)
389 {
390 	struct kmmio_fault_page *f;
391 
392 	page &= PAGE_MASK;
393 	f = get_kmmio_fault_page(page);
394 	if (!f)
395 		return;
396 
397 	f->count--;
398 	BUG_ON(f->count < 0);
399 	if (!f->count) {
400 		disarm_kmmio_fault_page(f);
401 		f->release_next = *release_list;
402 		*release_list = f;
403 	}
404 }
405 
406 /*
407  * With page-unaligned ioremaps, one or two armed pages may contain
408  * addresses from outside the intended mapping. Events for these addresses
409  * are currently silently dropped. The events may result only from programming
410  * mistakes by accessing addresses before the beginning or past the end of a
411  * mapping.
412  */
413 int register_kmmio_probe(struct kmmio_probe *p)
414 {
415 	unsigned long flags;
416 	int ret = 0;
417 	unsigned long size = 0;
418 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
419 
420 	spin_lock_irqsave(&kmmio_lock, flags);
421 	if (get_kmmio_probe(p->addr)) {
422 		ret = -EEXIST;
423 		goto out;
424 	}
425 	kmmio_count++;
426 	list_add_rcu(&p->list, &kmmio_probes);
427 	while (size < size_lim) {
428 		if (add_kmmio_fault_page(p->addr + size))
429 			pr_err("Unable to set page fault.\n");
430 		size += PAGE_SIZE;
431 	}
432 out:
433 	spin_unlock_irqrestore(&kmmio_lock, flags);
434 	/*
435 	 * XXX: What should I do here?
436 	 * Here was a call to global_flush_tlb(), but it does not exist
437 	 * anymore. It seems it's not needed after all.
438 	 */
439 	return ret;
440 }
441 EXPORT_SYMBOL(register_kmmio_probe);
442 
443 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
444 {
445 	struct kmmio_delayed_release *dr = container_of(
446 						head,
447 						struct kmmio_delayed_release,
448 						rcu);
449 	struct kmmio_fault_page *f = dr->release_list;
450 	while (f) {
451 		struct kmmio_fault_page *next = f->release_next;
452 		BUG_ON(f->count);
453 		kfree(f);
454 		f = next;
455 	}
456 	kfree(dr);
457 }
458 
459 static void remove_kmmio_fault_pages(struct rcu_head *head)
460 {
461 	struct kmmio_delayed_release *dr =
462 		container_of(head, struct kmmio_delayed_release, rcu);
463 	struct kmmio_fault_page *f = dr->release_list;
464 	struct kmmio_fault_page **prevp = &dr->release_list;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&kmmio_lock, flags);
468 	while (f) {
469 		if (!f->count) {
470 			list_del_rcu(&f->list);
471 			prevp = &f->release_next;
472 		} else {
473 			*prevp = f->release_next;
474 		}
475 		f = f->release_next;
476 	}
477 	spin_unlock_irqrestore(&kmmio_lock, flags);
478 
479 	/* This is the real RCU destroy call. */
480 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
481 }
482 
483 /*
484  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
485  * sure that the callbacks will not be called anymore. Only after that
486  * you may actually release your struct kmmio_probe.
487  *
488  * Unregistering a kmmio fault page has three steps:
489  * 1. release_kmmio_fault_page()
490  *    Disarm the page, wait a grace period to let all faults finish.
491  * 2. remove_kmmio_fault_pages()
492  *    Remove the pages from kmmio_page_table.
493  * 3. rcu_free_kmmio_fault_pages()
494  *    Actually free the kmmio_fault_page structs as with RCU.
495  */
496 void unregister_kmmio_probe(struct kmmio_probe *p)
497 {
498 	unsigned long flags;
499 	unsigned long size = 0;
500 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
501 	struct kmmio_fault_page *release_list = NULL;
502 	struct kmmio_delayed_release *drelease;
503 
504 	spin_lock_irqsave(&kmmio_lock, flags);
505 	while (size < size_lim) {
506 		release_kmmio_fault_page(p->addr + size, &release_list);
507 		size += PAGE_SIZE;
508 	}
509 	list_del_rcu(&p->list);
510 	kmmio_count--;
511 	spin_unlock_irqrestore(&kmmio_lock, flags);
512 
513 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
514 	if (!drelease) {
515 		pr_crit("leaking kmmio_fault_page objects.\n");
516 		return;
517 	}
518 	drelease->release_list = release_list;
519 
520 	/*
521 	 * This is not really RCU here. We have just disarmed a set of
522 	 * pages so that they cannot trigger page faults anymore. However,
523 	 * we cannot remove the pages from kmmio_page_table,
524 	 * because a probe hit might be in flight on another CPU. The
525 	 * pages are collected into a list, and they will be removed from
526 	 * kmmio_page_table when it is certain that no probe hit related to
527 	 * these pages can be in flight. RCU grace period sounds like a
528 	 * good choice.
529 	 *
530 	 * If we removed the pages too early, kmmio page fault handler might
531 	 * not find the respective kmmio_fault_page and determine it's not
532 	 * a kmmio fault, when it actually is. This would lead to madness.
533 	 */
534 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
535 }
536 EXPORT_SYMBOL(unregister_kmmio_probe);
537 
538 static int
539 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
540 {
541 	struct die_args *arg = args;
542 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
543 
544 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
545 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
546 			/*
547 			 * Reset the BS bit in dr6 (pointed by args->err) to
548 			 * denote completion of processing
549 			 */
550 			*dr6_p &= ~DR_STEP;
551 			return NOTIFY_STOP;
552 		}
553 
554 	return NOTIFY_DONE;
555 }
556 
557 static struct notifier_block nb_die = {
558 	.notifier_call = kmmio_die_notifier
559 };
560 
561 int kmmio_init(void)
562 {
563 	int i;
564 
565 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
566 		INIT_LIST_HEAD(&kmmio_page_table[i]);
567 
568 	return register_die_notifier(&nb_die);
569 }
570 
571 void kmmio_cleanup(void)
572 {
573 	int i;
574 
575 	unregister_die_notifier(&nb_die);
576 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
577 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
578 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
579 	}
580 }
581