1 // SPDX-License-Identifier: GPL-2.0 2 /* Support for MMIO probes. 3 * Benfit many code from kprobes 4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. 5 * 2007 Alexander Eichner 6 * 2008 Pekka Paalanen <pq@iki.fi> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/rculist.h> 13 #include <linux/spinlock.h> 14 #include <linux/hash.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/uaccess.h> 18 #include <linux/ptrace.h> 19 #include <linux/preempt.h> 20 #include <linux/percpu.h> 21 #include <linux/kdebug.h> 22 #include <linux/mutex.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <linux/errno.h> 28 #include <asm/debugreg.h> 29 #include <linux/mmiotrace.h> 30 31 #define KMMIO_PAGE_HASH_BITS 4 32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) 33 34 struct kmmio_fault_page { 35 struct list_head list; 36 struct kmmio_fault_page *release_next; 37 unsigned long addr; /* the requested address */ 38 pteval_t old_presence; /* page presence prior to arming */ 39 bool armed; 40 41 /* 42 * Number of times this page has been registered as a part 43 * of a probe. If zero, page is disarmed and this may be freed. 44 * Used only by writers (RCU) and post_kmmio_handler(). 45 * Protected by kmmio_lock, when linked into kmmio_page_table. 46 */ 47 int count; 48 49 bool scheduled_for_release; 50 }; 51 52 struct kmmio_delayed_release { 53 struct rcu_head rcu; 54 struct kmmio_fault_page *release_list; 55 }; 56 57 struct kmmio_context { 58 struct kmmio_fault_page *fpage; 59 struct kmmio_probe *probe; 60 unsigned long saved_flags; 61 unsigned long addr; 62 int active; 63 }; 64 65 static DEFINE_SPINLOCK(kmmio_lock); 66 67 /* Protected by kmmio_lock */ 68 unsigned int kmmio_count; 69 70 /* Read-protected by RCU, write-protected by kmmio_lock. */ 71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; 72 static LIST_HEAD(kmmio_probes); 73 74 static struct list_head *kmmio_page_list(unsigned long addr) 75 { 76 unsigned int l; 77 pte_t *pte = lookup_address(addr, &l); 78 79 if (!pte) 80 return NULL; 81 addr &= page_level_mask(l); 82 83 return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; 84 } 85 86 /* Accessed per-cpu */ 87 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); 88 89 /* 90 * this is basically a dynamic stabbing problem: 91 * Could use the existing prio tree code or 92 * Possible better implementations: 93 * The Interval Skip List: A Data Structure for Finding All Intervals That 94 * Overlap a Point (might be simple) 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup 96 */ 97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ 98 static struct kmmio_probe *get_kmmio_probe(unsigned long addr) 99 { 100 struct kmmio_probe *p; 101 list_for_each_entry_rcu(p, &kmmio_probes, list) { 102 if (addr >= p->addr && addr < (p->addr + p->len)) 103 return p; 104 } 105 return NULL; 106 } 107 108 /* You must be holding RCU read lock. */ 109 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) 110 { 111 struct list_head *head; 112 struct kmmio_fault_page *f; 113 unsigned int l; 114 pte_t *pte = lookup_address(addr, &l); 115 116 if (!pte) 117 return NULL; 118 addr &= page_level_mask(l); 119 head = kmmio_page_list(addr); 120 list_for_each_entry_rcu(f, head, list) { 121 if (f->addr == addr) 122 return f; 123 } 124 return NULL; 125 } 126 127 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) 128 { 129 pmd_t new_pmd; 130 pmdval_t v = pmd_val(*pmd); 131 if (clear) { 132 *old = v; 133 new_pmd = pmd_mknotpresent(*pmd); 134 } else { 135 /* Presume this has been called with clear==true previously */ 136 new_pmd = __pmd(*old); 137 } 138 set_pmd(pmd, new_pmd); 139 } 140 141 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) 142 { 143 pteval_t v = pte_val(*pte); 144 if (clear) { 145 *old = v; 146 /* Nothing should care about address */ 147 pte_clear(&init_mm, 0, pte); 148 } else { 149 /* Presume this has been called with clear==true previously */ 150 set_pte_atomic(pte, __pte(*old)); 151 } 152 } 153 154 static int clear_page_presence(struct kmmio_fault_page *f, bool clear) 155 { 156 unsigned int level; 157 pte_t *pte = lookup_address(f->addr, &level); 158 159 if (!pte) { 160 pr_err("no pte for addr 0x%08lx\n", f->addr); 161 return -1; 162 } 163 164 switch (level) { 165 case PG_LEVEL_2M: 166 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); 167 break; 168 case PG_LEVEL_4K: 169 clear_pte_presence(pte, clear, &f->old_presence); 170 break; 171 default: 172 pr_err("unexpected page level 0x%x.\n", level); 173 return -1; 174 } 175 176 __flush_tlb_one_kernel(f->addr); 177 return 0; 178 } 179 180 /* 181 * Mark the given page as not present. Access to it will trigger a fault. 182 * 183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the 184 * protection is ignored here. RCU read lock is assumed held, so the struct 185 * will not disappear unexpectedly. Furthermore, the caller must guarantee, 186 * that double arming the same virtual address (page) cannot occur. 187 * 188 * Double disarming on the other hand is allowed, and may occur when a fault 189 * and mmiotrace shutdown happen simultaneously. 190 */ 191 static int arm_kmmio_fault_page(struct kmmio_fault_page *f) 192 { 193 int ret; 194 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); 195 if (f->armed) { 196 pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n", 197 f->addr, f->count, !!f->old_presence); 198 } 199 ret = clear_page_presence(f, true); 200 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), 201 f->addr); 202 f->armed = true; 203 return ret; 204 } 205 206 /** Restore the given page to saved presence state. */ 207 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) 208 { 209 int ret = clear_page_presence(f, false); 210 WARN_ONCE(ret < 0, 211 KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); 212 f->armed = false; 213 } 214 215 /* 216 * This is being called from do_page_fault(). 217 * 218 * We may be in an interrupt or a critical section. Also prefecthing may 219 * trigger a page fault. We may be in the middle of process switch. 220 * We cannot take any locks, because we could be executing especially 221 * within a kmmio critical section. 222 * 223 * Local interrupts are disabled, so preemption cannot happen. 224 * Do not enable interrupts, do not sleep, and watch out for other CPUs. 225 */ 226 /* 227 * Interrupts are disabled on entry as trap3 is an interrupt gate 228 * and they remain disabled throughout this function. 229 */ 230 int kmmio_handler(struct pt_regs *regs, unsigned long addr) 231 { 232 struct kmmio_context *ctx; 233 struct kmmio_fault_page *faultpage; 234 int ret = 0; /* default to fault not handled */ 235 unsigned long page_base = addr; 236 unsigned int l; 237 pte_t *pte = lookup_address(addr, &l); 238 if (!pte) 239 return -EINVAL; 240 page_base &= page_level_mask(l); 241 242 /* 243 * Preemption is now disabled to prevent process switch during 244 * single stepping. We can only handle one active kmmio trace 245 * per cpu, so ensure that we finish it before something else 246 * gets to run. We also hold the RCU read lock over single 247 * stepping to avoid looking up the probe and kmmio_fault_page 248 * again. 249 */ 250 preempt_disable(); 251 rcu_read_lock(); 252 253 faultpage = get_kmmio_fault_page(page_base); 254 if (!faultpage) { 255 /* 256 * Either this page fault is not caused by kmmio, or 257 * another CPU just pulled the kmmio probe from under 258 * our feet. The latter case should not be possible. 259 */ 260 goto no_kmmio; 261 } 262 263 ctx = &get_cpu_var(kmmio_ctx); 264 if (ctx->active) { 265 if (page_base == ctx->addr) { 266 /* 267 * A second fault on the same page means some other 268 * condition needs handling by do_page_fault(), the 269 * page really not being present is the most common. 270 */ 271 pr_debug("secondary hit for 0x%08lx CPU %d.\n", 272 addr, smp_processor_id()); 273 274 if (!faultpage->old_presence) 275 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", 276 addr, smp_processor_id()); 277 } else { 278 /* 279 * Prevent overwriting already in-flight context. 280 * This should not happen, let's hope disarming at 281 * least prevents a panic. 282 */ 283 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", 284 smp_processor_id(), addr); 285 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); 286 disarm_kmmio_fault_page(faultpage); 287 } 288 goto no_kmmio_ctx; 289 } 290 ctx->active++; 291 292 ctx->fpage = faultpage; 293 ctx->probe = get_kmmio_probe(page_base); 294 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 295 ctx->addr = page_base; 296 297 if (ctx->probe && ctx->probe->pre_handler) 298 ctx->probe->pre_handler(ctx->probe, regs, addr); 299 300 /* 301 * Enable single-stepping and disable interrupts for the faulting 302 * context. Local interrupts must not get enabled during stepping. 303 */ 304 regs->flags |= X86_EFLAGS_TF; 305 regs->flags &= ~X86_EFLAGS_IF; 306 307 /* Now we set present bit in PTE and single step. */ 308 disarm_kmmio_fault_page(ctx->fpage); 309 310 /* 311 * If another cpu accesses the same page while we are stepping, 312 * the access will not be caught. It will simply succeed and the 313 * only downside is we lose the event. If this becomes a problem, 314 * the user should drop to single cpu before tracing. 315 */ 316 317 put_cpu_var(kmmio_ctx); 318 return 1; /* fault handled */ 319 320 no_kmmio_ctx: 321 put_cpu_var(kmmio_ctx); 322 no_kmmio: 323 rcu_read_unlock(); 324 preempt_enable_no_resched(); 325 return ret; 326 } 327 328 /* 329 * Interrupts are disabled on entry as trap1 is an interrupt gate 330 * and they remain disabled throughout this function. 331 * This must always get called as the pair to kmmio_handler(). 332 */ 333 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) 334 { 335 int ret = 0; 336 struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); 337 338 if (!ctx->active) { 339 /* 340 * debug traps without an active context are due to either 341 * something external causing them (f.e. using a debugger while 342 * mmio tracing enabled), or erroneous behaviour 343 */ 344 pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id()); 345 goto out; 346 } 347 348 if (ctx->probe && ctx->probe->post_handler) 349 ctx->probe->post_handler(ctx->probe, condition, regs); 350 351 /* Prevent racing against release_kmmio_fault_page(). */ 352 spin_lock(&kmmio_lock); 353 if (ctx->fpage->count) 354 arm_kmmio_fault_page(ctx->fpage); 355 spin_unlock(&kmmio_lock); 356 357 regs->flags &= ~X86_EFLAGS_TF; 358 regs->flags |= ctx->saved_flags; 359 360 /* These were acquired in kmmio_handler(). */ 361 ctx->active--; 362 BUG_ON(ctx->active); 363 rcu_read_unlock(); 364 preempt_enable_no_resched(); 365 366 /* 367 * if somebody else is singlestepping across a probe point, flags 368 * will have TF set, in which case, continue the remaining processing 369 * of do_debug, as if this is not a probe hit. 370 */ 371 if (!(regs->flags & X86_EFLAGS_TF)) 372 ret = 1; 373 out: 374 put_cpu_var(kmmio_ctx); 375 return ret; 376 } 377 378 /* You must be holding kmmio_lock. */ 379 static int add_kmmio_fault_page(unsigned long addr) 380 { 381 struct kmmio_fault_page *f; 382 383 f = get_kmmio_fault_page(addr); 384 if (f) { 385 if (!f->count) 386 arm_kmmio_fault_page(f); 387 f->count++; 388 return 0; 389 } 390 391 f = kzalloc(sizeof(*f), GFP_ATOMIC); 392 if (!f) 393 return -1; 394 395 f->count = 1; 396 f->addr = addr; 397 398 if (arm_kmmio_fault_page(f)) { 399 kfree(f); 400 return -1; 401 } 402 403 list_add_rcu(&f->list, kmmio_page_list(f->addr)); 404 405 return 0; 406 } 407 408 /* You must be holding kmmio_lock. */ 409 static void release_kmmio_fault_page(unsigned long addr, 410 struct kmmio_fault_page **release_list) 411 { 412 struct kmmio_fault_page *f; 413 414 f = get_kmmio_fault_page(addr); 415 if (!f) 416 return; 417 418 f->count--; 419 BUG_ON(f->count < 0); 420 if (!f->count) { 421 disarm_kmmio_fault_page(f); 422 if (!f->scheduled_for_release) { 423 f->release_next = *release_list; 424 *release_list = f; 425 f->scheduled_for_release = true; 426 } 427 } 428 } 429 430 /* 431 * With page-unaligned ioremaps, one or two armed pages may contain 432 * addresses from outside the intended mapping. Events for these addresses 433 * are currently silently dropped. The events may result only from programming 434 * mistakes by accessing addresses before the beginning or past the end of a 435 * mapping. 436 */ 437 int register_kmmio_probe(struct kmmio_probe *p) 438 { 439 unsigned long flags; 440 int ret = 0; 441 unsigned long size = 0; 442 unsigned long addr = p->addr & PAGE_MASK; 443 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 444 unsigned int l; 445 pte_t *pte; 446 447 spin_lock_irqsave(&kmmio_lock, flags); 448 if (get_kmmio_probe(addr)) { 449 ret = -EEXIST; 450 goto out; 451 } 452 453 pte = lookup_address(addr, &l); 454 if (!pte) { 455 ret = -EINVAL; 456 goto out; 457 } 458 459 kmmio_count++; 460 list_add_rcu(&p->list, &kmmio_probes); 461 while (size < size_lim) { 462 if (add_kmmio_fault_page(addr + size)) 463 pr_err("Unable to set page fault.\n"); 464 size += page_level_size(l); 465 } 466 out: 467 spin_unlock_irqrestore(&kmmio_lock, flags); 468 /* 469 * XXX: What should I do here? 470 * Here was a call to global_flush_tlb(), but it does not exist 471 * anymore. It seems it's not needed after all. 472 */ 473 return ret; 474 } 475 EXPORT_SYMBOL(register_kmmio_probe); 476 477 static void rcu_free_kmmio_fault_pages(struct rcu_head *head) 478 { 479 struct kmmio_delayed_release *dr = container_of( 480 head, 481 struct kmmio_delayed_release, 482 rcu); 483 struct kmmio_fault_page *f = dr->release_list; 484 while (f) { 485 struct kmmio_fault_page *next = f->release_next; 486 BUG_ON(f->count); 487 kfree(f); 488 f = next; 489 } 490 kfree(dr); 491 } 492 493 static void remove_kmmio_fault_pages(struct rcu_head *head) 494 { 495 struct kmmio_delayed_release *dr = 496 container_of(head, struct kmmio_delayed_release, rcu); 497 struct kmmio_fault_page *f = dr->release_list; 498 struct kmmio_fault_page **prevp = &dr->release_list; 499 unsigned long flags; 500 501 spin_lock_irqsave(&kmmio_lock, flags); 502 while (f) { 503 if (!f->count) { 504 list_del_rcu(&f->list); 505 prevp = &f->release_next; 506 } else { 507 *prevp = f->release_next; 508 f->release_next = NULL; 509 f->scheduled_for_release = false; 510 } 511 f = *prevp; 512 } 513 spin_unlock_irqrestore(&kmmio_lock, flags); 514 515 /* This is the real RCU destroy call. */ 516 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); 517 } 518 519 /* 520 * Remove a kmmio probe. You have to synchronize_rcu() before you can be 521 * sure that the callbacks will not be called anymore. Only after that 522 * you may actually release your struct kmmio_probe. 523 * 524 * Unregistering a kmmio fault page has three steps: 525 * 1. release_kmmio_fault_page() 526 * Disarm the page, wait a grace period to let all faults finish. 527 * 2. remove_kmmio_fault_pages() 528 * Remove the pages from kmmio_page_table. 529 * 3. rcu_free_kmmio_fault_pages() 530 * Actually free the kmmio_fault_page structs as with RCU. 531 */ 532 void unregister_kmmio_probe(struct kmmio_probe *p) 533 { 534 unsigned long flags; 535 unsigned long size = 0; 536 unsigned long addr = p->addr & PAGE_MASK; 537 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 538 struct kmmio_fault_page *release_list = NULL; 539 struct kmmio_delayed_release *drelease; 540 unsigned int l; 541 pte_t *pte; 542 543 pte = lookup_address(addr, &l); 544 if (!pte) 545 return; 546 547 spin_lock_irqsave(&kmmio_lock, flags); 548 while (size < size_lim) { 549 release_kmmio_fault_page(addr + size, &release_list); 550 size += page_level_size(l); 551 } 552 list_del_rcu(&p->list); 553 kmmio_count--; 554 spin_unlock_irqrestore(&kmmio_lock, flags); 555 556 if (!release_list) 557 return; 558 559 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); 560 if (!drelease) { 561 pr_crit("leaking kmmio_fault_page objects.\n"); 562 return; 563 } 564 drelease->release_list = release_list; 565 566 /* 567 * This is not really RCU here. We have just disarmed a set of 568 * pages so that they cannot trigger page faults anymore. However, 569 * we cannot remove the pages from kmmio_page_table, 570 * because a probe hit might be in flight on another CPU. The 571 * pages are collected into a list, and they will be removed from 572 * kmmio_page_table when it is certain that no probe hit related to 573 * these pages can be in flight. RCU grace period sounds like a 574 * good choice. 575 * 576 * If we removed the pages too early, kmmio page fault handler might 577 * not find the respective kmmio_fault_page and determine it's not 578 * a kmmio fault, when it actually is. This would lead to madness. 579 */ 580 call_rcu(&drelease->rcu, remove_kmmio_fault_pages); 581 } 582 EXPORT_SYMBOL(unregister_kmmio_probe); 583 584 static int 585 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) 586 { 587 struct die_args *arg = args; 588 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); 589 590 if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) 591 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { 592 /* 593 * Reset the BS bit in dr6 (pointed by args->err) to 594 * denote completion of processing 595 */ 596 *dr6_p &= ~DR_STEP; 597 return NOTIFY_STOP; 598 } 599 600 return NOTIFY_DONE; 601 } 602 603 static struct notifier_block nb_die = { 604 .notifier_call = kmmio_die_notifier 605 }; 606 607 int kmmio_init(void) 608 { 609 int i; 610 611 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) 612 INIT_LIST_HEAD(&kmmio_page_table[i]); 613 614 return register_die_notifier(&nb_die); 615 } 616 617 void kmmio_cleanup(void) 618 { 619 int i; 620 621 unregister_die_notifier(&nb_die); 622 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { 623 WARN_ONCE(!list_empty(&kmmio_page_table[i]), 624 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); 625 } 626 } 627