1 /* Support for MMIO probes. 2 * Benfit many code from kprobes 3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. 4 * 2007 Alexander Eichner 5 * 2008 Pekka Paalanen <pq@iki.fi> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/list.h> 11 #include <linux/rculist.h> 12 #include <linux/spinlock.h> 13 #include <linux/hash.h> 14 #include <linux/export.h> 15 #include <linux/kernel.h> 16 #include <linux/uaccess.h> 17 #include <linux/ptrace.h> 18 #include <linux/preempt.h> 19 #include <linux/percpu.h> 20 #include <linux/kdebug.h> 21 #include <linux/mutex.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <asm/cacheflush.h> 25 #include <asm/tlbflush.h> 26 #include <linux/errno.h> 27 #include <asm/debugreg.h> 28 #include <linux/mmiotrace.h> 29 30 #define KMMIO_PAGE_HASH_BITS 4 31 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) 32 33 struct kmmio_fault_page { 34 struct list_head list; 35 struct kmmio_fault_page *release_next; 36 unsigned long addr; /* the requested address */ 37 pteval_t old_presence; /* page presence prior to arming */ 38 bool armed; 39 40 /* 41 * Number of times this page has been registered as a part 42 * of a probe. If zero, page is disarmed and this may be freed. 43 * Used only by writers (RCU) and post_kmmio_handler(). 44 * Protected by kmmio_lock, when linked into kmmio_page_table. 45 */ 46 int count; 47 48 bool scheduled_for_release; 49 }; 50 51 struct kmmio_delayed_release { 52 struct rcu_head rcu; 53 struct kmmio_fault_page *release_list; 54 }; 55 56 struct kmmio_context { 57 struct kmmio_fault_page *fpage; 58 struct kmmio_probe *probe; 59 unsigned long saved_flags; 60 unsigned long addr; 61 int active; 62 }; 63 64 static DEFINE_SPINLOCK(kmmio_lock); 65 66 /* Protected by kmmio_lock */ 67 unsigned int kmmio_count; 68 69 /* Read-protected by RCU, write-protected by kmmio_lock. */ 70 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; 71 static LIST_HEAD(kmmio_probes); 72 73 static struct list_head *kmmio_page_list(unsigned long addr) 74 { 75 unsigned int l; 76 pte_t *pte = lookup_address(addr, &l); 77 78 if (!pte) 79 return NULL; 80 addr &= page_level_mask(l); 81 82 return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; 83 } 84 85 /* Accessed per-cpu */ 86 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); 87 88 /* 89 * this is basically a dynamic stabbing problem: 90 * Could use the existing prio tree code or 91 * Possible better implementations: 92 * The Interval Skip List: A Data Structure for Finding All Intervals That 93 * Overlap a Point (might be simple) 94 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup 95 */ 96 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ 97 static struct kmmio_probe *get_kmmio_probe(unsigned long addr) 98 { 99 struct kmmio_probe *p; 100 list_for_each_entry_rcu(p, &kmmio_probes, list) { 101 if (addr >= p->addr && addr < (p->addr + p->len)) 102 return p; 103 } 104 return NULL; 105 } 106 107 /* You must be holding RCU read lock. */ 108 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) 109 { 110 struct list_head *head; 111 struct kmmio_fault_page *f; 112 unsigned int l; 113 pte_t *pte = lookup_address(addr, &l); 114 115 if (!pte) 116 return NULL; 117 addr &= page_level_mask(l); 118 head = kmmio_page_list(addr); 119 list_for_each_entry_rcu(f, head, list) { 120 if (f->addr == addr) 121 return f; 122 } 123 return NULL; 124 } 125 126 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) 127 { 128 pmdval_t v = pmd_val(*pmd); 129 if (clear) { 130 *old = v & _PAGE_PRESENT; 131 v &= ~_PAGE_PRESENT; 132 } else /* presume this has been called with clear==true previously */ 133 v |= *old; 134 set_pmd(pmd, __pmd(v)); 135 } 136 137 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) 138 { 139 pteval_t v = pte_val(*pte); 140 if (clear) { 141 *old = v & _PAGE_PRESENT; 142 v &= ~_PAGE_PRESENT; 143 } else /* presume this has been called with clear==true previously */ 144 v |= *old; 145 set_pte_atomic(pte, __pte(v)); 146 } 147 148 static int clear_page_presence(struct kmmio_fault_page *f, bool clear) 149 { 150 unsigned int level; 151 pte_t *pte = lookup_address(f->addr, &level); 152 153 if (!pte) { 154 pr_err("no pte for addr 0x%08lx\n", f->addr); 155 return -1; 156 } 157 158 switch (level) { 159 case PG_LEVEL_2M: 160 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); 161 break; 162 case PG_LEVEL_4K: 163 clear_pte_presence(pte, clear, &f->old_presence); 164 break; 165 default: 166 pr_err("unexpected page level 0x%x.\n", level); 167 return -1; 168 } 169 170 __flush_tlb_one(f->addr); 171 return 0; 172 } 173 174 /* 175 * Mark the given page as not present. Access to it will trigger a fault. 176 * 177 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the 178 * protection is ignored here. RCU read lock is assumed held, so the struct 179 * will not disappear unexpectedly. Furthermore, the caller must guarantee, 180 * that double arming the same virtual address (page) cannot occur. 181 * 182 * Double disarming on the other hand is allowed, and may occur when a fault 183 * and mmiotrace shutdown happen simultaneously. 184 */ 185 static int arm_kmmio_fault_page(struct kmmio_fault_page *f) 186 { 187 int ret; 188 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); 189 if (f->armed) { 190 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n", 191 f->addr, f->count, !!f->old_presence); 192 } 193 ret = clear_page_presence(f, true); 194 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), 195 f->addr); 196 f->armed = true; 197 return ret; 198 } 199 200 /** Restore the given page to saved presence state. */ 201 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) 202 { 203 int ret = clear_page_presence(f, false); 204 WARN_ONCE(ret < 0, 205 KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); 206 f->armed = false; 207 } 208 209 /* 210 * This is being called from do_page_fault(). 211 * 212 * We may be in an interrupt or a critical section. Also prefecthing may 213 * trigger a page fault. We may be in the middle of process switch. 214 * We cannot take any locks, because we could be executing especially 215 * within a kmmio critical section. 216 * 217 * Local interrupts are disabled, so preemption cannot happen. 218 * Do not enable interrupts, do not sleep, and watch out for other CPUs. 219 */ 220 /* 221 * Interrupts are disabled on entry as trap3 is an interrupt gate 222 * and they remain disabled throughout this function. 223 */ 224 int kmmio_handler(struct pt_regs *regs, unsigned long addr) 225 { 226 struct kmmio_context *ctx; 227 struct kmmio_fault_page *faultpage; 228 int ret = 0; /* default to fault not handled */ 229 unsigned long page_base = addr; 230 unsigned int l; 231 pte_t *pte = lookup_address(addr, &l); 232 if (!pte) 233 return -EINVAL; 234 page_base &= page_level_mask(l); 235 236 /* 237 * Preemption is now disabled to prevent process switch during 238 * single stepping. We can only handle one active kmmio trace 239 * per cpu, so ensure that we finish it before something else 240 * gets to run. We also hold the RCU read lock over single 241 * stepping to avoid looking up the probe and kmmio_fault_page 242 * again. 243 */ 244 preempt_disable(); 245 rcu_read_lock(); 246 247 faultpage = get_kmmio_fault_page(page_base); 248 if (!faultpage) { 249 /* 250 * Either this page fault is not caused by kmmio, or 251 * another CPU just pulled the kmmio probe from under 252 * our feet. The latter case should not be possible. 253 */ 254 goto no_kmmio; 255 } 256 257 ctx = &get_cpu_var(kmmio_ctx); 258 if (ctx->active) { 259 if (page_base == ctx->addr) { 260 /* 261 * A second fault on the same page means some other 262 * condition needs handling by do_page_fault(), the 263 * page really not being present is the most common. 264 */ 265 pr_debug("secondary hit for 0x%08lx CPU %d.\n", 266 addr, smp_processor_id()); 267 268 if (!faultpage->old_presence) 269 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", 270 addr, smp_processor_id()); 271 } else { 272 /* 273 * Prevent overwriting already in-flight context. 274 * This should not happen, let's hope disarming at 275 * least prevents a panic. 276 */ 277 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", 278 smp_processor_id(), addr); 279 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); 280 disarm_kmmio_fault_page(faultpage); 281 } 282 goto no_kmmio_ctx; 283 } 284 ctx->active++; 285 286 ctx->fpage = faultpage; 287 ctx->probe = get_kmmio_probe(page_base); 288 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 289 ctx->addr = page_base; 290 291 if (ctx->probe && ctx->probe->pre_handler) 292 ctx->probe->pre_handler(ctx->probe, regs, addr); 293 294 /* 295 * Enable single-stepping and disable interrupts for the faulting 296 * context. Local interrupts must not get enabled during stepping. 297 */ 298 regs->flags |= X86_EFLAGS_TF; 299 regs->flags &= ~X86_EFLAGS_IF; 300 301 /* Now we set present bit in PTE and single step. */ 302 disarm_kmmio_fault_page(ctx->fpage); 303 304 /* 305 * If another cpu accesses the same page while we are stepping, 306 * the access will not be caught. It will simply succeed and the 307 * only downside is we lose the event. If this becomes a problem, 308 * the user should drop to single cpu before tracing. 309 */ 310 311 put_cpu_var(kmmio_ctx); 312 return 1; /* fault handled */ 313 314 no_kmmio_ctx: 315 put_cpu_var(kmmio_ctx); 316 no_kmmio: 317 rcu_read_unlock(); 318 preempt_enable_no_resched(); 319 return ret; 320 } 321 322 /* 323 * Interrupts are disabled on entry as trap1 is an interrupt gate 324 * and they remain disabled throughout this function. 325 * This must always get called as the pair to kmmio_handler(). 326 */ 327 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) 328 { 329 int ret = 0; 330 struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); 331 332 if (!ctx->active) { 333 /* 334 * debug traps without an active context are due to either 335 * something external causing them (f.e. using a debugger while 336 * mmio tracing enabled), or erroneous behaviour 337 */ 338 pr_warning("unexpected debug trap on CPU %d.\n", 339 smp_processor_id()); 340 goto out; 341 } 342 343 if (ctx->probe && ctx->probe->post_handler) 344 ctx->probe->post_handler(ctx->probe, condition, regs); 345 346 /* Prevent racing against release_kmmio_fault_page(). */ 347 spin_lock(&kmmio_lock); 348 if (ctx->fpage->count) 349 arm_kmmio_fault_page(ctx->fpage); 350 spin_unlock(&kmmio_lock); 351 352 regs->flags &= ~X86_EFLAGS_TF; 353 regs->flags |= ctx->saved_flags; 354 355 /* These were acquired in kmmio_handler(). */ 356 ctx->active--; 357 BUG_ON(ctx->active); 358 rcu_read_unlock(); 359 preempt_enable_no_resched(); 360 361 /* 362 * if somebody else is singlestepping across a probe point, flags 363 * will have TF set, in which case, continue the remaining processing 364 * of do_debug, as if this is not a probe hit. 365 */ 366 if (!(regs->flags & X86_EFLAGS_TF)) 367 ret = 1; 368 out: 369 put_cpu_var(kmmio_ctx); 370 return ret; 371 } 372 373 /* You must be holding kmmio_lock. */ 374 static int add_kmmio_fault_page(unsigned long addr) 375 { 376 struct kmmio_fault_page *f; 377 378 f = get_kmmio_fault_page(addr); 379 if (f) { 380 if (!f->count) 381 arm_kmmio_fault_page(f); 382 f->count++; 383 return 0; 384 } 385 386 f = kzalloc(sizeof(*f), GFP_ATOMIC); 387 if (!f) 388 return -1; 389 390 f->count = 1; 391 f->addr = addr; 392 393 if (arm_kmmio_fault_page(f)) { 394 kfree(f); 395 return -1; 396 } 397 398 list_add_rcu(&f->list, kmmio_page_list(f->addr)); 399 400 return 0; 401 } 402 403 /* You must be holding kmmio_lock. */ 404 static void release_kmmio_fault_page(unsigned long addr, 405 struct kmmio_fault_page **release_list) 406 { 407 struct kmmio_fault_page *f; 408 409 f = get_kmmio_fault_page(addr); 410 if (!f) 411 return; 412 413 f->count--; 414 BUG_ON(f->count < 0); 415 if (!f->count) { 416 disarm_kmmio_fault_page(f); 417 if (!f->scheduled_for_release) { 418 f->release_next = *release_list; 419 *release_list = f; 420 f->scheduled_for_release = true; 421 } 422 } 423 } 424 425 /* 426 * With page-unaligned ioremaps, one or two armed pages may contain 427 * addresses from outside the intended mapping. Events for these addresses 428 * are currently silently dropped. The events may result only from programming 429 * mistakes by accessing addresses before the beginning or past the end of a 430 * mapping. 431 */ 432 int register_kmmio_probe(struct kmmio_probe *p) 433 { 434 unsigned long flags; 435 int ret = 0; 436 unsigned long size = 0; 437 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 438 unsigned int l; 439 pte_t *pte; 440 441 spin_lock_irqsave(&kmmio_lock, flags); 442 if (get_kmmio_probe(p->addr)) { 443 ret = -EEXIST; 444 goto out; 445 } 446 447 pte = lookup_address(p->addr, &l); 448 if (!pte) { 449 ret = -EINVAL; 450 goto out; 451 } 452 453 kmmio_count++; 454 list_add_rcu(&p->list, &kmmio_probes); 455 while (size < size_lim) { 456 if (add_kmmio_fault_page(p->addr + size)) 457 pr_err("Unable to set page fault.\n"); 458 size += page_level_size(l); 459 } 460 out: 461 spin_unlock_irqrestore(&kmmio_lock, flags); 462 /* 463 * XXX: What should I do here? 464 * Here was a call to global_flush_tlb(), but it does not exist 465 * anymore. It seems it's not needed after all. 466 */ 467 return ret; 468 } 469 EXPORT_SYMBOL(register_kmmio_probe); 470 471 static void rcu_free_kmmio_fault_pages(struct rcu_head *head) 472 { 473 struct kmmio_delayed_release *dr = container_of( 474 head, 475 struct kmmio_delayed_release, 476 rcu); 477 struct kmmio_fault_page *f = dr->release_list; 478 while (f) { 479 struct kmmio_fault_page *next = f->release_next; 480 BUG_ON(f->count); 481 kfree(f); 482 f = next; 483 } 484 kfree(dr); 485 } 486 487 static void remove_kmmio_fault_pages(struct rcu_head *head) 488 { 489 struct kmmio_delayed_release *dr = 490 container_of(head, struct kmmio_delayed_release, rcu); 491 struct kmmio_fault_page *f = dr->release_list; 492 struct kmmio_fault_page **prevp = &dr->release_list; 493 unsigned long flags; 494 495 spin_lock_irqsave(&kmmio_lock, flags); 496 while (f) { 497 if (!f->count) { 498 list_del_rcu(&f->list); 499 prevp = &f->release_next; 500 } else { 501 *prevp = f->release_next; 502 f->release_next = NULL; 503 f->scheduled_for_release = false; 504 } 505 f = *prevp; 506 } 507 spin_unlock_irqrestore(&kmmio_lock, flags); 508 509 /* This is the real RCU destroy call. */ 510 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); 511 } 512 513 /* 514 * Remove a kmmio probe. You have to synchronize_rcu() before you can be 515 * sure that the callbacks will not be called anymore. Only after that 516 * you may actually release your struct kmmio_probe. 517 * 518 * Unregistering a kmmio fault page has three steps: 519 * 1. release_kmmio_fault_page() 520 * Disarm the page, wait a grace period to let all faults finish. 521 * 2. remove_kmmio_fault_pages() 522 * Remove the pages from kmmio_page_table. 523 * 3. rcu_free_kmmio_fault_pages() 524 * Actually free the kmmio_fault_page structs as with RCU. 525 */ 526 void unregister_kmmio_probe(struct kmmio_probe *p) 527 { 528 unsigned long flags; 529 unsigned long size = 0; 530 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 531 struct kmmio_fault_page *release_list = NULL; 532 struct kmmio_delayed_release *drelease; 533 unsigned int l; 534 pte_t *pte; 535 536 pte = lookup_address(p->addr, &l); 537 if (!pte) 538 return; 539 540 spin_lock_irqsave(&kmmio_lock, flags); 541 while (size < size_lim) { 542 release_kmmio_fault_page(p->addr + size, &release_list); 543 size += page_level_size(l); 544 } 545 list_del_rcu(&p->list); 546 kmmio_count--; 547 spin_unlock_irqrestore(&kmmio_lock, flags); 548 549 if (!release_list) 550 return; 551 552 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); 553 if (!drelease) { 554 pr_crit("leaking kmmio_fault_page objects.\n"); 555 return; 556 } 557 drelease->release_list = release_list; 558 559 /* 560 * This is not really RCU here. We have just disarmed a set of 561 * pages so that they cannot trigger page faults anymore. However, 562 * we cannot remove the pages from kmmio_page_table, 563 * because a probe hit might be in flight on another CPU. The 564 * pages are collected into a list, and they will be removed from 565 * kmmio_page_table when it is certain that no probe hit related to 566 * these pages can be in flight. RCU grace period sounds like a 567 * good choice. 568 * 569 * If we removed the pages too early, kmmio page fault handler might 570 * not find the respective kmmio_fault_page and determine it's not 571 * a kmmio fault, when it actually is. This would lead to madness. 572 */ 573 call_rcu(&drelease->rcu, remove_kmmio_fault_pages); 574 } 575 EXPORT_SYMBOL(unregister_kmmio_probe); 576 577 static int 578 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) 579 { 580 struct die_args *arg = args; 581 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); 582 583 if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) 584 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { 585 /* 586 * Reset the BS bit in dr6 (pointed by args->err) to 587 * denote completion of processing 588 */ 589 *dr6_p &= ~DR_STEP; 590 return NOTIFY_STOP; 591 } 592 593 return NOTIFY_DONE; 594 } 595 596 static struct notifier_block nb_die = { 597 .notifier_call = kmmio_die_notifier 598 }; 599 600 int kmmio_init(void) 601 { 602 int i; 603 604 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) 605 INIT_LIST_HEAD(&kmmio_page_table[i]); 606 607 return register_die_notifier(&nb_die); 608 } 609 610 void kmmio_cleanup(void) 611 { 612 int i; 613 614 unregister_die_notifier(&nb_die); 615 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { 616 WARN_ONCE(!list_empty(&kmmio_page_table[i]), 617 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); 618 } 619 } 620