xref: /openbmc/linux/arch/x86/mm/kaslr.c (revision feac8c8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file implements KASLR memory randomization for x86_64. It randomizes
4  * the virtual address space of kernel memory regions (physical memory
5  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6  * exploits relying on predictable kernel addresses.
7  *
8  * Entropy is generated using the KASLR early boot functions now shared in
9  * the lib directory (originally written by Kees Cook). Randomization is
10  * done on PGD & P4D/PUD page table levels to increase possible addresses.
11  * The physical memory mapping code was adapted to support P4D/PUD level
12  * virtual addresses. This implementation on the best configuration provides
13  * 30,000 possible virtual addresses in average for each memory region.
14  * An additional low memory page is used to ensure each CPU can start with
15  * a PGD aligned virtual address (for realmode).
16  *
17  * The order of each memory region is not changed. The feature looks at
18  * the available space for the regions based on different configuration
19  * options and randomizes the base and space between each. The size of the
20  * physical memory mapping is the available physical memory.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
26 
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
31 
32 #include "mm_internal.h"
33 
34 #define TB_SHIFT 40
35 
36 /*
37  * Virtual address start and end range for randomization.
38  *
39  * The end address could depend on more configuration options to make the
40  * highest amount of space for randomization available, but that's too hard
41  * to keep straight and caused issues already.
42  */
43 static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
44 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
45 
46 /* Default values */
47 unsigned long page_offset_base = __PAGE_OFFSET_BASE;
48 EXPORT_SYMBOL(page_offset_base);
49 unsigned long vmalloc_base = __VMALLOC_BASE;
50 EXPORT_SYMBOL(vmalloc_base);
51 unsigned long vmemmap_base = __VMEMMAP_BASE;
52 EXPORT_SYMBOL(vmemmap_base);
53 
54 /*
55  * Memory regions randomized by KASLR (except modules that use a separate logic
56  * earlier during boot). The list is ordered based on virtual addresses. This
57  * order is kept after randomization.
58  */
59 static __initdata struct kaslr_memory_region {
60 	unsigned long *base;
61 	unsigned long size_tb;
62 } kaslr_regions[] = {
63 	{ &page_offset_base, 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT) /* Maximum */ },
64 	{ &vmalloc_base, VMALLOC_SIZE_TB },
65 	{ &vmemmap_base, 1 },
66 };
67 
68 /* Get size in bytes used by the memory region */
69 static inline unsigned long get_padding(struct kaslr_memory_region *region)
70 {
71 	return (region->size_tb << TB_SHIFT);
72 }
73 
74 /*
75  * Apply no randomization if KASLR was disabled at boot or if KASAN
76  * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
77  */
78 static inline bool kaslr_memory_enabled(void)
79 {
80 	return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
81 }
82 
83 /* Initialize base and padding for each memory region randomized with KASLR */
84 void __init kernel_randomize_memory(void)
85 {
86 	size_t i;
87 	unsigned long vaddr = vaddr_start;
88 	unsigned long rand, memory_tb;
89 	struct rnd_state rand_state;
90 	unsigned long remain_entropy;
91 
92 	/*
93 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
94 	 * with the vaddr_start/vaddr_end variables. These checks are very
95 	 * limited....
96 	 */
97 	BUILD_BUG_ON(vaddr_start >= vaddr_end);
98 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
99 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
100 
101 	if (!kaslr_memory_enabled())
102 		return;
103 
104 	/*
105 	 * Update Physical memory mapping to available and
106 	 * add padding if needed (especially for memory hotplug support).
107 	 */
108 	BUG_ON(kaslr_regions[0].base != &page_offset_base);
109 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
110 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
111 
112 	/* Adapt phyiscal memory region size based on available memory */
113 	if (memory_tb < kaslr_regions[0].size_tb)
114 		kaslr_regions[0].size_tb = memory_tb;
115 
116 	/* Calculate entropy available between regions */
117 	remain_entropy = vaddr_end - vaddr_start;
118 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
119 		remain_entropy -= get_padding(&kaslr_regions[i]);
120 
121 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
122 
123 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
124 		unsigned long entropy;
125 
126 		/*
127 		 * Select a random virtual address using the extra entropy
128 		 * available.
129 		 */
130 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
131 		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
132 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
133 			entropy = (rand % (entropy + 1)) & P4D_MASK;
134 		else
135 			entropy = (rand % (entropy + 1)) & PUD_MASK;
136 		vaddr += entropy;
137 		*kaslr_regions[i].base = vaddr;
138 
139 		/*
140 		 * Jump the region and add a minimum padding based on
141 		 * randomization alignment.
142 		 */
143 		vaddr += get_padding(&kaslr_regions[i]);
144 		if (IS_ENABLED(CONFIG_X86_5LEVEL))
145 			vaddr = round_up(vaddr + 1, P4D_SIZE);
146 		else
147 			vaddr = round_up(vaddr + 1, PUD_SIZE);
148 		remain_entropy -= entropy;
149 	}
150 }
151 
152 static void __meminit init_trampoline_pud(void)
153 {
154 	unsigned long paddr, paddr_next;
155 	pgd_t *pgd;
156 	pud_t *pud_page, *pud_page_tramp;
157 	int i;
158 
159 	pud_page_tramp = alloc_low_page();
160 
161 	paddr = 0;
162 	pgd = pgd_offset_k((unsigned long)__va(paddr));
163 	pud_page = (pud_t *) pgd_page_vaddr(*pgd);
164 
165 	for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
166 		pud_t *pud, *pud_tramp;
167 		unsigned long vaddr = (unsigned long)__va(paddr);
168 
169 		pud_tramp = pud_page_tramp + pud_index(paddr);
170 		pud = pud_page + pud_index(vaddr);
171 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
172 
173 		*pud_tramp = *pud;
174 	}
175 
176 	set_pgd(&trampoline_pgd_entry,
177 		__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
178 }
179 
180 static void __meminit init_trampoline_p4d(void)
181 {
182 	unsigned long paddr, paddr_next;
183 	pgd_t *pgd;
184 	p4d_t *p4d_page, *p4d_page_tramp;
185 	int i;
186 
187 	p4d_page_tramp = alloc_low_page();
188 
189 	paddr = 0;
190 	pgd = pgd_offset_k((unsigned long)__va(paddr));
191 	p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
192 
193 	for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
194 		p4d_t *p4d, *p4d_tramp;
195 		unsigned long vaddr = (unsigned long)__va(paddr);
196 
197 		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
198 		p4d = p4d_page + p4d_index(vaddr);
199 		paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
200 
201 		*p4d_tramp = *p4d;
202 	}
203 
204 	set_pgd(&trampoline_pgd_entry,
205 		__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
206 }
207 
208 /*
209  * Create PGD aligned trampoline table to allow real mode initialization
210  * of additional CPUs. Consume only 1 low memory page.
211  */
212 void __meminit init_trampoline(void)
213 {
214 
215 	if (!kaslr_memory_enabled()) {
216 		init_trampoline_default();
217 		return;
218 	}
219 
220 	if (IS_ENABLED(CONFIG_X86_5LEVEL))
221 		init_trampoline_p4d();
222 	else
223 		init_trampoline_pud();
224 }
225