xref: /openbmc/linux/arch/x86/mm/kaslr.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file implements KASLR memory randomization for x86_64. It randomizes
4  * the virtual address space of kernel memory regions (physical memory
5  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6  * exploits relying on predictable kernel addresses.
7  *
8  * Entropy is generated using the KASLR early boot functions now shared in
9  * the lib directory (originally written by Kees Cook). Randomization is
10  * done on PGD & P4D/PUD page table levels to increase possible addresses.
11  * The physical memory mapping code was adapted to support P4D/PUD level
12  * virtual addresses. This implementation on the best configuration provides
13  * 30,000 possible virtual addresses in average for each memory region.
14  * An additional low memory page is used to ensure each CPU can start with
15  * a PGD aligned virtual address (for realmode).
16  *
17  * The order of each memory region is not changed. The feature looks at
18  * the available space for the regions based on different configuration
19  * options and randomizes the base and space between each. The size of the
20  * physical memory mapping is the available physical memory.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
26 #include <linux/memblock.h>
27 #include <linux/pgtable.h>
28 
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
31 
32 #include "mm_internal.h"
33 
34 #define TB_SHIFT 40
35 
36 /*
37  * The end address could depend on more configuration options to make the
38  * highest amount of space for randomization available, but that's too hard
39  * to keep straight and caused issues already.
40  */
41 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
42 
43 /*
44  * Memory regions randomized by KASLR (except modules that use a separate logic
45  * earlier during boot). The list is ordered based on virtual addresses. This
46  * order is kept after randomization.
47  */
48 static __initdata struct kaslr_memory_region {
49 	unsigned long *base;
50 	unsigned long size_tb;
51 } kaslr_regions[] = {
52 	{ &page_offset_base, 0 },
53 	{ &vmalloc_base, 0 },
54 	{ &vmemmap_base, 0 },
55 };
56 
57 /* Get size in bytes used by the memory region */
58 static inline unsigned long get_padding(struct kaslr_memory_region *region)
59 {
60 	return (region->size_tb << TB_SHIFT);
61 }
62 
63 /* Initialize base and padding for each memory region randomized with KASLR */
64 void __init kernel_randomize_memory(void)
65 {
66 	size_t i;
67 	unsigned long vaddr_start, vaddr;
68 	unsigned long rand, memory_tb;
69 	struct rnd_state rand_state;
70 	unsigned long remain_entropy;
71 	unsigned long vmemmap_size;
72 
73 	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
74 	vaddr = vaddr_start;
75 
76 	/*
77 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
78 	 * with the vaddr_start/vaddr_end variables. These checks are very
79 	 * limited....
80 	 */
81 	BUILD_BUG_ON(vaddr_start >= vaddr_end);
82 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
83 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
84 
85 	if (!kaslr_memory_enabled())
86 		return;
87 
88 	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
89 	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
90 
91 	/*
92 	 * Update Physical memory mapping to available and
93 	 * add padding if needed (especially for memory hotplug support).
94 	 */
95 	BUG_ON(kaslr_regions[0].base != &page_offset_base);
96 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
97 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
98 
99 	/* Adapt physical memory region size based on available memory */
100 	if (memory_tb < kaslr_regions[0].size_tb)
101 		kaslr_regions[0].size_tb = memory_tb;
102 
103 	/*
104 	 * Calculate the vmemmap region size in TBs, aligned to a TB
105 	 * boundary.
106 	 */
107 	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
108 			sizeof(struct page);
109 	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
110 
111 	/* Calculate entropy available between regions */
112 	remain_entropy = vaddr_end - vaddr_start;
113 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
114 		remain_entropy -= get_padding(&kaslr_regions[i]);
115 
116 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
117 
118 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
119 		unsigned long entropy;
120 
121 		/*
122 		 * Select a random virtual address using the extra entropy
123 		 * available.
124 		 */
125 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
126 		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
127 		entropy = (rand % (entropy + 1)) & PUD_MASK;
128 		vaddr += entropy;
129 		*kaslr_regions[i].base = vaddr;
130 
131 		/*
132 		 * Jump the region and add a minimum padding based on
133 		 * randomization alignment.
134 		 */
135 		vaddr += get_padding(&kaslr_regions[i]);
136 		vaddr = round_up(vaddr + 1, PUD_SIZE);
137 		remain_entropy -= entropy;
138 	}
139 }
140 
141 void __meminit init_trampoline_kaslr(void)
142 {
143 	pud_t *pud_page_tramp, *pud, *pud_tramp;
144 	p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
145 	unsigned long paddr, vaddr;
146 	pgd_t *pgd;
147 
148 	pud_page_tramp = alloc_low_page();
149 
150 	/*
151 	 * There are two mappings for the low 1MB area, the direct mapping
152 	 * and the 1:1 mapping for the real mode trampoline:
153 	 *
154 	 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
155 	 * 1:1 mapping:    virt_addr = phys_addr
156 	 */
157 	paddr = 0;
158 	vaddr = (unsigned long)__va(paddr);
159 	pgd = pgd_offset_k(vaddr);
160 
161 	p4d = p4d_offset(pgd, vaddr);
162 	pud = pud_offset(p4d, vaddr);
163 
164 	pud_tramp = pud_page_tramp + pud_index(paddr);
165 	*pud_tramp = *pud;
166 
167 	if (pgtable_l5_enabled()) {
168 		p4d_page_tramp = alloc_low_page();
169 
170 		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
171 
172 		set_p4d(p4d_tramp,
173 			__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
174 
175 		trampoline_pgd_entry =
176 			__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp));
177 	} else {
178 		trampoline_pgd_entry =
179 			__pgd(_KERNPG_TABLE | __pa(pud_page_tramp));
180 	}
181 }
182