xref: /openbmc/linux/arch/x86/mm/kaslr.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file implements KASLR memory randomization for x86_64. It randomizes
4  * the virtual address space of kernel memory regions (physical memory
5  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6  * exploits relying on predictable kernel addresses.
7  *
8  * Entropy is generated using the KASLR early boot functions now shared in
9  * the lib directory (originally written by Kees Cook). Randomization is
10  * done on PGD & P4D/PUD page table levels to increase possible addresses.
11  * The physical memory mapping code was adapted to support P4D/PUD level
12  * virtual addresses. This implementation on the best configuration provides
13  * 30,000 possible virtual addresses in average for each memory region.
14  * An additional low memory page is used to ensure each CPU can start with
15  * a PGD aligned virtual address (for realmode).
16  *
17  * The order of each memory region is not changed. The feature looks at
18  * the available space for the regions based on different configuration
19  * options and randomizes the base and space between each. The size of the
20  * physical memory mapping is the available physical memory.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
26 #include <linux/memblock.h>
27 #include <linux/pgtable.h>
28 
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
31 
32 #include "mm_internal.h"
33 
34 #define TB_SHIFT 40
35 
36 /*
37  * The end address could depend on more configuration options to make the
38  * highest amount of space for randomization available, but that's too hard
39  * to keep straight and caused issues already.
40  */
41 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
42 
43 /*
44  * Memory regions randomized by KASLR (except modules that use a separate logic
45  * earlier during boot). The list is ordered based on virtual addresses. This
46  * order is kept after randomization.
47  */
48 static __initdata struct kaslr_memory_region {
49 	unsigned long *base;
50 	unsigned long *end;
51 	unsigned long size_tb;
52 } kaslr_regions[] = {
53 	{
54 		.base	= &page_offset_base,
55 		.end	= &physmem_end,
56 	},
57 	{
58 		.base	= &vmalloc_base,
59 	},
60 	{
61 		.base	= &vmemmap_base,
62 	},
63 };
64 
65 /* The end of the possible address space for physical memory */
66 unsigned long physmem_end __ro_after_init;
67 
68 /* Get size in bytes used by the memory region */
69 static inline unsigned long get_padding(struct kaslr_memory_region *region)
70 {
71 	return (region->size_tb << TB_SHIFT);
72 }
73 
74 /* Initialize base and padding for each memory region randomized with KASLR */
75 void __init kernel_randomize_memory(void)
76 {
77 	size_t i;
78 	unsigned long vaddr_start, vaddr;
79 	unsigned long rand, memory_tb;
80 	struct rnd_state rand_state;
81 	unsigned long remain_entropy;
82 	unsigned long vmemmap_size;
83 
84 	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
85 	vaddr = vaddr_start;
86 
87 	/*
88 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
89 	 * with the vaddr_start/vaddr_end variables. These checks are very
90 	 * limited....
91 	 */
92 	BUILD_BUG_ON(vaddr_start >= vaddr_end);
93 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
94 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
95 
96 	/* Preset the end of the possible address space for physical memory */
97 	physmem_end = ((1ULL << MAX_PHYSMEM_BITS) - 1);
98 	if (!kaslr_memory_enabled())
99 		return;
100 
101 	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
102 	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
103 
104 	/*
105 	 * Update Physical memory mapping to available and
106 	 * add padding if needed (especially for memory hotplug support).
107 	 */
108 	BUG_ON(kaslr_regions[0].base != &page_offset_base);
109 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
110 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
111 
112 	/* Adapt physical memory region size based on available memory */
113 	if (memory_tb < kaslr_regions[0].size_tb)
114 		kaslr_regions[0].size_tb = memory_tb;
115 
116 	/*
117 	 * Calculate the vmemmap region size in TBs, aligned to a TB
118 	 * boundary.
119 	 */
120 	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
121 			sizeof(struct page);
122 	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
123 
124 	/* Calculate entropy available between regions */
125 	remain_entropy = vaddr_end - vaddr_start;
126 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
127 		remain_entropy -= get_padding(&kaslr_regions[i]);
128 
129 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
130 
131 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
132 		unsigned long entropy;
133 
134 		/*
135 		 * Select a random virtual address using the extra entropy
136 		 * available.
137 		 */
138 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
139 		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
140 		entropy = (rand % (entropy + 1)) & PUD_MASK;
141 		vaddr += entropy;
142 		*kaslr_regions[i].base = vaddr;
143 
144 		/* Calculate the end of the region */
145 		vaddr += get_padding(&kaslr_regions[i]);
146 		/*
147 		 * KASLR trims the maximum possible size of the
148 		 * direct-map. Update the physmem_end boundary.
149 		 * No rounding required as the region starts
150 		 * PUD aligned and size is in units of TB.
151 		 */
152 		if (kaslr_regions[i].end)
153 			*kaslr_regions[i].end = __pa_nodebug(vaddr - 1);
154 
155 		/* Add a minimum padding based on randomization alignment. */
156 		vaddr = round_up(vaddr + 1, PUD_SIZE);
157 		remain_entropy -= entropy;
158 	}
159 }
160 
161 void __meminit init_trampoline_kaslr(void)
162 {
163 	pud_t *pud_page_tramp, *pud, *pud_tramp;
164 	p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
165 	unsigned long paddr, vaddr;
166 	pgd_t *pgd;
167 
168 	pud_page_tramp = alloc_low_page();
169 
170 	/*
171 	 * There are two mappings for the low 1MB area, the direct mapping
172 	 * and the 1:1 mapping for the real mode trampoline:
173 	 *
174 	 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
175 	 * 1:1 mapping:    virt_addr = phys_addr
176 	 */
177 	paddr = 0;
178 	vaddr = (unsigned long)__va(paddr);
179 	pgd = pgd_offset_k(vaddr);
180 
181 	p4d = p4d_offset(pgd, vaddr);
182 	pud = pud_offset(p4d, vaddr);
183 
184 	pud_tramp = pud_page_tramp + pud_index(paddr);
185 	*pud_tramp = *pud;
186 
187 	if (pgtable_l5_enabled()) {
188 		p4d_page_tramp = alloc_low_page();
189 
190 		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
191 
192 		set_p4d(p4d_tramp,
193 			__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
194 
195 		trampoline_pgd_entry =
196 			__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp));
197 	} else {
198 		trampoline_pgd_entry =
199 			__pgd(_KERNPG_TABLE | __pa(pud_page_tramp));
200 	}
201 }
202