xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7 
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15 
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/pgtable.h>
21 #include <asm/cpu_entry_area.h>
22 
23 extern struct range pfn_mapped[E820_MAX_ENTRIES];
24 
25 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
26 
27 static __init void *early_alloc(size_t size, int nid, bool should_panic)
28 {
29 	void *ptr = memblock_alloc_try_nid(size, size,
30 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
31 
32 	if (!ptr && should_panic)
33 		panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
34 		      (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
35 
36 	return ptr;
37 }
38 
39 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
40 				      unsigned long end, int nid)
41 {
42 	pte_t *pte;
43 
44 	if (pmd_none(*pmd)) {
45 		void *p;
46 
47 		if (boot_cpu_has(X86_FEATURE_PSE) &&
48 		    ((end - addr) == PMD_SIZE) &&
49 		    IS_ALIGNED(addr, PMD_SIZE)) {
50 			p = early_alloc(PMD_SIZE, nid, false);
51 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
52 				return;
53 			else if (p)
54 				memblock_free(__pa(p), PMD_SIZE);
55 		}
56 
57 		p = early_alloc(PAGE_SIZE, nid, true);
58 		pmd_populate_kernel(&init_mm, pmd, p);
59 	}
60 
61 	pte = pte_offset_kernel(pmd, addr);
62 	do {
63 		pte_t entry;
64 		void *p;
65 
66 		if (!pte_none(*pte))
67 			continue;
68 
69 		p = early_alloc(PAGE_SIZE, nid, true);
70 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
71 		set_pte_at(&init_mm, addr, pte, entry);
72 	} while (pte++, addr += PAGE_SIZE, addr != end);
73 }
74 
75 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
76 				      unsigned long end, int nid)
77 {
78 	pmd_t *pmd;
79 	unsigned long next;
80 
81 	if (pud_none(*pud)) {
82 		void *p;
83 
84 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
85 		    ((end - addr) == PUD_SIZE) &&
86 		    IS_ALIGNED(addr, PUD_SIZE)) {
87 			p = early_alloc(PUD_SIZE, nid, false);
88 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
89 				return;
90 			else if (p)
91 				memblock_free(__pa(p), PUD_SIZE);
92 		}
93 
94 		p = early_alloc(PAGE_SIZE, nid, true);
95 		pud_populate(&init_mm, pud, p);
96 	}
97 
98 	pmd = pmd_offset(pud, addr);
99 	do {
100 		next = pmd_addr_end(addr, end);
101 		if (!pmd_large(*pmd))
102 			kasan_populate_pmd(pmd, addr, next, nid);
103 	} while (pmd++, addr = next, addr != end);
104 }
105 
106 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
107 				      unsigned long end, int nid)
108 {
109 	pud_t *pud;
110 	unsigned long next;
111 
112 	if (p4d_none(*p4d)) {
113 		void *p = early_alloc(PAGE_SIZE, nid, true);
114 
115 		p4d_populate(&init_mm, p4d, p);
116 	}
117 
118 	pud = pud_offset(p4d, addr);
119 	do {
120 		next = pud_addr_end(addr, end);
121 		if (!pud_large(*pud))
122 			kasan_populate_pud(pud, addr, next, nid);
123 	} while (pud++, addr = next, addr != end);
124 }
125 
126 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
127 				      unsigned long end, int nid)
128 {
129 	void *p;
130 	p4d_t *p4d;
131 	unsigned long next;
132 
133 	if (pgd_none(*pgd)) {
134 		p = early_alloc(PAGE_SIZE, nid, true);
135 		pgd_populate(&init_mm, pgd, p);
136 	}
137 
138 	p4d = p4d_offset(pgd, addr);
139 	do {
140 		next = p4d_addr_end(addr, end);
141 		kasan_populate_p4d(p4d, addr, next, nid);
142 	} while (p4d++, addr = next, addr != end);
143 }
144 
145 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
146 					 int nid)
147 {
148 	pgd_t *pgd;
149 	unsigned long next;
150 
151 	addr = addr & PAGE_MASK;
152 	end = round_up(end, PAGE_SIZE);
153 	pgd = pgd_offset_k(addr);
154 	do {
155 		next = pgd_addr_end(addr, end);
156 		kasan_populate_pgd(pgd, addr, next, nid);
157 	} while (pgd++, addr = next, addr != end);
158 }
159 
160 static void __init map_range(struct range *range)
161 {
162 	unsigned long start;
163 	unsigned long end;
164 
165 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
166 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
167 
168 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
169 }
170 
171 static void __init clear_pgds(unsigned long start,
172 			unsigned long end)
173 {
174 	pgd_t *pgd;
175 	/* See comment in kasan_init() */
176 	unsigned long pgd_end = end & PGDIR_MASK;
177 
178 	for (; start < pgd_end; start += PGDIR_SIZE) {
179 		pgd = pgd_offset_k(start);
180 		/*
181 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
182 		 * instead.
183 		 */
184 		if (pgtable_l5_enabled())
185 			pgd_clear(pgd);
186 		else
187 			p4d_clear(p4d_offset(pgd, start));
188 	}
189 
190 	pgd = pgd_offset_k(start);
191 	for (; start < end; start += P4D_SIZE)
192 		p4d_clear(p4d_offset(pgd, start));
193 }
194 
195 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
196 {
197 	unsigned long p4d;
198 
199 	if (!pgtable_l5_enabled())
200 		return (p4d_t *)pgd;
201 
202 	p4d = pgd_val(*pgd) & PTE_PFN_MASK;
203 	p4d += __START_KERNEL_map - phys_base;
204 	return (p4d_t *)p4d + p4d_index(addr);
205 }
206 
207 static void __init kasan_early_p4d_populate(pgd_t *pgd,
208 		unsigned long addr,
209 		unsigned long end)
210 {
211 	pgd_t pgd_entry;
212 	p4d_t *p4d, p4d_entry;
213 	unsigned long next;
214 
215 	if (pgd_none(*pgd)) {
216 		pgd_entry = __pgd(_KERNPG_TABLE |
217 					__pa_nodebug(kasan_early_shadow_p4d));
218 		set_pgd(pgd, pgd_entry);
219 	}
220 
221 	p4d = early_p4d_offset(pgd, addr);
222 	do {
223 		next = p4d_addr_end(addr, end);
224 
225 		if (!p4d_none(*p4d))
226 			continue;
227 
228 		p4d_entry = __p4d(_KERNPG_TABLE |
229 					__pa_nodebug(kasan_early_shadow_pud));
230 		set_p4d(p4d, p4d_entry);
231 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
232 }
233 
234 static void __init kasan_map_early_shadow(pgd_t *pgd)
235 {
236 	/* See comment in kasan_init() */
237 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
238 	unsigned long end = KASAN_SHADOW_END;
239 	unsigned long next;
240 
241 	pgd += pgd_index(addr);
242 	do {
243 		next = pgd_addr_end(addr, end);
244 		kasan_early_p4d_populate(pgd, addr, next);
245 	} while (pgd++, addr = next, addr != end);
246 }
247 
248 #ifdef CONFIG_KASAN_INLINE
249 static int kasan_die_handler(struct notifier_block *self,
250 			     unsigned long val,
251 			     void *data)
252 {
253 	if (val == DIE_GPF) {
254 		pr_emerg("CONFIG_KASAN_INLINE enabled\n");
255 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
256 	}
257 	return NOTIFY_OK;
258 }
259 
260 static struct notifier_block kasan_die_notifier = {
261 	.notifier_call = kasan_die_handler,
262 };
263 #endif
264 
265 void __init kasan_early_init(void)
266 {
267 	int i;
268 	pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
269 				__PAGE_KERNEL | _PAGE_ENC;
270 	pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
271 	pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
272 	p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
273 
274 	/* Mask out unsupported __PAGE_KERNEL bits: */
275 	pte_val &= __default_kernel_pte_mask;
276 	pmd_val &= __default_kernel_pte_mask;
277 	pud_val &= __default_kernel_pte_mask;
278 	p4d_val &= __default_kernel_pte_mask;
279 
280 	for (i = 0; i < PTRS_PER_PTE; i++)
281 		kasan_early_shadow_pte[i] = __pte(pte_val);
282 
283 	for (i = 0; i < PTRS_PER_PMD; i++)
284 		kasan_early_shadow_pmd[i] = __pmd(pmd_val);
285 
286 	for (i = 0; i < PTRS_PER_PUD; i++)
287 		kasan_early_shadow_pud[i] = __pud(pud_val);
288 
289 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
290 		kasan_early_shadow_p4d[i] = __p4d(p4d_val);
291 
292 	kasan_map_early_shadow(early_top_pgt);
293 	kasan_map_early_shadow(init_top_pgt);
294 }
295 
296 void __init kasan_init(void)
297 {
298 	int i;
299 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
300 
301 #ifdef CONFIG_KASAN_INLINE
302 	register_die_notifier(&kasan_die_notifier);
303 #endif
304 
305 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
306 
307 	/*
308 	 * We use the same shadow offset for 4- and 5-level paging to
309 	 * facilitate boot-time switching between paging modes.
310 	 * As result in 5-level paging mode KASAN_SHADOW_START and
311 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
312 	 *
313 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
314 	 * We claim whole PGD entry to make things easier.
315 	 *
316 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
317 	 * bunch of things like kernel code, modules, EFI mapping, etc.
318 	 * We need to take extra steps to not overwrite them.
319 	 */
320 	if (pgtable_l5_enabled()) {
321 		void *ptr;
322 
323 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
324 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
325 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
326 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
327 	}
328 
329 	load_cr3(early_top_pgt);
330 	__flush_tlb_all();
331 
332 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
333 
334 	kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
335 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
336 
337 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
338 		if (pfn_mapped[i].end == 0)
339 			break;
340 
341 		map_range(&pfn_mapped[i]);
342 	}
343 
344 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
345 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
346 	shadow_cpu_entry_begin = (void *)round_down(
347 			(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
348 
349 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
350 					CPU_ENTRY_AREA_MAP_SIZE);
351 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
352 	shadow_cpu_entry_end = (void *)round_up(
353 			(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
354 
355 	kasan_populate_early_shadow(
356 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
357 		shadow_cpu_entry_begin);
358 
359 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
360 			      (unsigned long)shadow_cpu_entry_end, 0);
361 
362 	kasan_populate_early_shadow(shadow_cpu_entry_end,
363 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
364 
365 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
366 			      (unsigned long)kasan_mem_to_shadow(_end),
367 			      early_pfn_to_nid(__pa(_stext)));
368 
369 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
370 					(void *)KASAN_SHADOW_END);
371 
372 	load_cr3(init_top_pgt);
373 	__flush_tlb_all();
374 
375 	/*
376 	 * kasan_early_shadow_page has been used as early shadow memory, thus
377 	 * it may contain some garbage. Now we can clear and write protect it,
378 	 * since after the TLB flush no one should write to it.
379 	 */
380 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
381 	for (i = 0; i < PTRS_PER_PTE; i++) {
382 		pte_t pte;
383 		pgprot_t prot;
384 
385 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
386 		pgprot_val(prot) &= __default_kernel_pte_mask;
387 
388 		pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
389 		set_pte(&kasan_early_shadow_pte[i], pte);
390 	}
391 	/* Flush TLBs again to be sure that write protection applied. */
392 	__flush_tlb_all();
393 
394 	init_task.kasan_depth = 0;
395 	pr_info("KernelAddressSanitizer initialized\n");
396 }
397