xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision e0bf6c5c)
1 #include <linux/bootmem.h>
2 #include <linux/kasan.h>
3 #include <linux/kdebug.h>
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 
8 #include <asm/tlbflush.h>
9 #include <asm/sections.h>
10 
11 extern pgd_t early_level4_pgt[PTRS_PER_PGD];
12 extern struct range pfn_mapped[E820_X_MAX];
13 
14 extern unsigned char kasan_zero_page[PAGE_SIZE];
15 
16 static int __init map_range(struct range *range)
17 {
18 	unsigned long start;
19 	unsigned long end;
20 
21 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
22 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
23 
24 	/*
25 	 * end + 1 here is intentional. We check several shadow bytes in advance
26 	 * to slightly speed up fastpath. In some rare cases we could cross
27 	 * boundary of mapped shadow, so we just map some more here.
28 	 */
29 	return vmemmap_populate(start, end + 1, NUMA_NO_NODE);
30 }
31 
32 static void __init clear_pgds(unsigned long start,
33 			unsigned long end)
34 {
35 	for (; start < end; start += PGDIR_SIZE)
36 		pgd_clear(pgd_offset_k(start));
37 }
38 
39 void __init kasan_map_early_shadow(pgd_t *pgd)
40 {
41 	int i;
42 	unsigned long start = KASAN_SHADOW_START;
43 	unsigned long end = KASAN_SHADOW_END;
44 
45 	for (i = pgd_index(start); start < end; i++) {
46 		pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud)
47 				| _KERNPG_TABLE);
48 		start += PGDIR_SIZE;
49 	}
50 }
51 
52 static int __init zero_pte_populate(pmd_t *pmd, unsigned long addr,
53 				unsigned long end)
54 {
55 	pte_t *pte = pte_offset_kernel(pmd, addr);
56 
57 	while (addr + PAGE_SIZE <= end) {
58 		WARN_ON(!pte_none(*pte));
59 		set_pte(pte, __pte(__pa_nodebug(kasan_zero_page)
60 					| __PAGE_KERNEL_RO));
61 		addr += PAGE_SIZE;
62 		pte = pte_offset_kernel(pmd, addr);
63 	}
64 	return 0;
65 }
66 
67 static int __init zero_pmd_populate(pud_t *pud, unsigned long addr,
68 				unsigned long end)
69 {
70 	int ret = 0;
71 	pmd_t *pmd = pmd_offset(pud, addr);
72 
73 	while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) {
74 		WARN_ON(!pmd_none(*pmd));
75 		set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte)
76 					| __PAGE_KERNEL_RO));
77 		addr += PMD_SIZE;
78 		pmd = pmd_offset(pud, addr);
79 	}
80 	if (addr < end) {
81 		if (pmd_none(*pmd)) {
82 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
83 			if (!p)
84 				return -ENOMEM;
85 			set_pmd(pmd, __pmd(__pa_nodebug(p) | _KERNPG_TABLE));
86 		}
87 		ret = zero_pte_populate(pmd, addr, end);
88 	}
89 	return ret;
90 }
91 
92 
93 static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr,
94 				unsigned long end)
95 {
96 	int ret = 0;
97 	pud_t *pud = pud_offset(pgd, addr);
98 
99 	while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) {
100 		WARN_ON(!pud_none(*pud));
101 		set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd)
102 					| __PAGE_KERNEL_RO));
103 		addr += PUD_SIZE;
104 		pud = pud_offset(pgd, addr);
105 	}
106 
107 	if (addr < end) {
108 		if (pud_none(*pud)) {
109 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
110 			if (!p)
111 				return -ENOMEM;
112 			set_pud(pud, __pud(__pa_nodebug(p) | _KERNPG_TABLE));
113 		}
114 		ret = zero_pmd_populate(pud, addr, end);
115 	}
116 	return ret;
117 }
118 
119 static int __init zero_pgd_populate(unsigned long addr, unsigned long end)
120 {
121 	int ret = 0;
122 	pgd_t *pgd = pgd_offset_k(addr);
123 
124 	while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) {
125 		WARN_ON(!pgd_none(*pgd));
126 		set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud)
127 					| __PAGE_KERNEL_RO));
128 		addr += PGDIR_SIZE;
129 		pgd = pgd_offset_k(addr);
130 	}
131 
132 	if (addr < end) {
133 		if (pgd_none(*pgd)) {
134 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
135 			if (!p)
136 				return -ENOMEM;
137 			set_pgd(pgd, __pgd(__pa_nodebug(p) | _KERNPG_TABLE));
138 		}
139 		ret = zero_pud_populate(pgd, addr, end);
140 	}
141 	return ret;
142 }
143 
144 
145 static void __init populate_zero_shadow(const void *start, const void *end)
146 {
147 	if (zero_pgd_populate((unsigned long)start, (unsigned long)end))
148 		panic("kasan: unable to map zero shadow!");
149 }
150 
151 
152 #ifdef CONFIG_KASAN_INLINE
153 static int kasan_die_handler(struct notifier_block *self,
154 			     unsigned long val,
155 			     void *data)
156 {
157 	if (val == DIE_GPF) {
158 		pr_emerg("CONFIG_KASAN_INLINE enabled");
159 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access");
160 	}
161 	return NOTIFY_OK;
162 }
163 
164 static struct notifier_block kasan_die_notifier = {
165 	.notifier_call = kasan_die_handler,
166 };
167 #endif
168 
169 void __init kasan_init(void)
170 {
171 	int i;
172 
173 #ifdef CONFIG_KASAN_INLINE
174 	register_die_notifier(&kasan_die_notifier);
175 #endif
176 
177 	memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt));
178 	load_cr3(early_level4_pgt);
179 
180 	clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
181 
182 	populate_zero_shadow((void *)KASAN_SHADOW_START,
183 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
184 
185 	for (i = 0; i < E820_X_MAX; i++) {
186 		if (pfn_mapped[i].end == 0)
187 			break;
188 
189 		if (map_range(&pfn_mapped[i]))
190 			panic("kasan: unable to allocate shadow!");
191 	}
192 	populate_zero_shadow(kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
193 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
194 
195 	vmemmap_populate((unsigned long)kasan_mem_to_shadow(_stext),
196 			(unsigned long)kasan_mem_to_shadow(_end),
197 			NUMA_NO_NODE);
198 
199 	populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
200 			(void *)KASAN_SHADOW_END);
201 
202 	memset(kasan_zero_page, 0, PAGE_SIZE);
203 
204 	load_cr3(init_level4_pgt);
205 	init_task.kasan_depth = 0;
206 }
207