xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 #include <linux/bootmem.h>
5 #include <linux/kasan.h>
6 #include <linux/kdebug.h>
7 #include <linux/memblock.h>
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/task.h>
11 #include <linux/vmalloc.h>
12 
13 #include <asm/e820/types.h>
14 #include <asm/pgalloc.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/pgtable.h>
18 #include <asm/cpu_entry_area.h>
19 
20 extern struct range pfn_mapped[E820_MAX_ENTRIES];
21 
22 static p4d_t tmp_p4d_table[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
23 
24 static __init void *early_alloc(size_t size, int nid)
25 {
26 	return memblock_virt_alloc_try_nid_nopanic(size, size,
27 		__pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
28 }
29 
30 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
31 				      unsigned long end, int nid)
32 {
33 	pte_t *pte;
34 
35 	if (pmd_none(*pmd)) {
36 		void *p;
37 
38 		if (boot_cpu_has(X86_FEATURE_PSE) &&
39 		    ((end - addr) == PMD_SIZE) &&
40 		    IS_ALIGNED(addr, PMD_SIZE)) {
41 			p = early_alloc(PMD_SIZE, nid);
42 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
43 				return;
44 			else if (p)
45 				memblock_free(__pa(p), PMD_SIZE);
46 		}
47 
48 		p = early_alloc(PAGE_SIZE, nid);
49 		pmd_populate_kernel(&init_mm, pmd, p);
50 	}
51 
52 	pte = pte_offset_kernel(pmd, addr);
53 	do {
54 		pte_t entry;
55 		void *p;
56 
57 		if (!pte_none(*pte))
58 			continue;
59 
60 		p = early_alloc(PAGE_SIZE, nid);
61 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
62 		set_pte_at(&init_mm, addr, pte, entry);
63 	} while (pte++, addr += PAGE_SIZE, addr != end);
64 }
65 
66 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
67 				      unsigned long end, int nid)
68 {
69 	pmd_t *pmd;
70 	unsigned long next;
71 
72 	if (pud_none(*pud)) {
73 		void *p;
74 
75 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
76 		    ((end - addr) == PUD_SIZE) &&
77 		    IS_ALIGNED(addr, PUD_SIZE)) {
78 			p = early_alloc(PUD_SIZE, nid);
79 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
80 				return;
81 			else if (p)
82 				memblock_free(__pa(p), PUD_SIZE);
83 		}
84 
85 		p = early_alloc(PAGE_SIZE, nid);
86 		pud_populate(&init_mm, pud, p);
87 	}
88 
89 	pmd = pmd_offset(pud, addr);
90 	do {
91 		next = pmd_addr_end(addr, end);
92 		if (!pmd_large(*pmd))
93 			kasan_populate_pmd(pmd, addr, next, nid);
94 	} while (pmd++, addr = next, addr != end);
95 }
96 
97 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
98 				      unsigned long end, int nid)
99 {
100 	pud_t *pud;
101 	unsigned long next;
102 
103 	if (p4d_none(*p4d)) {
104 		void *p = early_alloc(PAGE_SIZE, nid);
105 
106 		p4d_populate(&init_mm, p4d, p);
107 	}
108 
109 	pud = pud_offset(p4d, addr);
110 	do {
111 		next = pud_addr_end(addr, end);
112 		if (!pud_large(*pud))
113 			kasan_populate_pud(pud, addr, next, nid);
114 	} while (pud++, addr = next, addr != end);
115 }
116 
117 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
118 				      unsigned long end, int nid)
119 {
120 	void *p;
121 	p4d_t *p4d;
122 	unsigned long next;
123 
124 	if (pgd_none(*pgd)) {
125 		p = early_alloc(PAGE_SIZE, nid);
126 		pgd_populate(&init_mm, pgd, p);
127 	}
128 
129 	p4d = p4d_offset(pgd, addr);
130 	do {
131 		next = p4d_addr_end(addr, end);
132 		kasan_populate_p4d(p4d, addr, next, nid);
133 	} while (p4d++, addr = next, addr != end);
134 }
135 
136 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
137 					 int nid)
138 {
139 	pgd_t *pgd;
140 	unsigned long next;
141 
142 	addr = addr & PAGE_MASK;
143 	end = round_up(end, PAGE_SIZE);
144 	pgd = pgd_offset_k(addr);
145 	do {
146 		next = pgd_addr_end(addr, end);
147 		kasan_populate_pgd(pgd, addr, next, nid);
148 	} while (pgd++, addr = next, addr != end);
149 }
150 
151 static void __init map_range(struct range *range)
152 {
153 	unsigned long start;
154 	unsigned long end;
155 
156 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
157 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
158 
159 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
160 }
161 
162 static void __init clear_pgds(unsigned long start,
163 			unsigned long end)
164 {
165 	pgd_t *pgd;
166 	/* See comment in kasan_init() */
167 	unsigned long pgd_end = end & PGDIR_MASK;
168 
169 	for (; start < pgd_end; start += PGDIR_SIZE) {
170 		pgd = pgd_offset_k(start);
171 		/*
172 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
173 		 * instead.
174 		 */
175 		if (CONFIG_PGTABLE_LEVELS < 5)
176 			p4d_clear(p4d_offset(pgd, start));
177 		else
178 			pgd_clear(pgd);
179 	}
180 
181 	pgd = pgd_offset_k(start);
182 	for (; start < end; start += P4D_SIZE)
183 		p4d_clear(p4d_offset(pgd, start));
184 }
185 
186 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
187 {
188 	unsigned long p4d;
189 
190 	if (!IS_ENABLED(CONFIG_X86_5LEVEL))
191 		return (p4d_t *)pgd;
192 
193 	p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
194 	p4d += __START_KERNEL_map - phys_base;
195 	return (p4d_t *)p4d + p4d_index(addr);
196 }
197 
198 static void __init kasan_early_p4d_populate(pgd_t *pgd,
199 		unsigned long addr,
200 		unsigned long end)
201 {
202 	pgd_t pgd_entry;
203 	p4d_t *p4d, p4d_entry;
204 	unsigned long next;
205 
206 	if (pgd_none(*pgd)) {
207 		pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
208 		set_pgd(pgd, pgd_entry);
209 	}
210 
211 	p4d = early_p4d_offset(pgd, addr);
212 	do {
213 		next = p4d_addr_end(addr, end);
214 
215 		if (!p4d_none(*p4d))
216 			continue;
217 
218 		p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
219 		set_p4d(p4d, p4d_entry);
220 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
221 }
222 
223 static void __init kasan_map_early_shadow(pgd_t *pgd)
224 {
225 	/* See comment in kasan_init() */
226 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
227 	unsigned long end = KASAN_SHADOW_END;
228 	unsigned long next;
229 
230 	pgd += pgd_index(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		kasan_early_p4d_populate(pgd, addr, next);
234 	} while (pgd++, addr = next, addr != end);
235 }
236 
237 #ifdef CONFIG_KASAN_INLINE
238 static int kasan_die_handler(struct notifier_block *self,
239 			     unsigned long val,
240 			     void *data)
241 {
242 	if (val == DIE_GPF) {
243 		pr_emerg("CONFIG_KASAN_INLINE enabled\n");
244 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
245 	}
246 	return NOTIFY_OK;
247 }
248 
249 static struct notifier_block kasan_die_notifier = {
250 	.notifier_call = kasan_die_handler,
251 };
252 #endif
253 
254 void __init kasan_early_init(void)
255 {
256 	int i;
257 	pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
258 	pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
259 	pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
260 	p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
261 
262 	for (i = 0; i < PTRS_PER_PTE; i++)
263 		kasan_zero_pte[i] = __pte(pte_val);
264 
265 	for (i = 0; i < PTRS_PER_PMD; i++)
266 		kasan_zero_pmd[i] = __pmd(pmd_val);
267 
268 	for (i = 0; i < PTRS_PER_PUD; i++)
269 		kasan_zero_pud[i] = __pud(pud_val);
270 
271 	for (i = 0; IS_ENABLED(CONFIG_X86_5LEVEL) && i < PTRS_PER_P4D; i++)
272 		kasan_zero_p4d[i] = __p4d(p4d_val);
273 
274 	kasan_map_early_shadow(early_top_pgt);
275 	kasan_map_early_shadow(init_top_pgt);
276 }
277 
278 void __init kasan_init(void)
279 {
280 	int i;
281 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
282 
283 #ifdef CONFIG_KASAN_INLINE
284 	register_die_notifier(&kasan_die_notifier);
285 #endif
286 
287 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
288 
289 	/*
290 	 * We use the same shadow offset for 4- and 5-level paging to
291 	 * facilitate boot-time switching between paging modes.
292 	 * As result in 5-level paging mode KASAN_SHADOW_START and
293 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
294 	 *
295 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
296 	 * We claim whole PGD entry to make things easier.
297 	 *
298 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
299 	 * bunch of things like kernel code, modules, EFI mapping, etc.
300 	 * We need to take extra steps to not overwrite them.
301 	 */
302 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
303 		void *ptr;
304 
305 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
306 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
307 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
308 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
309 	}
310 
311 	load_cr3(early_top_pgt);
312 	__flush_tlb_all();
313 
314 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
315 
316 	kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
317 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
318 
319 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
320 		if (pfn_mapped[i].end == 0)
321 			break;
322 
323 		map_range(&pfn_mapped[i]);
324 	}
325 
326 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
327 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
328 	shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
329 						PAGE_SIZE);
330 
331 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
332 					CPU_ENTRY_AREA_MAP_SIZE);
333 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
334 	shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
335 					PAGE_SIZE);
336 
337 	kasan_populate_zero_shadow(
338 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
339 		shadow_cpu_entry_begin);
340 
341 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
342 			      (unsigned long)shadow_cpu_entry_end, 0);
343 
344 	kasan_populate_zero_shadow(shadow_cpu_entry_end,
345 				kasan_mem_to_shadow((void *)__START_KERNEL_map));
346 
347 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
348 			      (unsigned long)kasan_mem_to_shadow(_end),
349 			      early_pfn_to_nid(__pa(_stext)));
350 
351 	kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
352 				(void *)KASAN_SHADOW_END);
353 
354 	load_cr3(init_top_pgt);
355 	__flush_tlb_all();
356 
357 	/*
358 	 * kasan_zero_page has been used as early shadow memory, thus it may
359 	 * contain some garbage. Now we can clear and write protect it, since
360 	 * after the TLB flush no one should write to it.
361 	 */
362 	memset(kasan_zero_page, 0, PAGE_SIZE);
363 	for (i = 0; i < PTRS_PER_PTE; i++) {
364 		pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO | _PAGE_ENC);
365 		set_pte(&kasan_zero_pte[i], pte);
366 	}
367 	/* Flush TLBs again to be sure that write protection applied. */
368 	__flush_tlb_all();
369 
370 	init_task.kasan_depth = 0;
371 	pr_info("KernelAddressSanitizer initialized\n");
372 }
373