xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision bdeeed09)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 
5 #ifdef CONFIG_X86_5LEVEL
6 /* Too early to use cpu_feature_enabled() */
7 #define pgtable_l5_enabled __pgtable_l5_enabled
8 #endif
9 
10 #include <linux/bootmem.h>
11 #include <linux/kasan.h>
12 #include <linux/kdebug.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task.h>
17 #include <linux/vmalloc.h>
18 
19 #include <asm/e820/types.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/pgtable.h>
24 #include <asm/cpu_entry_area.h>
25 
26 extern struct range pfn_mapped[E820_MAX_ENTRIES];
27 
28 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
29 
30 static __init void *early_alloc(size_t size, int nid, bool panic)
31 {
32 	if (panic)
33 		return memblock_virt_alloc_try_nid(size, size,
34 			__pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
35 	else
36 		return memblock_virt_alloc_try_nid_nopanic(size, size,
37 			__pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
38 }
39 
40 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
41 				      unsigned long end, int nid)
42 {
43 	pte_t *pte;
44 
45 	if (pmd_none(*pmd)) {
46 		void *p;
47 
48 		if (boot_cpu_has(X86_FEATURE_PSE) &&
49 		    ((end - addr) == PMD_SIZE) &&
50 		    IS_ALIGNED(addr, PMD_SIZE)) {
51 			p = early_alloc(PMD_SIZE, nid, false);
52 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
53 				return;
54 			else if (p)
55 				memblock_free(__pa(p), PMD_SIZE);
56 		}
57 
58 		p = early_alloc(PAGE_SIZE, nid, true);
59 		pmd_populate_kernel(&init_mm, pmd, p);
60 	}
61 
62 	pte = pte_offset_kernel(pmd, addr);
63 	do {
64 		pte_t entry;
65 		void *p;
66 
67 		if (!pte_none(*pte))
68 			continue;
69 
70 		p = early_alloc(PAGE_SIZE, nid, true);
71 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
72 		set_pte_at(&init_mm, addr, pte, entry);
73 	} while (pte++, addr += PAGE_SIZE, addr != end);
74 }
75 
76 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
77 				      unsigned long end, int nid)
78 {
79 	pmd_t *pmd;
80 	unsigned long next;
81 
82 	if (pud_none(*pud)) {
83 		void *p;
84 
85 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
86 		    ((end - addr) == PUD_SIZE) &&
87 		    IS_ALIGNED(addr, PUD_SIZE)) {
88 			p = early_alloc(PUD_SIZE, nid, false);
89 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
90 				return;
91 			else if (p)
92 				memblock_free(__pa(p), PUD_SIZE);
93 		}
94 
95 		p = early_alloc(PAGE_SIZE, nid, true);
96 		pud_populate(&init_mm, pud, p);
97 	}
98 
99 	pmd = pmd_offset(pud, addr);
100 	do {
101 		next = pmd_addr_end(addr, end);
102 		if (!pmd_large(*pmd))
103 			kasan_populate_pmd(pmd, addr, next, nid);
104 	} while (pmd++, addr = next, addr != end);
105 }
106 
107 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
108 				      unsigned long end, int nid)
109 {
110 	pud_t *pud;
111 	unsigned long next;
112 
113 	if (p4d_none(*p4d)) {
114 		void *p = early_alloc(PAGE_SIZE, nid, true);
115 
116 		p4d_populate(&init_mm, p4d, p);
117 	}
118 
119 	pud = pud_offset(p4d, addr);
120 	do {
121 		next = pud_addr_end(addr, end);
122 		if (!pud_large(*pud))
123 			kasan_populate_pud(pud, addr, next, nid);
124 	} while (pud++, addr = next, addr != end);
125 }
126 
127 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
128 				      unsigned long end, int nid)
129 {
130 	void *p;
131 	p4d_t *p4d;
132 	unsigned long next;
133 
134 	if (pgd_none(*pgd)) {
135 		p = early_alloc(PAGE_SIZE, nid, true);
136 		pgd_populate(&init_mm, pgd, p);
137 	}
138 
139 	p4d = p4d_offset(pgd, addr);
140 	do {
141 		next = p4d_addr_end(addr, end);
142 		kasan_populate_p4d(p4d, addr, next, nid);
143 	} while (p4d++, addr = next, addr != end);
144 }
145 
146 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
147 					 int nid)
148 {
149 	pgd_t *pgd;
150 	unsigned long next;
151 
152 	addr = addr & PAGE_MASK;
153 	end = round_up(end, PAGE_SIZE);
154 	pgd = pgd_offset_k(addr);
155 	do {
156 		next = pgd_addr_end(addr, end);
157 		kasan_populate_pgd(pgd, addr, next, nid);
158 	} while (pgd++, addr = next, addr != end);
159 }
160 
161 static void __init map_range(struct range *range)
162 {
163 	unsigned long start;
164 	unsigned long end;
165 
166 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
167 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
168 
169 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
170 }
171 
172 static void __init clear_pgds(unsigned long start,
173 			unsigned long end)
174 {
175 	pgd_t *pgd;
176 	/* See comment in kasan_init() */
177 	unsigned long pgd_end = end & PGDIR_MASK;
178 
179 	for (; start < pgd_end; start += PGDIR_SIZE) {
180 		pgd = pgd_offset_k(start);
181 		/*
182 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
183 		 * instead.
184 		 */
185 		if (pgtable_l5_enabled)
186 			pgd_clear(pgd);
187 		else
188 			p4d_clear(p4d_offset(pgd, start));
189 	}
190 
191 	pgd = pgd_offset_k(start);
192 	for (; start < end; start += P4D_SIZE)
193 		p4d_clear(p4d_offset(pgd, start));
194 }
195 
196 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
197 {
198 	unsigned long p4d;
199 
200 	if (!pgtable_l5_enabled)
201 		return (p4d_t *)pgd;
202 
203 	p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
204 	p4d += __START_KERNEL_map - phys_base;
205 	return (p4d_t *)p4d + p4d_index(addr);
206 }
207 
208 static void __init kasan_early_p4d_populate(pgd_t *pgd,
209 		unsigned long addr,
210 		unsigned long end)
211 {
212 	pgd_t pgd_entry;
213 	p4d_t *p4d, p4d_entry;
214 	unsigned long next;
215 
216 	if (pgd_none(*pgd)) {
217 		pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
218 		set_pgd(pgd, pgd_entry);
219 	}
220 
221 	p4d = early_p4d_offset(pgd, addr);
222 	do {
223 		next = p4d_addr_end(addr, end);
224 
225 		if (!p4d_none(*p4d))
226 			continue;
227 
228 		p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
229 		set_p4d(p4d, p4d_entry);
230 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
231 }
232 
233 static void __init kasan_map_early_shadow(pgd_t *pgd)
234 {
235 	/* See comment in kasan_init() */
236 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
237 	unsigned long end = KASAN_SHADOW_END;
238 	unsigned long next;
239 
240 	pgd += pgd_index(addr);
241 	do {
242 		next = pgd_addr_end(addr, end);
243 		kasan_early_p4d_populate(pgd, addr, next);
244 	} while (pgd++, addr = next, addr != end);
245 }
246 
247 #ifdef CONFIG_KASAN_INLINE
248 static int kasan_die_handler(struct notifier_block *self,
249 			     unsigned long val,
250 			     void *data)
251 {
252 	if (val == DIE_GPF) {
253 		pr_emerg("CONFIG_KASAN_INLINE enabled\n");
254 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
255 	}
256 	return NOTIFY_OK;
257 }
258 
259 static struct notifier_block kasan_die_notifier = {
260 	.notifier_call = kasan_die_handler,
261 };
262 #endif
263 
264 void __init kasan_early_init(void)
265 {
266 	int i;
267 	pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
268 	pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
269 	pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
270 	p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
271 
272 	/* Mask out unsupported __PAGE_KERNEL bits: */
273 	pte_val &= __default_kernel_pte_mask;
274 	pmd_val &= __default_kernel_pte_mask;
275 	pud_val &= __default_kernel_pte_mask;
276 	p4d_val &= __default_kernel_pte_mask;
277 
278 	for (i = 0; i < PTRS_PER_PTE; i++)
279 		kasan_zero_pte[i] = __pte(pte_val);
280 
281 	for (i = 0; i < PTRS_PER_PMD; i++)
282 		kasan_zero_pmd[i] = __pmd(pmd_val);
283 
284 	for (i = 0; i < PTRS_PER_PUD; i++)
285 		kasan_zero_pud[i] = __pud(pud_val);
286 
287 	for (i = 0; pgtable_l5_enabled && i < PTRS_PER_P4D; i++)
288 		kasan_zero_p4d[i] = __p4d(p4d_val);
289 
290 	kasan_map_early_shadow(early_top_pgt);
291 	kasan_map_early_shadow(init_top_pgt);
292 }
293 
294 void __init kasan_init(void)
295 {
296 	int i;
297 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
298 
299 #ifdef CONFIG_KASAN_INLINE
300 	register_die_notifier(&kasan_die_notifier);
301 #endif
302 
303 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
304 
305 	/*
306 	 * We use the same shadow offset for 4- and 5-level paging to
307 	 * facilitate boot-time switching between paging modes.
308 	 * As result in 5-level paging mode KASAN_SHADOW_START and
309 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
310 	 *
311 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
312 	 * We claim whole PGD entry to make things easier.
313 	 *
314 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
315 	 * bunch of things like kernel code, modules, EFI mapping, etc.
316 	 * We need to take extra steps to not overwrite them.
317 	 */
318 	if (pgtable_l5_enabled) {
319 		void *ptr;
320 
321 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
322 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
323 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
324 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
325 	}
326 
327 	load_cr3(early_top_pgt);
328 	__flush_tlb_all();
329 
330 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
331 
332 	kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
333 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
334 
335 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
336 		if (pfn_mapped[i].end == 0)
337 			break;
338 
339 		map_range(&pfn_mapped[i]);
340 	}
341 
342 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
343 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
344 	shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
345 						PAGE_SIZE);
346 
347 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
348 					CPU_ENTRY_AREA_MAP_SIZE);
349 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
350 	shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
351 					PAGE_SIZE);
352 
353 	kasan_populate_zero_shadow(
354 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
355 		shadow_cpu_entry_begin);
356 
357 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
358 			      (unsigned long)shadow_cpu_entry_end, 0);
359 
360 	kasan_populate_zero_shadow(shadow_cpu_entry_end,
361 				kasan_mem_to_shadow((void *)__START_KERNEL_map));
362 
363 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
364 			      (unsigned long)kasan_mem_to_shadow(_end),
365 			      early_pfn_to_nid(__pa(_stext)));
366 
367 	kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
368 				(void *)KASAN_SHADOW_END);
369 
370 	load_cr3(init_top_pgt);
371 	__flush_tlb_all();
372 
373 	/*
374 	 * kasan_zero_page has been used as early shadow memory, thus it may
375 	 * contain some garbage. Now we can clear and write protect it, since
376 	 * after the TLB flush no one should write to it.
377 	 */
378 	memset(kasan_zero_page, 0, PAGE_SIZE);
379 	for (i = 0; i < PTRS_PER_PTE; i++) {
380 		pte_t pte;
381 		pgprot_t prot;
382 
383 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
384 		pgprot_val(prot) &= __default_kernel_pte_mask;
385 
386 		pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
387 		set_pte(&kasan_zero_pte[i], pte);
388 	}
389 	/* Flush TLBs again to be sure that write protection applied. */
390 	__flush_tlb_all();
391 
392 	init_task.kasan_depth = 0;
393 	pr_info("KernelAddressSanitizer initialized\n");
394 }
395