xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 #define pr_fmt(fmt) "kasan: " fmt
2 #include <linux/bootmem.h>
3 #include <linux/kasan.h>
4 #include <linux/kdebug.h>
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7 #include <linux/vmalloc.h>
8 
9 #include <asm/tlbflush.h>
10 #include <asm/sections.h>
11 
12 extern pgd_t early_level4_pgt[PTRS_PER_PGD];
13 extern struct range pfn_mapped[E820_X_MAX];
14 
15 static pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss;
16 static pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss;
17 static pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss;
18 
19 /*
20  * This page used as early shadow. We don't use empty_zero_page
21  * at early stages, stack instrumentation could write some garbage
22  * to this page.
23  * Latter we reuse it as zero shadow for large ranges of memory
24  * that allowed to access, but not instrumented by kasan
25  * (vmalloc/vmemmap ...).
26  */
27 static unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss;
28 
29 static int __init map_range(struct range *range)
30 {
31 	unsigned long start;
32 	unsigned long end;
33 
34 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
35 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
36 
37 	/*
38 	 * end + 1 here is intentional. We check several shadow bytes in advance
39 	 * to slightly speed up fastpath. In some rare cases we could cross
40 	 * boundary of mapped shadow, so we just map some more here.
41 	 */
42 	return vmemmap_populate(start, end + 1, NUMA_NO_NODE);
43 }
44 
45 static void __init clear_pgds(unsigned long start,
46 			unsigned long end)
47 {
48 	for (; start < end; start += PGDIR_SIZE)
49 		pgd_clear(pgd_offset_k(start));
50 }
51 
52 static void __init kasan_map_early_shadow(pgd_t *pgd)
53 {
54 	int i;
55 	unsigned long start = KASAN_SHADOW_START;
56 	unsigned long end = KASAN_SHADOW_END;
57 
58 	for (i = pgd_index(start); start < end; i++) {
59 		pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud)
60 				| _KERNPG_TABLE);
61 		start += PGDIR_SIZE;
62 	}
63 }
64 
65 static int __init zero_pte_populate(pmd_t *pmd, unsigned long addr,
66 				unsigned long end)
67 {
68 	pte_t *pte = pte_offset_kernel(pmd, addr);
69 
70 	while (addr + PAGE_SIZE <= end) {
71 		WARN_ON(!pte_none(*pte));
72 		set_pte(pte, __pte(__pa_nodebug(kasan_zero_page)
73 					| __PAGE_KERNEL_RO));
74 		addr += PAGE_SIZE;
75 		pte = pte_offset_kernel(pmd, addr);
76 	}
77 	return 0;
78 }
79 
80 static int __init zero_pmd_populate(pud_t *pud, unsigned long addr,
81 				unsigned long end)
82 {
83 	int ret = 0;
84 	pmd_t *pmd = pmd_offset(pud, addr);
85 
86 	while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) {
87 		WARN_ON(!pmd_none(*pmd));
88 		set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte)
89 					| _KERNPG_TABLE));
90 		addr += PMD_SIZE;
91 		pmd = pmd_offset(pud, addr);
92 	}
93 	if (addr < end) {
94 		if (pmd_none(*pmd)) {
95 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
96 			if (!p)
97 				return -ENOMEM;
98 			set_pmd(pmd, __pmd(__pa_nodebug(p) | _KERNPG_TABLE));
99 		}
100 		ret = zero_pte_populate(pmd, addr, end);
101 	}
102 	return ret;
103 }
104 
105 
106 static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr,
107 				unsigned long end)
108 {
109 	int ret = 0;
110 	pud_t *pud = pud_offset(pgd, addr);
111 
112 	while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) {
113 		WARN_ON(!pud_none(*pud));
114 		set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd)
115 					| _KERNPG_TABLE));
116 		addr += PUD_SIZE;
117 		pud = pud_offset(pgd, addr);
118 	}
119 
120 	if (addr < end) {
121 		if (pud_none(*pud)) {
122 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
123 			if (!p)
124 				return -ENOMEM;
125 			set_pud(pud, __pud(__pa_nodebug(p) | _KERNPG_TABLE));
126 		}
127 		ret = zero_pmd_populate(pud, addr, end);
128 	}
129 	return ret;
130 }
131 
132 static int __init zero_pgd_populate(unsigned long addr, unsigned long end)
133 {
134 	int ret = 0;
135 	pgd_t *pgd = pgd_offset_k(addr);
136 
137 	while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) {
138 		WARN_ON(!pgd_none(*pgd));
139 		set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud)
140 					| _KERNPG_TABLE));
141 		addr += PGDIR_SIZE;
142 		pgd = pgd_offset_k(addr);
143 	}
144 
145 	if (addr < end) {
146 		if (pgd_none(*pgd)) {
147 			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
148 			if (!p)
149 				return -ENOMEM;
150 			set_pgd(pgd, __pgd(__pa_nodebug(p) | _KERNPG_TABLE));
151 		}
152 		ret = zero_pud_populate(pgd, addr, end);
153 	}
154 	return ret;
155 }
156 
157 
158 static void __init populate_zero_shadow(const void *start, const void *end)
159 {
160 	if (zero_pgd_populate((unsigned long)start, (unsigned long)end))
161 		panic("kasan: unable to map zero shadow!");
162 }
163 
164 
165 #ifdef CONFIG_KASAN_INLINE
166 static int kasan_die_handler(struct notifier_block *self,
167 			     unsigned long val,
168 			     void *data)
169 {
170 	if (val == DIE_GPF) {
171 		pr_emerg("CONFIG_KASAN_INLINE enabled");
172 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access");
173 	}
174 	return NOTIFY_OK;
175 }
176 
177 static struct notifier_block kasan_die_notifier = {
178 	.notifier_call = kasan_die_handler,
179 };
180 #endif
181 
182 void __init kasan_early_init(void)
183 {
184 	int i;
185 	pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL;
186 	pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
187 	pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
188 
189 	for (i = 0; i < PTRS_PER_PTE; i++)
190 		kasan_zero_pte[i] = __pte(pte_val);
191 
192 	for (i = 0; i < PTRS_PER_PMD; i++)
193 		kasan_zero_pmd[i] = __pmd(pmd_val);
194 
195 	for (i = 0; i < PTRS_PER_PUD; i++)
196 		kasan_zero_pud[i] = __pud(pud_val);
197 
198 	kasan_map_early_shadow(early_level4_pgt);
199 	kasan_map_early_shadow(init_level4_pgt);
200 }
201 
202 void __init kasan_init(void)
203 {
204 	int i;
205 
206 #ifdef CONFIG_KASAN_INLINE
207 	register_die_notifier(&kasan_die_notifier);
208 #endif
209 
210 	memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt));
211 	load_cr3(early_level4_pgt);
212 	__flush_tlb_all();
213 
214 	clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
215 
216 	populate_zero_shadow((void *)KASAN_SHADOW_START,
217 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
218 
219 	for (i = 0; i < E820_X_MAX; i++) {
220 		if (pfn_mapped[i].end == 0)
221 			break;
222 
223 		if (map_range(&pfn_mapped[i]))
224 			panic("kasan: unable to allocate shadow!");
225 	}
226 	populate_zero_shadow(kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
227 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
228 
229 	vmemmap_populate((unsigned long)kasan_mem_to_shadow(_stext),
230 			(unsigned long)kasan_mem_to_shadow(_end),
231 			NUMA_NO_NODE);
232 
233 	populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
234 			(void *)KASAN_SHADOW_END);
235 
236 	memset(kasan_zero_page, 0, PAGE_SIZE);
237 
238 	load_cr3(init_level4_pgt);
239 	__flush_tlb_all();
240 	init_task.kasan_depth = 0;
241 
242 	pr_info("Kernel address sanitizer initialized\n");
243 }
244