xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision 79a5a18a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7 
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15 
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/pgtable.h>
21 #include <asm/cpu_entry_area.h>
22 
23 extern struct range pfn_mapped[E820_MAX_ENTRIES];
24 
25 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
26 
27 static __init void *early_alloc(size_t size, int nid, bool panic)
28 {
29 	if (panic)
30 		return memblock_alloc_try_nid(size, size,
31 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
32 	else
33 		return memblock_alloc_try_nid_nopanic(size, size,
34 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
35 }
36 
37 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
38 				      unsigned long end, int nid)
39 {
40 	pte_t *pte;
41 
42 	if (pmd_none(*pmd)) {
43 		void *p;
44 
45 		if (boot_cpu_has(X86_FEATURE_PSE) &&
46 		    ((end - addr) == PMD_SIZE) &&
47 		    IS_ALIGNED(addr, PMD_SIZE)) {
48 			p = early_alloc(PMD_SIZE, nid, false);
49 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
50 				return;
51 			else if (p)
52 				memblock_free(__pa(p), PMD_SIZE);
53 		}
54 
55 		p = early_alloc(PAGE_SIZE, nid, true);
56 		pmd_populate_kernel(&init_mm, pmd, p);
57 	}
58 
59 	pte = pte_offset_kernel(pmd, addr);
60 	do {
61 		pte_t entry;
62 		void *p;
63 
64 		if (!pte_none(*pte))
65 			continue;
66 
67 		p = early_alloc(PAGE_SIZE, nid, true);
68 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69 		set_pte_at(&init_mm, addr, pte, entry);
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74 				      unsigned long end, int nid)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	if (pud_none(*pud)) {
80 		void *p;
81 
82 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83 		    ((end - addr) == PUD_SIZE) &&
84 		    IS_ALIGNED(addr, PUD_SIZE)) {
85 			p = early_alloc(PUD_SIZE, nid, false);
86 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87 				return;
88 			else if (p)
89 				memblock_free(__pa(p), PUD_SIZE);
90 		}
91 
92 		p = early_alloc(PAGE_SIZE, nid, true);
93 		pud_populate(&init_mm, pud, p);
94 	}
95 
96 	pmd = pmd_offset(pud, addr);
97 	do {
98 		next = pmd_addr_end(addr, end);
99 		if (!pmd_large(*pmd))
100 			kasan_populate_pmd(pmd, addr, next, nid);
101 	} while (pmd++, addr = next, addr != end);
102 }
103 
104 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
105 				      unsigned long end, int nid)
106 {
107 	pud_t *pud;
108 	unsigned long next;
109 
110 	if (p4d_none(*p4d)) {
111 		void *p = early_alloc(PAGE_SIZE, nid, true);
112 
113 		p4d_populate(&init_mm, p4d, p);
114 	}
115 
116 	pud = pud_offset(p4d, addr);
117 	do {
118 		next = pud_addr_end(addr, end);
119 		if (!pud_large(*pud))
120 			kasan_populate_pud(pud, addr, next, nid);
121 	} while (pud++, addr = next, addr != end);
122 }
123 
124 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
125 				      unsigned long end, int nid)
126 {
127 	void *p;
128 	p4d_t *p4d;
129 	unsigned long next;
130 
131 	if (pgd_none(*pgd)) {
132 		p = early_alloc(PAGE_SIZE, nid, true);
133 		pgd_populate(&init_mm, pgd, p);
134 	}
135 
136 	p4d = p4d_offset(pgd, addr);
137 	do {
138 		next = p4d_addr_end(addr, end);
139 		kasan_populate_p4d(p4d, addr, next, nid);
140 	} while (p4d++, addr = next, addr != end);
141 }
142 
143 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
144 					 int nid)
145 {
146 	pgd_t *pgd;
147 	unsigned long next;
148 
149 	addr = addr & PAGE_MASK;
150 	end = round_up(end, PAGE_SIZE);
151 	pgd = pgd_offset_k(addr);
152 	do {
153 		next = pgd_addr_end(addr, end);
154 		kasan_populate_pgd(pgd, addr, next, nid);
155 	} while (pgd++, addr = next, addr != end);
156 }
157 
158 static void __init map_range(struct range *range)
159 {
160 	unsigned long start;
161 	unsigned long end;
162 
163 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
164 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
165 
166 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
167 }
168 
169 static void __init clear_pgds(unsigned long start,
170 			unsigned long end)
171 {
172 	pgd_t *pgd;
173 	/* See comment in kasan_init() */
174 	unsigned long pgd_end = end & PGDIR_MASK;
175 
176 	for (; start < pgd_end; start += PGDIR_SIZE) {
177 		pgd = pgd_offset_k(start);
178 		/*
179 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
180 		 * instead.
181 		 */
182 		if (pgtable_l5_enabled())
183 			pgd_clear(pgd);
184 		else
185 			p4d_clear(p4d_offset(pgd, start));
186 	}
187 
188 	pgd = pgd_offset_k(start);
189 	for (; start < end; start += P4D_SIZE)
190 		p4d_clear(p4d_offset(pgd, start));
191 }
192 
193 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
194 {
195 	unsigned long p4d;
196 
197 	if (!pgtable_l5_enabled())
198 		return (p4d_t *)pgd;
199 
200 	p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
201 	p4d += __START_KERNEL_map - phys_base;
202 	return (p4d_t *)p4d + p4d_index(addr);
203 }
204 
205 static void __init kasan_early_p4d_populate(pgd_t *pgd,
206 		unsigned long addr,
207 		unsigned long end)
208 {
209 	pgd_t pgd_entry;
210 	p4d_t *p4d, p4d_entry;
211 	unsigned long next;
212 
213 	if (pgd_none(*pgd)) {
214 		pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
215 		set_pgd(pgd, pgd_entry);
216 	}
217 
218 	p4d = early_p4d_offset(pgd, addr);
219 	do {
220 		next = p4d_addr_end(addr, end);
221 
222 		if (!p4d_none(*p4d))
223 			continue;
224 
225 		p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
226 		set_p4d(p4d, p4d_entry);
227 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
228 }
229 
230 static void __init kasan_map_early_shadow(pgd_t *pgd)
231 {
232 	/* See comment in kasan_init() */
233 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
234 	unsigned long end = KASAN_SHADOW_END;
235 	unsigned long next;
236 
237 	pgd += pgd_index(addr);
238 	do {
239 		next = pgd_addr_end(addr, end);
240 		kasan_early_p4d_populate(pgd, addr, next);
241 	} while (pgd++, addr = next, addr != end);
242 }
243 
244 #ifdef CONFIG_KASAN_INLINE
245 static int kasan_die_handler(struct notifier_block *self,
246 			     unsigned long val,
247 			     void *data)
248 {
249 	if (val == DIE_GPF) {
250 		pr_emerg("CONFIG_KASAN_INLINE enabled\n");
251 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
252 	}
253 	return NOTIFY_OK;
254 }
255 
256 static struct notifier_block kasan_die_notifier = {
257 	.notifier_call = kasan_die_handler,
258 };
259 #endif
260 
261 void __init kasan_early_init(void)
262 {
263 	int i;
264 	pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
265 	pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
266 	pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
267 	p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
268 
269 	/* Mask out unsupported __PAGE_KERNEL bits: */
270 	pte_val &= __default_kernel_pte_mask;
271 	pmd_val &= __default_kernel_pte_mask;
272 	pud_val &= __default_kernel_pte_mask;
273 	p4d_val &= __default_kernel_pte_mask;
274 
275 	for (i = 0; i < PTRS_PER_PTE; i++)
276 		kasan_zero_pte[i] = __pte(pte_val);
277 
278 	for (i = 0; i < PTRS_PER_PMD; i++)
279 		kasan_zero_pmd[i] = __pmd(pmd_val);
280 
281 	for (i = 0; i < PTRS_PER_PUD; i++)
282 		kasan_zero_pud[i] = __pud(pud_val);
283 
284 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
285 		kasan_zero_p4d[i] = __p4d(p4d_val);
286 
287 	kasan_map_early_shadow(early_top_pgt);
288 	kasan_map_early_shadow(init_top_pgt);
289 }
290 
291 void __init kasan_init(void)
292 {
293 	int i;
294 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
295 
296 #ifdef CONFIG_KASAN_INLINE
297 	register_die_notifier(&kasan_die_notifier);
298 #endif
299 
300 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
301 
302 	/*
303 	 * We use the same shadow offset for 4- and 5-level paging to
304 	 * facilitate boot-time switching between paging modes.
305 	 * As result in 5-level paging mode KASAN_SHADOW_START and
306 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
307 	 *
308 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
309 	 * We claim whole PGD entry to make things easier.
310 	 *
311 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
312 	 * bunch of things like kernel code, modules, EFI mapping, etc.
313 	 * We need to take extra steps to not overwrite them.
314 	 */
315 	if (pgtable_l5_enabled()) {
316 		void *ptr;
317 
318 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
319 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
320 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
321 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
322 	}
323 
324 	load_cr3(early_top_pgt);
325 	__flush_tlb_all();
326 
327 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
328 
329 	kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
330 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
331 
332 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
333 		if (pfn_mapped[i].end == 0)
334 			break;
335 
336 		map_range(&pfn_mapped[i]);
337 	}
338 
339 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
340 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
341 	shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
342 						PAGE_SIZE);
343 
344 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
345 					CPU_ENTRY_AREA_MAP_SIZE);
346 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
347 	shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
348 					PAGE_SIZE);
349 
350 	kasan_populate_zero_shadow(
351 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
352 		shadow_cpu_entry_begin);
353 
354 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
355 			      (unsigned long)shadow_cpu_entry_end, 0);
356 
357 	kasan_populate_zero_shadow(shadow_cpu_entry_end,
358 				kasan_mem_to_shadow((void *)__START_KERNEL_map));
359 
360 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
361 			      (unsigned long)kasan_mem_to_shadow(_end),
362 			      early_pfn_to_nid(__pa(_stext)));
363 
364 	kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
365 				(void *)KASAN_SHADOW_END);
366 
367 	load_cr3(init_top_pgt);
368 	__flush_tlb_all();
369 
370 	/*
371 	 * kasan_zero_page has been used as early shadow memory, thus it may
372 	 * contain some garbage. Now we can clear and write protect it, since
373 	 * after the TLB flush no one should write to it.
374 	 */
375 	memset(kasan_zero_page, 0, PAGE_SIZE);
376 	for (i = 0; i < PTRS_PER_PTE; i++) {
377 		pte_t pte;
378 		pgprot_t prot;
379 
380 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
381 		pgprot_val(prot) &= __default_kernel_pte_mask;
382 
383 		pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
384 		set_pte(&kasan_zero_pte[i], pte);
385 	}
386 	/* Flush TLBs again to be sure that write protection applied. */
387 	__flush_tlb_all();
388 
389 	init_task.kasan_depth = 0;
390 	pr_info("KernelAddressSanitizer initialized\n");
391 }
392