xref: /openbmc/linux/arch/x86/mm/kasan_init_64.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7 
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15 
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/cpu_entry_area.h>
21 
22 extern struct range pfn_mapped[E820_MAX_ENTRIES];
23 
24 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
25 
26 static __init void *early_alloc(size_t size, int nid, bool should_panic)
27 {
28 	void *ptr = memblock_alloc_try_nid(size, size,
29 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
30 
31 	if (!ptr && should_panic)
32 		panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
33 		      (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
34 
35 	return ptr;
36 }
37 
38 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39 				      unsigned long end, int nid)
40 {
41 	pte_t *pte;
42 
43 	if (pmd_none(*pmd)) {
44 		void *p;
45 
46 		if (boot_cpu_has(X86_FEATURE_PSE) &&
47 		    ((end - addr) == PMD_SIZE) &&
48 		    IS_ALIGNED(addr, PMD_SIZE)) {
49 			p = early_alloc(PMD_SIZE, nid, false);
50 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51 				return;
52 			else if (p)
53 				memblock_free(__pa(p), PMD_SIZE);
54 		}
55 
56 		p = early_alloc(PAGE_SIZE, nid, true);
57 		pmd_populate_kernel(&init_mm, pmd, p);
58 	}
59 
60 	pte = pte_offset_kernel(pmd, addr);
61 	do {
62 		pte_t entry;
63 		void *p;
64 
65 		if (!pte_none(*pte))
66 			continue;
67 
68 		p = early_alloc(PAGE_SIZE, nid, true);
69 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
70 		set_pte_at(&init_mm, addr, pte, entry);
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
75 				      unsigned long end, int nid)
76 {
77 	pmd_t *pmd;
78 	unsigned long next;
79 
80 	if (pud_none(*pud)) {
81 		void *p;
82 
83 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
84 		    ((end - addr) == PUD_SIZE) &&
85 		    IS_ALIGNED(addr, PUD_SIZE)) {
86 			p = early_alloc(PUD_SIZE, nid, false);
87 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
88 				return;
89 			else if (p)
90 				memblock_free(__pa(p), PUD_SIZE);
91 		}
92 
93 		p = early_alloc(PAGE_SIZE, nid, true);
94 		pud_populate(&init_mm, pud, p);
95 	}
96 
97 	pmd = pmd_offset(pud, addr);
98 	do {
99 		next = pmd_addr_end(addr, end);
100 		if (!pmd_large(*pmd))
101 			kasan_populate_pmd(pmd, addr, next, nid);
102 	} while (pmd++, addr = next, addr != end);
103 }
104 
105 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
106 				      unsigned long end, int nid)
107 {
108 	pud_t *pud;
109 	unsigned long next;
110 
111 	if (p4d_none(*p4d)) {
112 		void *p = early_alloc(PAGE_SIZE, nid, true);
113 
114 		p4d_populate(&init_mm, p4d, p);
115 	}
116 
117 	pud = pud_offset(p4d, addr);
118 	do {
119 		next = pud_addr_end(addr, end);
120 		if (!pud_large(*pud))
121 			kasan_populate_pud(pud, addr, next, nid);
122 	} while (pud++, addr = next, addr != end);
123 }
124 
125 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
126 				      unsigned long end, int nid)
127 {
128 	void *p;
129 	p4d_t *p4d;
130 	unsigned long next;
131 
132 	if (pgd_none(*pgd)) {
133 		p = early_alloc(PAGE_SIZE, nid, true);
134 		pgd_populate(&init_mm, pgd, p);
135 	}
136 
137 	p4d = p4d_offset(pgd, addr);
138 	do {
139 		next = p4d_addr_end(addr, end);
140 		kasan_populate_p4d(p4d, addr, next, nid);
141 	} while (p4d++, addr = next, addr != end);
142 }
143 
144 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
145 					 int nid)
146 {
147 	pgd_t *pgd;
148 	unsigned long next;
149 
150 	addr = addr & PAGE_MASK;
151 	end = round_up(end, PAGE_SIZE);
152 	pgd = pgd_offset_k(addr);
153 	do {
154 		next = pgd_addr_end(addr, end);
155 		kasan_populate_pgd(pgd, addr, next, nid);
156 	} while (pgd++, addr = next, addr != end);
157 }
158 
159 static void __init map_range(struct range *range)
160 {
161 	unsigned long start;
162 	unsigned long end;
163 
164 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
165 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
166 
167 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
168 }
169 
170 static void __init clear_pgds(unsigned long start,
171 			unsigned long end)
172 {
173 	pgd_t *pgd;
174 	/* See comment in kasan_init() */
175 	unsigned long pgd_end = end & PGDIR_MASK;
176 
177 	for (; start < pgd_end; start += PGDIR_SIZE) {
178 		pgd = pgd_offset_k(start);
179 		/*
180 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
181 		 * instead.
182 		 */
183 		if (pgtable_l5_enabled())
184 			pgd_clear(pgd);
185 		else
186 			p4d_clear(p4d_offset(pgd, start));
187 	}
188 
189 	pgd = pgd_offset_k(start);
190 	for (; start < end; start += P4D_SIZE)
191 		p4d_clear(p4d_offset(pgd, start));
192 }
193 
194 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
195 {
196 	unsigned long p4d;
197 
198 	if (!pgtable_l5_enabled())
199 		return (p4d_t *)pgd;
200 
201 	p4d = pgd_val(*pgd) & PTE_PFN_MASK;
202 	p4d += __START_KERNEL_map - phys_base;
203 	return (p4d_t *)p4d + p4d_index(addr);
204 }
205 
206 static void __init kasan_early_p4d_populate(pgd_t *pgd,
207 		unsigned long addr,
208 		unsigned long end)
209 {
210 	pgd_t pgd_entry;
211 	p4d_t *p4d, p4d_entry;
212 	unsigned long next;
213 
214 	if (pgd_none(*pgd)) {
215 		pgd_entry = __pgd(_KERNPG_TABLE |
216 					__pa_nodebug(kasan_early_shadow_p4d));
217 		set_pgd(pgd, pgd_entry);
218 	}
219 
220 	p4d = early_p4d_offset(pgd, addr);
221 	do {
222 		next = p4d_addr_end(addr, end);
223 
224 		if (!p4d_none(*p4d))
225 			continue;
226 
227 		p4d_entry = __p4d(_KERNPG_TABLE |
228 					__pa_nodebug(kasan_early_shadow_pud));
229 		set_p4d(p4d, p4d_entry);
230 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
231 }
232 
233 static void __init kasan_map_early_shadow(pgd_t *pgd)
234 {
235 	/* See comment in kasan_init() */
236 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
237 	unsigned long end = KASAN_SHADOW_END;
238 	unsigned long next;
239 
240 	pgd += pgd_index(addr);
241 	do {
242 		next = pgd_addr_end(addr, end);
243 		kasan_early_p4d_populate(pgd, addr, next);
244 	} while (pgd++, addr = next, addr != end);
245 }
246 
247 static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
248 					       unsigned long addr,
249 					       unsigned long end)
250 {
251 	p4d_t *p4d;
252 	unsigned long next;
253 	void *p;
254 
255 	p4d = p4d_offset(pgd, addr);
256 	do {
257 		next = p4d_addr_end(addr, end);
258 
259 		if (p4d_none(*p4d)) {
260 			p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
261 			p4d_populate(&init_mm, p4d, p);
262 		}
263 	} while (p4d++, addr = next, addr != end);
264 }
265 
266 static void __init kasan_shallow_populate_pgds(void *start, void *end)
267 {
268 	unsigned long addr, next;
269 	pgd_t *pgd;
270 	void *p;
271 
272 	addr = (unsigned long)start;
273 	pgd = pgd_offset_k(addr);
274 	do {
275 		next = pgd_addr_end(addr, (unsigned long)end);
276 
277 		if (pgd_none(*pgd)) {
278 			p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
279 			pgd_populate(&init_mm, pgd, p);
280 		}
281 
282 		/*
283 		 * we need to populate p4ds to be synced when running in
284 		 * four level mode - see sync_global_pgds_l4()
285 		 */
286 		kasan_shallow_populate_p4ds(pgd, addr, next);
287 	} while (pgd++, addr = next, addr != (unsigned long)end);
288 }
289 
290 void __init kasan_early_init(void)
291 {
292 	int i;
293 	pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
294 				__PAGE_KERNEL | _PAGE_ENC;
295 	pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
296 	pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
297 	p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
298 
299 	/* Mask out unsupported __PAGE_KERNEL bits: */
300 	pte_val &= __default_kernel_pte_mask;
301 	pmd_val &= __default_kernel_pte_mask;
302 	pud_val &= __default_kernel_pte_mask;
303 	p4d_val &= __default_kernel_pte_mask;
304 
305 	for (i = 0; i < PTRS_PER_PTE; i++)
306 		kasan_early_shadow_pte[i] = __pte(pte_val);
307 
308 	for (i = 0; i < PTRS_PER_PMD; i++)
309 		kasan_early_shadow_pmd[i] = __pmd(pmd_val);
310 
311 	for (i = 0; i < PTRS_PER_PUD; i++)
312 		kasan_early_shadow_pud[i] = __pud(pud_val);
313 
314 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
315 		kasan_early_shadow_p4d[i] = __p4d(p4d_val);
316 
317 	kasan_map_early_shadow(early_top_pgt);
318 	kasan_map_early_shadow(init_top_pgt);
319 }
320 
321 void __init kasan_init(void)
322 {
323 	int i;
324 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
325 
326 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
327 
328 	/*
329 	 * We use the same shadow offset for 4- and 5-level paging to
330 	 * facilitate boot-time switching between paging modes.
331 	 * As result in 5-level paging mode KASAN_SHADOW_START and
332 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
333 	 *
334 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
335 	 * We claim whole PGD entry to make things easier.
336 	 *
337 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
338 	 * bunch of things like kernel code, modules, EFI mapping, etc.
339 	 * We need to take extra steps to not overwrite them.
340 	 */
341 	if (pgtable_l5_enabled()) {
342 		void *ptr;
343 
344 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
345 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
346 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
347 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
348 	}
349 
350 	load_cr3(early_top_pgt);
351 	__flush_tlb_all();
352 
353 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
354 
355 	kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
356 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
357 
358 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
359 		if (pfn_mapped[i].end == 0)
360 			break;
361 
362 		map_range(&pfn_mapped[i]);
363 	}
364 
365 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
366 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
367 	shadow_cpu_entry_begin = (void *)round_down(
368 			(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
369 
370 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
371 					CPU_ENTRY_AREA_MAP_SIZE);
372 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
373 	shadow_cpu_entry_end = (void *)round_up(
374 			(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
375 
376 	kasan_populate_early_shadow(
377 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
378 		kasan_mem_to_shadow((void *)VMALLOC_START));
379 
380 	/*
381 	 * If we're in full vmalloc mode, don't back vmalloc space with early
382 	 * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
383 	 * the global table and we can populate the lower levels on demand.
384 	 */
385 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
386 		kasan_shallow_populate_pgds(
387 			kasan_mem_to_shadow((void *)VMALLOC_START),
388 			kasan_mem_to_shadow((void *)VMALLOC_END));
389 	else
390 		kasan_populate_early_shadow(
391 			kasan_mem_to_shadow((void *)VMALLOC_START),
392 			kasan_mem_to_shadow((void *)VMALLOC_END));
393 
394 	kasan_populate_early_shadow(
395 		kasan_mem_to_shadow((void *)VMALLOC_END + 1),
396 		shadow_cpu_entry_begin);
397 
398 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
399 			      (unsigned long)shadow_cpu_entry_end, 0);
400 
401 	kasan_populate_early_shadow(shadow_cpu_entry_end,
402 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
403 
404 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
405 			      (unsigned long)kasan_mem_to_shadow(_end),
406 			      early_pfn_to_nid(__pa(_stext)));
407 
408 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
409 					(void *)KASAN_SHADOW_END);
410 
411 	load_cr3(init_top_pgt);
412 	__flush_tlb_all();
413 
414 	/*
415 	 * kasan_early_shadow_page has been used as early shadow memory, thus
416 	 * it may contain some garbage. Now we can clear and write protect it,
417 	 * since after the TLB flush no one should write to it.
418 	 */
419 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
420 	for (i = 0; i < PTRS_PER_PTE; i++) {
421 		pte_t pte;
422 		pgprot_t prot;
423 
424 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
425 		pgprot_val(prot) &= __default_kernel_pte_mask;
426 
427 		pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
428 		set_pte(&kasan_early_shadow_pte[i], pte);
429 	}
430 	/* Flush TLBs again to be sure that write protection applied. */
431 	__flush_tlb_all();
432 
433 	init_task.kasan_depth = 0;
434 	pr_info("KernelAddressSanitizer initialized\n");
435 }
436