1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 17 #include <asm/cacheflush.h> 18 #include <asm/e820.h> 19 #include <asm/fixmap.h> 20 #include <asm/pgtable.h> 21 #include <asm/tlbflush.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pat.h> 24 25 #include "physaddr.h" 26 27 int page_is_ram(unsigned long pagenr) 28 { 29 resource_size_t addr, end; 30 int i; 31 32 /* 33 * A special case is the first 4Kb of memory; 34 * This is a BIOS owned area, not kernel ram, but generally 35 * not listed as such in the E820 table. 36 */ 37 if (pagenr == 0) 38 return 0; 39 40 /* 41 * Second special case: Some BIOSen report the PC BIOS 42 * area (640->1Mb) as ram even though it is not. 43 */ 44 if (pagenr >= (BIOS_BEGIN >> PAGE_SHIFT) && 45 pagenr < (BIOS_END >> PAGE_SHIFT)) 46 return 0; 47 48 for (i = 0; i < e820.nr_map; i++) { 49 /* 50 * Not usable memory: 51 */ 52 if (e820.map[i].type != E820_RAM) 53 continue; 54 addr = (e820.map[i].addr + PAGE_SIZE-1) >> PAGE_SHIFT; 55 end = (e820.map[i].addr + e820.map[i].size) >> PAGE_SHIFT; 56 57 58 if ((pagenr >= addr) && (pagenr < end)) 59 return 1; 60 } 61 return 0; 62 } 63 64 /* 65 * Fix up the linear direct mapping of the kernel to avoid cache attribute 66 * conflicts. 67 */ 68 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 69 unsigned long prot_val) 70 { 71 unsigned long nrpages = size >> PAGE_SHIFT; 72 int err; 73 74 switch (prot_val) { 75 case _PAGE_CACHE_UC: 76 default: 77 err = _set_memory_uc(vaddr, nrpages); 78 break; 79 case _PAGE_CACHE_WC: 80 err = _set_memory_wc(vaddr, nrpages); 81 break; 82 case _PAGE_CACHE_WB: 83 err = _set_memory_wb(vaddr, nrpages); 84 break; 85 } 86 87 return err; 88 } 89 90 /* 91 * Remap an arbitrary physical address space into the kernel virtual 92 * address space. Needed when the kernel wants to access high addresses 93 * directly. 94 * 95 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 96 * have to convert them into an offset in a page-aligned mapping, but the 97 * caller shouldn't need to know that small detail. 98 */ 99 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 100 unsigned long size, unsigned long prot_val, void *caller) 101 { 102 unsigned long pfn, offset, vaddr; 103 resource_size_t last_addr; 104 const resource_size_t unaligned_phys_addr = phys_addr; 105 const unsigned long unaligned_size = size; 106 struct vm_struct *area; 107 unsigned long new_prot_val; 108 pgprot_t prot; 109 int retval; 110 void __iomem *ret_addr; 111 112 /* Don't allow wraparound or zero size */ 113 last_addr = phys_addr + size - 1; 114 if (!size || last_addr < phys_addr) 115 return NULL; 116 117 if (!phys_addr_valid(phys_addr)) { 118 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 119 (unsigned long long)phys_addr); 120 WARN_ON_ONCE(1); 121 return NULL; 122 } 123 124 /* 125 * Don't remap the low PCI/ISA area, it's always mapped.. 126 */ 127 if (is_ISA_range(phys_addr, last_addr)) 128 return (__force void __iomem *)phys_to_virt(phys_addr); 129 130 /* 131 * Check if the request spans more than any BAR in the iomem resource 132 * tree. 133 */ 134 WARN_ONCE(iomem_map_sanity_check(phys_addr, size), 135 KERN_INFO "Info: mapping multiple BARs. Your kernel is fine."); 136 137 /* 138 * Don't allow anybody to remap normal RAM that we're using.. 139 */ 140 for (pfn = phys_addr >> PAGE_SHIFT; 141 (pfn << PAGE_SHIFT) < (last_addr & PAGE_MASK); 142 pfn++) { 143 144 int is_ram = page_is_ram(pfn); 145 146 if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn))) 147 return NULL; 148 WARN_ON_ONCE(is_ram); 149 } 150 151 /* 152 * Mappings have to be page-aligned 153 */ 154 offset = phys_addr & ~PAGE_MASK; 155 phys_addr &= PAGE_MASK; 156 size = PAGE_ALIGN(last_addr+1) - phys_addr; 157 158 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 159 prot_val, &new_prot_val); 160 if (retval) { 161 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 162 return NULL; 163 } 164 165 if (prot_val != new_prot_val) { 166 if (!is_new_memtype_allowed(phys_addr, size, 167 prot_val, new_prot_val)) { 168 printk(KERN_ERR 169 "ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n", 170 (unsigned long long)phys_addr, 171 (unsigned long long)(phys_addr + size), 172 prot_val, new_prot_val); 173 free_memtype(phys_addr, phys_addr + size); 174 return NULL; 175 } 176 prot_val = new_prot_val; 177 } 178 179 switch (prot_val) { 180 case _PAGE_CACHE_UC: 181 default: 182 prot = PAGE_KERNEL_IO_NOCACHE; 183 break; 184 case _PAGE_CACHE_UC_MINUS: 185 prot = PAGE_KERNEL_IO_UC_MINUS; 186 break; 187 case _PAGE_CACHE_WC: 188 prot = PAGE_KERNEL_IO_WC; 189 break; 190 case _PAGE_CACHE_WB: 191 prot = PAGE_KERNEL_IO; 192 break; 193 } 194 195 /* 196 * Ok, go for it.. 197 */ 198 area = get_vm_area_caller(size, VM_IOREMAP, caller); 199 if (!area) 200 return NULL; 201 area->phys_addr = phys_addr; 202 vaddr = (unsigned long) area->addr; 203 204 if (kernel_map_sync_memtype(phys_addr, size, prot_val)) { 205 free_memtype(phys_addr, phys_addr + size); 206 free_vm_area(area); 207 return NULL; 208 } 209 210 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) { 211 free_memtype(phys_addr, phys_addr + size); 212 free_vm_area(area); 213 return NULL; 214 } 215 216 ret_addr = (void __iomem *) (vaddr + offset); 217 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 218 219 return ret_addr; 220 } 221 222 /** 223 * ioremap_nocache - map bus memory into CPU space 224 * @offset: bus address of the memory 225 * @size: size of the resource to map 226 * 227 * ioremap_nocache performs a platform specific sequence of operations to 228 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 229 * writew/writel functions and the other mmio helpers. The returned 230 * address is not guaranteed to be usable directly as a virtual 231 * address. 232 * 233 * This version of ioremap ensures that the memory is marked uncachable 234 * on the CPU as well as honouring existing caching rules from things like 235 * the PCI bus. Note that there are other caches and buffers on many 236 * busses. In particular driver authors should read up on PCI writes 237 * 238 * It's useful if some control registers are in such an area and 239 * write combining or read caching is not desirable: 240 * 241 * Must be freed with iounmap. 242 */ 243 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 244 { 245 /* 246 * Ideally, this should be: 247 * pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS; 248 * 249 * Till we fix all X drivers to use ioremap_wc(), we will use 250 * UC MINUS. 251 */ 252 unsigned long val = _PAGE_CACHE_UC_MINUS; 253 254 return __ioremap_caller(phys_addr, size, val, 255 __builtin_return_address(0)); 256 } 257 EXPORT_SYMBOL(ioremap_nocache); 258 259 /** 260 * ioremap_wc - map memory into CPU space write combined 261 * @offset: bus address of the memory 262 * @size: size of the resource to map 263 * 264 * This version of ioremap ensures that the memory is marked write combining. 265 * Write combining allows faster writes to some hardware devices. 266 * 267 * Must be freed with iounmap. 268 */ 269 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 270 { 271 if (pat_enabled) 272 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC, 273 __builtin_return_address(0)); 274 else 275 return ioremap_nocache(phys_addr, size); 276 } 277 EXPORT_SYMBOL(ioremap_wc); 278 279 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 280 { 281 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB, 282 __builtin_return_address(0)); 283 } 284 EXPORT_SYMBOL(ioremap_cache); 285 286 static void __iomem *ioremap_default(resource_size_t phys_addr, 287 unsigned long size) 288 { 289 unsigned long flags; 290 void __iomem *ret; 291 int err; 292 293 /* 294 * - WB for WB-able memory and no other conflicting mappings 295 * - UC_MINUS for non-WB-able memory with no other conflicting mappings 296 * - Inherit from confliting mappings otherwise 297 */ 298 err = reserve_memtype(phys_addr, phys_addr + size, 299 _PAGE_CACHE_WB, &flags); 300 if (err < 0) 301 return NULL; 302 303 ret = __ioremap_caller(phys_addr, size, flags, 304 __builtin_return_address(0)); 305 306 free_memtype(phys_addr, phys_addr + size); 307 return ret; 308 } 309 310 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 311 unsigned long prot_val) 312 { 313 return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK), 314 __builtin_return_address(0)); 315 } 316 EXPORT_SYMBOL(ioremap_prot); 317 318 /** 319 * iounmap - Free a IO remapping 320 * @addr: virtual address from ioremap_* 321 * 322 * Caller must ensure there is only one unmapping for the same pointer. 323 */ 324 void iounmap(volatile void __iomem *addr) 325 { 326 struct vm_struct *p, *o; 327 328 if ((void __force *)addr <= high_memory) 329 return; 330 331 /* 332 * __ioremap special-cases the PCI/ISA range by not instantiating a 333 * vm_area and by simply returning an address into the kernel mapping 334 * of ISA space. So handle that here. 335 */ 336 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 337 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) 338 return; 339 340 addr = (volatile void __iomem *) 341 (PAGE_MASK & (unsigned long __force)addr); 342 343 mmiotrace_iounmap(addr); 344 345 /* Use the vm area unlocked, assuming the caller 346 ensures there isn't another iounmap for the same address 347 in parallel. Reuse of the virtual address is prevented by 348 leaving it in the global lists until we're done with it. 349 cpa takes care of the direct mappings. */ 350 read_lock(&vmlist_lock); 351 for (p = vmlist; p; p = p->next) { 352 if (p->addr == (void __force *)addr) 353 break; 354 } 355 read_unlock(&vmlist_lock); 356 357 if (!p) { 358 printk(KERN_ERR "iounmap: bad address %p\n", addr); 359 dump_stack(); 360 return; 361 } 362 363 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 364 365 /* Finally remove it */ 366 o = remove_vm_area((void __force *)addr); 367 BUG_ON(p != o || o == NULL); 368 kfree(p); 369 } 370 EXPORT_SYMBOL(iounmap); 371 372 /* 373 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 374 * access 375 */ 376 void *xlate_dev_mem_ptr(unsigned long phys) 377 { 378 void *addr; 379 unsigned long start = phys & PAGE_MASK; 380 381 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ 382 if (page_is_ram(start >> PAGE_SHIFT)) 383 return __va(phys); 384 385 addr = (void __force *)ioremap_default(start, PAGE_SIZE); 386 if (addr) 387 addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK)); 388 389 return addr; 390 } 391 392 void unxlate_dev_mem_ptr(unsigned long phys, void *addr) 393 { 394 if (page_is_ram(phys >> PAGE_SHIFT)) 395 return; 396 397 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); 398 return; 399 } 400 401 static int __initdata early_ioremap_debug; 402 403 static int __init early_ioremap_debug_setup(char *str) 404 { 405 early_ioremap_debug = 1; 406 407 return 0; 408 } 409 early_param("early_ioremap_debug", early_ioremap_debug_setup); 410 411 static __initdata int after_paging_init; 412 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 413 414 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 415 { 416 /* Don't assume we're using swapper_pg_dir at this point */ 417 pgd_t *base = __va(read_cr3()); 418 pgd_t *pgd = &base[pgd_index(addr)]; 419 pud_t *pud = pud_offset(pgd, addr); 420 pmd_t *pmd = pmd_offset(pud, addr); 421 422 return pmd; 423 } 424 425 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 426 { 427 return &bm_pte[pte_index(addr)]; 428 } 429 430 static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata; 431 432 void __init early_ioremap_init(void) 433 { 434 pmd_t *pmd; 435 int i; 436 437 if (early_ioremap_debug) 438 printk(KERN_INFO "early_ioremap_init()\n"); 439 440 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) 441 slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i); 442 443 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 444 memset(bm_pte, 0, sizeof(bm_pte)); 445 pmd_populate_kernel(&init_mm, pmd, bm_pte); 446 447 /* 448 * The boot-ioremap range spans multiple pmds, for which 449 * we are not prepared: 450 */ 451 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 452 WARN_ON(1); 453 printk(KERN_WARNING "pmd %p != %p\n", 454 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 455 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 456 fix_to_virt(FIX_BTMAP_BEGIN)); 457 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 458 fix_to_virt(FIX_BTMAP_END)); 459 460 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 461 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 462 FIX_BTMAP_BEGIN); 463 } 464 } 465 466 void __init early_ioremap_reset(void) 467 { 468 after_paging_init = 1; 469 } 470 471 static void __init __early_set_fixmap(enum fixed_addresses idx, 472 phys_addr_t phys, pgprot_t flags) 473 { 474 unsigned long addr = __fix_to_virt(idx); 475 pte_t *pte; 476 477 if (idx >= __end_of_fixed_addresses) { 478 BUG(); 479 return; 480 } 481 pte = early_ioremap_pte(addr); 482 483 if (pgprot_val(flags)) 484 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 485 else 486 pte_clear(&init_mm, addr, pte); 487 __flush_tlb_one(addr); 488 } 489 490 static inline void __init early_set_fixmap(enum fixed_addresses idx, 491 phys_addr_t phys, pgprot_t prot) 492 { 493 if (after_paging_init) 494 __set_fixmap(idx, phys, prot); 495 else 496 __early_set_fixmap(idx, phys, prot); 497 } 498 499 static inline void __init early_clear_fixmap(enum fixed_addresses idx) 500 { 501 if (after_paging_init) 502 clear_fixmap(idx); 503 else 504 __early_set_fixmap(idx, 0, __pgprot(0)); 505 } 506 507 static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata; 508 static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata; 509 510 static int __init check_early_ioremap_leak(void) 511 { 512 int count = 0; 513 int i; 514 515 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) 516 if (prev_map[i]) 517 count++; 518 519 if (!count) 520 return 0; 521 WARN(1, KERN_WARNING 522 "Debug warning: early ioremap leak of %d areas detected.\n", 523 count); 524 printk(KERN_WARNING 525 "please boot with early_ioremap_debug and report the dmesg.\n"); 526 527 return 1; 528 } 529 late_initcall(check_early_ioremap_leak); 530 531 static void __init __iomem * 532 __early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot) 533 { 534 unsigned long offset; 535 resource_size_t last_addr; 536 unsigned int nrpages; 537 enum fixed_addresses idx0, idx; 538 int i, slot; 539 540 WARN_ON(system_state != SYSTEM_BOOTING); 541 542 slot = -1; 543 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { 544 if (!prev_map[i]) { 545 slot = i; 546 break; 547 } 548 } 549 550 if (slot < 0) { 551 printk(KERN_INFO "early_iomap(%08llx, %08lx) not found slot\n", 552 (u64)phys_addr, size); 553 WARN_ON(1); 554 return NULL; 555 } 556 557 if (early_ioremap_debug) { 558 printk(KERN_INFO "early_ioremap(%08llx, %08lx) [%d] => ", 559 (u64)phys_addr, size, slot); 560 dump_stack(); 561 } 562 563 /* Don't allow wraparound or zero size */ 564 last_addr = phys_addr + size - 1; 565 if (!size || last_addr < phys_addr) { 566 WARN_ON(1); 567 return NULL; 568 } 569 570 prev_size[slot] = size; 571 /* 572 * Mappings have to be page-aligned 573 */ 574 offset = phys_addr & ~PAGE_MASK; 575 phys_addr &= PAGE_MASK; 576 size = PAGE_ALIGN(last_addr + 1) - phys_addr; 577 578 /* 579 * Mappings have to fit in the FIX_BTMAP area. 580 */ 581 nrpages = size >> PAGE_SHIFT; 582 if (nrpages > NR_FIX_BTMAPS) { 583 WARN_ON(1); 584 return NULL; 585 } 586 587 /* 588 * Ok, go for it.. 589 */ 590 idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; 591 idx = idx0; 592 while (nrpages > 0) { 593 early_set_fixmap(idx, phys_addr, prot); 594 phys_addr += PAGE_SIZE; 595 --idx; 596 --nrpages; 597 } 598 if (early_ioremap_debug) 599 printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]); 600 601 prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]); 602 return prev_map[slot]; 603 } 604 605 /* Remap an IO device */ 606 void __init __iomem * 607 early_ioremap(resource_size_t phys_addr, unsigned long size) 608 { 609 return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO); 610 } 611 612 /* Remap memory */ 613 void __init __iomem * 614 early_memremap(resource_size_t phys_addr, unsigned long size) 615 { 616 return __early_ioremap(phys_addr, size, PAGE_KERNEL); 617 } 618 619 void __init early_iounmap(void __iomem *addr, unsigned long size) 620 { 621 unsigned long virt_addr; 622 unsigned long offset; 623 unsigned int nrpages; 624 enum fixed_addresses idx; 625 int i, slot; 626 627 slot = -1; 628 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { 629 if (prev_map[i] == addr) { 630 slot = i; 631 break; 632 } 633 } 634 635 if (slot < 0) { 636 printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n", 637 addr, size); 638 WARN_ON(1); 639 return; 640 } 641 642 if (prev_size[slot] != size) { 643 printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n", 644 addr, size, slot, prev_size[slot]); 645 WARN_ON(1); 646 return; 647 } 648 649 if (early_ioremap_debug) { 650 printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr, 651 size, slot); 652 dump_stack(); 653 } 654 655 virt_addr = (unsigned long)addr; 656 if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) { 657 WARN_ON(1); 658 return; 659 } 660 offset = virt_addr & ~PAGE_MASK; 661 nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; 662 663 idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; 664 while (nrpages > 0) { 665 early_clear_fixmap(idx); 666 --idx; 667 --nrpages; 668 } 669 prev_map[slot] = NULL; 670 } 671