xref: /openbmc/linux/arch/x86/mm/ioremap.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9 
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20 
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29 
30 #include "physaddr.h"
31 
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36 	unsigned int flags;
37 };
38 
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 			enum page_cache_mode pcm)
45 {
46 	unsigned long nrpages = size >> PAGE_SHIFT;
47 	int err;
48 
49 	switch (pcm) {
50 	case _PAGE_CACHE_MODE_UC:
51 	default:
52 		err = _set_memory_uc(vaddr, nrpages);
53 		break;
54 	case _PAGE_CACHE_MODE_WC:
55 		err = _set_memory_wc(vaddr, nrpages);
56 		break;
57 	case _PAGE_CACHE_MODE_WT:
58 		err = _set_memory_wt(vaddr, nrpages);
59 		break;
60 	case _PAGE_CACHE_MODE_WB:
61 		err = _set_memory_wb(vaddr, nrpages);
62 		break;
63 	}
64 
65 	return err;
66 }
67 
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 	unsigned long start_pfn, stop_pfn;
72 	unsigned long i;
73 
74 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 		return 0;
76 
77 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 	if (stop_pfn > start_pfn) {
80 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 			if (pfn_valid(start_pfn + i) &&
82 			    !PageReserved(pfn_to_page(start_pfn + i)))
83 				return IORES_MAP_SYSTEM_RAM;
84 	}
85 
86 	return 0;
87 }
88 
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 	if (!sev_active())
96 		return 0;
97 
98 	switch (res->desc) {
99 	case IORES_DESC_NONE:
100 	case IORES_DESC_RESERVED:
101 		break;
102 	default:
103 		return IORES_MAP_ENCRYPTED;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 	if (!sev_active())
116 		return;
117 
118 	if (!IS_ENABLED(CONFIG_EFI))
119 		return;
120 
121 	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA)
122 		desc->flags |= IORES_MAP_ENCRYPTED;
123 }
124 
125 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
126 {
127 	struct ioremap_desc *desc = arg;
128 
129 	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
130 		desc->flags |= __ioremap_check_ram(res);
131 
132 	if (!(desc->flags & IORES_MAP_ENCRYPTED))
133 		desc->flags |= __ioremap_check_encrypted(res);
134 
135 	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
136 			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
137 }
138 
139 /*
140  * To avoid multiple resource walks, this function walks resources marked as
141  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
142  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
143  *
144  * After that, deal with misc other ranges in __ioremap_check_other() which do
145  * not fall into the above category.
146  */
147 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
148 				struct ioremap_desc *desc)
149 {
150 	u64 start, end;
151 
152 	start = (u64)addr;
153 	end = start + size - 1;
154 	memset(desc, 0, sizeof(struct ioremap_desc));
155 
156 	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
157 
158 	__ioremap_check_other(addr, desc);
159 }
160 
161 /*
162  * Remap an arbitrary physical address space into the kernel virtual
163  * address space. It transparently creates kernel huge I/O mapping when
164  * the physical address is aligned by a huge page size (1GB or 2MB) and
165  * the requested size is at least the huge page size.
166  *
167  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
168  * Therefore, the mapping code falls back to use a smaller page toward 4KB
169  * when a mapping range is covered by non-WB type of MTRRs.
170  *
171  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
172  * have to convert them into an offset in a page-aligned mapping, but the
173  * caller shouldn't need to know that small detail.
174  */
175 static void __iomem *
176 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
177 		 enum page_cache_mode pcm, void *caller, bool encrypted)
178 {
179 	unsigned long offset, vaddr;
180 	resource_size_t last_addr;
181 	const resource_size_t unaligned_phys_addr = phys_addr;
182 	const unsigned long unaligned_size = size;
183 	struct ioremap_desc io_desc;
184 	struct vm_struct *area;
185 	enum page_cache_mode new_pcm;
186 	pgprot_t prot;
187 	int retval;
188 	void __iomem *ret_addr;
189 
190 	/* Don't allow wraparound or zero size */
191 	last_addr = phys_addr + size - 1;
192 	if (!size || last_addr < phys_addr)
193 		return NULL;
194 
195 	if (!phys_addr_valid(phys_addr)) {
196 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
197 		       (unsigned long long)phys_addr);
198 		WARN_ON_ONCE(1);
199 		return NULL;
200 	}
201 
202 	__ioremap_check_mem(phys_addr, size, &io_desc);
203 
204 	/*
205 	 * Don't allow anybody to remap normal RAM that we're using..
206 	 */
207 	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
208 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
209 			  &phys_addr, &last_addr);
210 		return NULL;
211 	}
212 
213 	/*
214 	 * Mappings have to be page-aligned
215 	 */
216 	offset = phys_addr & ~PAGE_MASK;
217 	phys_addr &= PHYSICAL_PAGE_MASK;
218 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
219 
220 	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
221 						pcm, &new_pcm);
222 	if (retval) {
223 		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
224 		return NULL;
225 	}
226 
227 	if (pcm != new_pcm) {
228 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
229 			printk(KERN_ERR
230 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
231 				(unsigned long long)phys_addr,
232 				(unsigned long long)(phys_addr + size),
233 				pcm, new_pcm);
234 			goto err_free_memtype;
235 		}
236 		pcm = new_pcm;
237 	}
238 
239 	/*
240 	 * If the page being mapped is in memory and SEV is active then
241 	 * make sure the memory encryption attribute is enabled in the
242 	 * resulting mapping.
243 	 */
244 	prot = PAGE_KERNEL_IO;
245 	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
246 		prot = pgprot_encrypted(prot);
247 
248 	switch (pcm) {
249 	case _PAGE_CACHE_MODE_UC:
250 	default:
251 		prot = __pgprot(pgprot_val(prot) |
252 				cachemode2protval(_PAGE_CACHE_MODE_UC));
253 		break;
254 	case _PAGE_CACHE_MODE_UC_MINUS:
255 		prot = __pgprot(pgprot_val(prot) |
256 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
257 		break;
258 	case _PAGE_CACHE_MODE_WC:
259 		prot = __pgprot(pgprot_val(prot) |
260 				cachemode2protval(_PAGE_CACHE_MODE_WC));
261 		break;
262 	case _PAGE_CACHE_MODE_WT:
263 		prot = __pgprot(pgprot_val(prot) |
264 				cachemode2protval(_PAGE_CACHE_MODE_WT));
265 		break;
266 	case _PAGE_CACHE_MODE_WB:
267 		break;
268 	}
269 
270 	/*
271 	 * Ok, go for it..
272 	 */
273 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
274 	if (!area)
275 		goto err_free_memtype;
276 	area->phys_addr = phys_addr;
277 	vaddr = (unsigned long) area->addr;
278 
279 	if (memtype_kernel_map_sync(phys_addr, size, pcm))
280 		goto err_free_area;
281 
282 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
283 		goto err_free_area;
284 
285 	ret_addr = (void __iomem *) (vaddr + offset);
286 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
287 
288 	/*
289 	 * Check if the request spans more than any BAR in the iomem resource
290 	 * tree.
291 	 */
292 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
293 		pr_warn("caller %pS mapping multiple BARs\n", caller);
294 
295 	return ret_addr;
296 err_free_area:
297 	free_vm_area(area);
298 err_free_memtype:
299 	memtype_free(phys_addr, phys_addr + size);
300 	return NULL;
301 }
302 
303 /**
304  * ioremap     -   map bus memory into CPU space
305  * @phys_addr:    bus address of the memory
306  * @size:      size of the resource to map
307  *
308  * ioremap performs a platform specific sequence of operations to
309  * make bus memory CPU accessible via the readb/readw/readl/writeb/
310  * writew/writel functions and the other mmio helpers. The returned
311  * address is not guaranteed to be usable directly as a virtual
312  * address.
313  *
314  * This version of ioremap ensures that the memory is marked uncachable
315  * on the CPU as well as honouring existing caching rules from things like
316  * the PCI bus. Note that there are other caches and buffers on many
317  * busses. In particular driver authors should read up on PCI writes
318  *
319  * It's useful if some control registers are in such an area and
320  * write combining or read caching is not desirable:
321  *
322  * Must be freed with iounmap.
323  */
324 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
325 {
326 	/*
327 	 * Ideally, this should be:
328 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
329 	 *
330 	 * Till we fix all X drivers to use ioremap_wc(), we will use
331 	 * UC MINUS. Drivers that are certain they need or can already
332 	 * be converted over to strong UC can use ioremap_uc().
333 	 */
334 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
335 
336 	return __ioremap_caller(phys_addr, size, pcm,
337 				__builtin_return_address(0), false);
338 }
339 EXPORT_SYMBOL(ioremap);
340 
341 /**
342  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
343  * @phys_addr:    bus address of the memory
344  * @size:      size of the resource to map
345  *
346  * ioremap_uc performs a platform specific sequence of operations to
347  * make bus memory CPU accessible via the readb/readw/readl/writeb/
348  * writew/writel functions and the other mmio helpers. The returned
349  * address is not guaranteed to be usable directly as a virtual
350  * address.
351  *
352  * This version of ioremap ensures that the memory is marked with a strong
353  * preference as completely uncachable on the CPU when possible. For non-PAT
354  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
355  * systems this will set the PAT entry for the pages as strong UC.  This call
356  * will honor existing caching rules from things like the PCI bus. Note that
357  * there are other caches and buffers on many busses. In particular driver
358  * authors should read up on PCI writes.
359  *
360  * It's useful if some control registers are in such an area and
361  * write combining or read caching is not desirable:
362  *
363  * Must be freed with iounmap.
364  */
365 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
366 {
367 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
368 
369 	return __ioremap_caller(phys_addr, size, pcm,
370 				__builtin_return_address(0), false);
371 }
372 EXPORT_SYMBOL_GPL(ioremap_uc);
373 
374 /**
375  * ioremap_wc	-	map memory into CPU space write combined
376  * @phys_addr:	bus address of the memory
377  * @size:	size of the resource to map
378  *
379  * This version of ioremap ensures that the memory is marked write combining.
380  * Write combining allows faster writes to some hardware devices.
381  *
382  * Must be freed with iounmap.
383  */
384 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
385 {
386 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
387 					__builtin_return_address(0), false);
388 }
389 EXPORT_SYMBOL(ioremap_wc);
390 
391 /**
392  * ioremap_wt	-	map memory into CPU space write through
393  * @phys_addr:	bus address of the memory
394  * @size:	size of the resource to map
395  *
396  * This version of ioremap ensures that the memory is marked write through.
397  * Write through stores data into memory while keeping the cache up-to-date.
398  *
399  * Must be freed with iounmap.
400  */
401 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
402 {
403 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
404 					__builtin_return_address(0), false);
405 }
406 EXPORT_SYMBOL(ioremap_wt);
407 
408 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
409 {
410 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
411 				__builtin_return_address(0), true);
412 }
413 EXPORT_SYMBOL(ioremap_encrypted);
414 
415 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
416 {
417 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
418 				__builtin_return_address(0), false);
419 }
420 EXPORT_SYMBOL(ioremap_cache);
421 
422 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
423 				unsigned long prot_val)
424 {
425 	return __ioremap_caller(phys_addr, size,
426 				pgprot2cachemode(__pgprot(prot_val)),
427 				__builtin_return_address(0), false);
428 }
429 EXPORT_SYMBOL(ioremap_prot);
430 
431 /**
432  * iounmap - Free a IO remapping
433  * @addr: virtual address from ioremap_*
434  *
435  * Caller must ensure there is only one unmapping for the same pointer.
436  */
437 void iounmap(volatile void __iomem *addr)
438 {
439 	struct vm_struct *p, *o;
440 
441 	if ((void __force *)addr <= high_memory)
442 		return;
443 
444 	/*
445 	 * The PCI/ISA range special-casing was removed from __ioremap()
446 	 * so this check, in theory, can be removed. However, there are
447 	 * cases where iounmap() is called for addresses not obtained via
448 	 * ioremap() (vga16fb for example). Add a warning so that these
449 	 * cases can be caught and fixed.
450 	 */
451 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
452 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
453 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
454 		return;
455 	}
456 
457 	mmiotrace_iounmap(addr);
458 
459 	addr = (volatile void __iomem *)
460 		(PAGE_MASK & (unsigned long __force)addr);
461 
462 	/* Use the vm area unlocked, assuming the caller
463 	   ensures there isn't another iounmap for the same address
464 	   in parallel. Reuse of the virtual address is prevented by
465 	   leaving it in the global lists until we're done with it.
466 	   cpa takes care of the direct mappings. */
467 	p = find_vm_area((void __force *)addr);
468 
469 	if (!p) {
470 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
471 		dump_stack();
472 		return;
473 	}
474 
475 	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
476 
477 	/* Finally remove it */
478 	o = remove_vm_area((void __force *)addr);
479 	BUG_ON(p != o || o == NULL);
480 	kfree(p);
481 }
482 EXPORT_SYMBOL(iounmap);
483 
484 /*
485  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
486  * access
487  */
488 void *xlate_dev_mem_ptr(phys_addr_t phys)
489 {
490 	unsigned long start  = phys &  PAGE_MASK;
491 	unsigned long offset = phys & ~PAGE_MASK;
492 	void *vaddr;
493 
494 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
495 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
496 
497 	/* Only add the offset on success and return NULL if memremap() failed */
498 	if (vaddr)
499 		vaddr += offset;
500 
501 	return vaddr;
502 }
503 
504 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
505 {
506 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
507 }
508 
509 /*
510  * Examine the physical address to determine if it is an area of memory
511  * that should be mapped decrypted.  If the memory is not part of the
512  * kernel usable area it was accessed and created decrypted, so these
513  * areas should be mapped decrypted. And since the encryption key can
514  * change across reboots, persistent memory should also be mapped
515  * decrypted.
516  *
517  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
518  * only persistent memory should be mapped decrypted.
519  */
520 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
521 					  unsigned long size)
522 {
523 	int is_pmem;
524 
525 	/*
526 	 * Check if the address is part of a persistent memory region.
527 	 * This check covers areas added by E820, EFI and ACPI.
528 	 */
529 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
530 				    IORES_DESC_PERSISTENT_MEMORY);
531 	if (is_pmem != REGION_DISJOINT)
532 		return true;
533 
534 	/*
535 	 * Check if the non-volatile attribute is set for an EFI
536 	 * reserved area.
537 	 */
538 	if (efi_enabled(EFI_BOOT)) {
539 		switch (efi_mem_type(phys_addr)) {
540 		case EFI_RESERVED_TYPE:
541 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
542 				return true;
543 			break;
544 		default:
545 			break;
546 		}
547 	}
548 
549 	/* Check if the address is outside kernel usable area */
550 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
551 	case E820_TYPE_RESERVED:
552 	case E820_TYPE_ACPI:
553 	case E820_TYPE_NVS:
554 	case E820_TYPE_UNUSABLE:
555 		/* For SEV, these areas are encrypted */
556 		if (sev_active())
557 			break;
558 		fallthrough;
559 
560 	case E820_TYPE_PRAM:
561 		return true;
562 	default:
563 		break;
564 	}
565 
566 	return false;
567 }
568 
569 /*
570  * Examine the physical address to determine if it is EFI data. Check
571  * it against the boot params structure and EFI tables and memory types.
572  */
573 static bool memremap_is_efi_data(resource_size_t phys_addr,
574 				 unsigned long size)
575 {
576 	u64 paddr;
577 
578 	/* Check if the address is part of EFI boot/runtime data */
579 	if (!efi_enabled(EFI_BOOT))
580 		return false;
581 
582 	paddr = boot_params.efi_info.efi_memmap_hi;
583 	paddr <<= 32;
584 	paddr |= boot_params.efi_info.efi_memmap;
585 	if (phys_addr == paddr)
586 		return true;
587 
588 	paddr = boot_params.efi_info.efi_systab_hi;
589 	paddr <<= 32;
590 	paddr |= boot_params.efi_info.efi_systab;
591 	if (phys_addr == paddr)
592 		return true;
593 
594 	if (efi_is_table_address(phys_addr))
595 		return true;
596 
597 	switch (efi_mem_type(phys_addr)) {
598 	case EFI_BOOT_SERVICES_DATA:
599 	case EFI_RUNTIME_SERVICES_DATA:
600 		return true;
601 	default:
602 		break;
603 	}
604 
605 	return false;
606 }
607 
608 /*
609  * Examine the physical address to determine if it is boot data by checking
610  * it against the boot params setup_data chain.
611  */
612 static bool memremap_is_setup_data(resource_size_t phys_addr,
613 				   unsigned long size)
614 {
615 	struct setup_data *data;
616 	u64 paddr, paddr_next;
617 
618 	paddr = boot_params.hdr.setup_data;
619 	while (paddr) {
620 		unsigned int len;
621 
622 		if (phys_addr == paddr)
623 			return true;
624 
625 		data = memremap(paddr, sizeof(*data),
626 				MEMREMAP_WB | MEMREMAP_DEC);
627 
628 		paddr_next = data->next;
629 		len = data->len;
630 
631 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
632 			memunmap(data);
633 			return true;
634 		}
635 
636 		if (data->type == SETUP_INDIRECT &&
637 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
638 			paddr = ((struct setup_indirect *)data->data)->addr;
639 			len = ((struct setup_indirect *)data->data)->len;
640 		}
641 
642 		memunmap(data);
643 
644 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
645 			return true;
646 
647 		paddr = paddr_next;
648 	}
649 
650 	return false;
651 }
652 
653 /*
654  * Examine the physical address to determine if it is boot data by checking
655  * it against the boot params setup_data chain (early boot version).
656  */
657 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
658 						unsigned long size)
659 {
660 	struct setup_data *data;
661 	u64 paddr, paddr_next;
662 
663 	paddr = boot_params.hdr.setup_data;
664 	while (paddr) {
665 		unsigned int len;
666 
667 		if (phys_addr == paddr)
668 			return true;
669 
670 		data = early_memremap_decrypted(paddr, sizeof(*data));
671 
672 		paddr_next = data->next;
673 		len = data->len;
674 
675 		early_memunmap(data, sizeof(*data));
676 
677 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
678 			return true;
679 
680 		paddr = paddr_next;
681 	}
682 
683 	return false;
684 }
685 
686 /*
687  * Architecture function to determine if RAM remap is allowed. By default, a
688  * RAM remap will map the data as encrypted. Determine if a RAM remap should
689  * not be done so that the data will be mapped decrypted.
690  */
691 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
692 				 unsigned long flags)
693 {
694 	if (!mem_encrypt_active())
695 		return true;
696 
697 	if (flags & MEMREMAP_ENC)
698 		return true;
699 
700 	if (flags & MEMREMAP_DEC)
701 		return false;
702 
703 	if (sme_active()) {
704 		if (memremap_is_setup_data(phys_addr, size) ||
705 		    memremap_is_efi_data(phys_addr, size))
706 			return false;
707 	}
708 
709 	return !memremap_should_map_decrypted(phys_addr, size);
710 }
711 
712 /*
713  * Architecture override of __weak function to adjust the protection attributes
714  * used when remapping memory. By default, early_memremap() will map the data
715  * as encrypted. Determine if an encrypted mapping should not be done and set
716  * the appropriate protection attributes.
717  */
718 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
719 					     unsigned long size,
720 					     pgprot_t prot)
721 {
722 	bool encrypted_prot;
723 
724 	if (!mem_encrypt_active())
725 		return prot;
726 
727 	encrypted_prot = true;
728 
729 	if (sme_active()) {
730 		if (early_memremap_is_setup_data(phys_addr, size) ||
731 		    memremap_is_efi_data(phys_addr, size))
732 			encrypted_prot = false;
733 	}
734 
735 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
736 		encrypted_prot = false;
737 
738 	return encrypted_prot ? pgprot_encrypted(prot)
739 			      : pgprot_decrypted(prot);
740 }
741 
742 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
743 {
744 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
745 }
746 
747 #ifdef CONFIG_AMD_MEM_ENCRYPT
748 /* Remap memory with encryption */
749 void __init *early_memremap_encrypted(resource_size_t phys_addr,
750 				      unsigned long size)
751 {
752 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
753 }
754 
755 /*
756  * Remap memory with encryption and write-protected - cannot be called
757  * before pat_init() is called
758  */
759 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
760 					 unsigned long size)
761 {
762 	if (!x86_has_pat_wp())
763 		return NULL;
764 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
765 }
766 
767 /* Remap memory without encryption */
768 void __init *early_memremap_decrypted(resource_size_t phys_addr,
769 				      unsigned long size)
770 {
771 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
772 }
773 
774 /*
775  * Remap memory without encryption and write-protected - cannot be called
776  * before pat_init() is called
777  */
778 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
779 					 unsigned long size)
780 {
781 	if (!x86_has_pat_wp())
782 		return NULL;
783 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
784 }
785 #endif	/* CONFIG_AMD_MEM_ENCRYPT */
786 
787 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
788 
789 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
790 {
791 	/* Don't assume we're using swapper_pg_dir at this point */
792 	pgd_t *base = __va(read_cr3_pa());
793 	pgd_t *pgd = &base[pgd_index(addr)];
794 	p4d_t *p4d = p4d_offset(pgd, addr);
795 	pud_t *pud = pud_offset(p4d, addr);
796 	pmd_t *pmd = pmd_offset(pud, addr);
797 
798 	return pmd;
799 }
800 
801 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
802 {
803 	return &bm_pte[pte_index(addr)];
804 }
805 
806 bool __init is_early_ioremap_ptep(pte_t *ptep)
807 {
808 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
809 }
810 
811 void __init early_ioremap_init(void)
812 {
813 	pmd_t *pmd;
814 
815 #ifdef CONFIG_X86_64
816 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
817 #else
818 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
819 #endif
820 
821 	early_ioremap_setup();
822 
823 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
824 	memset(bm_pte, 0, sizeof(bm_pte));
825 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
826 
827 	/*
828 	 * The boot-ioremap range spans multiple pmds, for which
829 	 * we are not prepared:
830 	 */
831 #define __FIXADDR_TOP (-PAGE_SIZE)
832 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
833 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
834 #undef __FIXADDR_TOP
835 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
836 		WARN_ON(1);
837 		printk(KERN_WARNING "pmd %p != %p\n",
838 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
839 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
840 			fix_to_virt(FIX_BTMAP_BEGIN));
841 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
842 			fix_to_virt(FIX_BTMAP_END));
843 
844 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
845 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
846 		       FIX_BTMAP_BEGIN);
847 	}
848 }
849 
850 void __init __early_set_fixmap(enum fixed_addresses idx,
851 			       phys_addr_t phys, pgprot_t flags)
852 {
853 	unsigned long addr = __fix_to_virt(idx);
854 	pte_t *pte;
855 
856 	if (idx >= __end_of_fixed_addresses) {
857 		BUG();
858 		return;
859 	}
860 	pte = early_ioremap_pte(addr);
861 
862 	/* Sanitize 'prot' against any unsupported bits: */
863 	pgprot_val(flags) &= __supported_pte_mask;
864 
865 	if (pgprot_val(flags))
866 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
867 	else
868 		pte_clear(&init_mm, addr, pte);
869 	flush_tlb_one_kernel(addr);
870 }
871