1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 17 #include <asm/cacheflush.h> 18 #include <asm/e820.h> 19 #include <asm/fixmap.h> 20 #include <asm/pgtable.h> 21 #include <asm/tlbflush.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pat.h> 24 25 #include "physaddr.h" 26 27 /* 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute 29 * conflicts. 30 */ 31 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 32 enum page_cache_mode pcm) 33 { 34 unsigned long nrpages = size >> PAGE_SHIFT; 35 int err; 36 37 switch (pcm) { 38 case _PAGE_CACHE_MODE_UC: 39 default: 40 err = _set_memory_uc(vaddr, nrpages); 41 break; 42 case _PAGE_CACHE_MODE_WC: 43 err = _set_memory_wc(vaddr, nrpages); 44 break; 45 case _PAGE_CACHE_MODE_WT: 46 err = _set_memory_wt(vaddr, nrpages); 47 break; 48 case _PAGE_CACHE_MODE_WB: 49 err = _set_memory_wb(vaddr, nrpages); 50 break; 51 } 52 53 return err; 54 } 55 56 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, 57 void *arg) 58 { 59 unsigned long i; 60 61 for (i = 0; i < nr_pages; ++i) 62 if (pfn_valid(start_pfn + i) && 63 !PageReserved(pfn_to_page(start_pfn + i))) 64 return 1; 65 66 return 0; 67 } 68 69 /* 70 * Remap an arbitrary physical address space into the kernel virtual 71 * address space. It transparently creates kernel huge I/O mapping when 72 * the physical address is aligned by a huge page size (1GB or 2MB) and 73 * the requested size is at least the huge page size. 74 * 75 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 76 * Therefore, the mapping code falls back to use a smaller page toward 4KB 77 * when a mapping range is covered by non-WB type of MTRRs. 78 * 79 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 80 * have to convert them into an offset in a page-aligned mapping, but the 81 * caller shouldn't need to know that small detail. 82 */ 83 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 84 unsigned long size, enum page_cache_mode pcm, void *caller) 85 { 86 unsigned long offset, vaddr; 87 resource_size_t pfn, last_pfn, last_addr; 88 const resource_size_t unaligned_phys_addr = phys_addr; 89 const unsigned long unaligned_size = size; 90 struct vm_struct *area; 91 enum page_cache_mode new_pcm; 92 pgprot_t prot; 93 int retval; 94 void __iomem *ret_addr; 95 96 /* Don't allow wraparound or zero size */ 97 last_addr = phys_addr + size - 1; 98 if (!size || last_addr < phys_addr) 99 return NULL; 100 101 if (!phys_addr_valid(phys_addr)) { 102 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 103 (unsigned long long)phys_addr); 104 WARN_ON_ONCE(1); 105 return NULL; 106 } 107 108 /* 109 * Don't remap the low PCI/ISA area, it's always mapped.. 110 */ 111 if (is_ISA_range(phys_addr, last_addr)) 112 return (__force void __iomem *)phys_to_virt(phys_addr); 113 114 /* 115 * Don't allow anybody to remap normal RAM that we're using.. 116 */ 117 pfn = phys_addr >> PAGE_SHIFT; 118 last_pfn = last_addr >> PAGE_SHIFT; 119 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, 120 __ioremap_check_ram) == 1) { 121 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 122 &phys_addr, &last_addr); 123 return NULL; 124 } 125 126 /* 127 * Mappings have to be page-aligned 128 */ 129 offset = phys_addr & ~PAGE_MASK; 130 phys_addr &= PHYSICAL_PAGE_MASK; 131 size = PAGE_ALIGN(last_addr+1) - phys_addr; 132 133 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 134 pcm, &new_pcm); 135 if (retval) { 136 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 137 return NULL; 138 } 139 140 if (pcm != new_pcm) { 141 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 142 printk(KERN_ERR 143 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 144 (unsigned long long)phys_addr, 145 (unsigned long long)(phys_addr + size), 146 pcm, new_pcm); 147 goto err_free_memtype; 148 } 149 pcm = new_pcm; 150 } 151 152 prot = PAGE_KERNEL_IO; 153 switch (pcm) { 154 case _PAGE_CACHE_MODE_UC: 155 default: 156 prot = __pgprot(pgprot_val(prot) | 157 cachemode2protval(_PAGE_CACHE_MODE_UC)); 158 break; 159 case _PAGE_CACHE_MODE_UC_MINUS: 160 prot = __pgprot(pgprot_val(prot) | 161 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 162 break; 163 case _PAGE_CACHE_MODE_WC: 164 prot = __pgprot(pgprot_val(prot) | 165 cachemode2protval(_PAGE_CACHE_MODE_WC)); 166 break; 167 case _PAGE_CACHE_MODE_WT: 168 prot = __pgprot(pgprot_val(prot) | 169 cachemode2protval(_PAGE_CACHE_MODE_WT)); 170 break; 171 case _PAGE_CACHE_MODE_WB: 172 break; 173 } 174 175 /* 176 * Ok, go for it.. 177 */ 178 area = get_vm_area_caller(size, VM_IOREMAP, caller); 179 if (!area) 180 goto err_free_memtype; 181 area->phys_addr = phys_addr; 182 vaddr = (unsigned long) area->addr; 183 184 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 185 goto err_free_area; 186 187 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 188 goto err_free_area; 189 190 ret_addr = (void __iomem *) (vaddr + offset); 191 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 192 193 /* 194 * Check if the request spans more than any BAR in the iomem resource 195 * tree. 196 */ 197 WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size), 198 KERN_INFO "Info: mapping multiple BARs. Your kernel is fine."); 199 200 return ret_addr; 201 err_free_area: 202 free_vm_area(area); 203 err_free_memtype: 204 free_memtype(phys_addr, phys_addr + size); 205 return NULL; 206 } 207 208 /** 209 * ioremap_nocache - map bus memory into CPU space 210 * @phys_addr: bus address of the memory 211 * @size: size of the resource to map 212 * 213 * ioremap_nocache performs a platform specific sequence of operations to 214 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 215 * writew/writel functions and the other mmio helpers. The returned 216 * address is not guaranteed to be usable directly as a virtual 217 * address. 218 * 219 * This version of ioremap ensures that the memory is marked uncachable 220 * on the CPU as well as honouring existing caching rules from things like 221 * the PCI bus. Note that there are other caches and buffers on many 222 * busses. In particular driver authors should read up on PCI writes 223 * 224 * It's useful if some control registers are in such an area and 225 * write combining or read caching is not desirable: 226 * 227 * Must be freed with iounmap. 228 */ 229 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 230 { 231 /* 232 * Ideally, this should be: 233 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 234 * 235 * Till we fix all X drivers to use ioremap_wc(), we will use 236 * UC MINUS. Drivers that are certain they need or can already 237 * be converted over to strong UC can use ioremap_uc(). 238 */ 239 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 240 241 return __ioremap_caller(phys_addr, size, pcm, 242 __builtin_return_address(0)); 243 } 244 EXPORT_SYMBOL(ioremap_nocache); 245 246 /** 247 * ioremap_uc - map bus memory into CPU space as strongly uncachable 248 * @phys_addr: bus address of the memory 249 * @size: size of the resource to map 250 * 251 * ioremap_uc performs a platform specific sequence of operations to 252 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 253 * writew/writel functions and the other mmio helpers. The returned 254 * address is not guaranteed to be usable directly as a virtual 255 * address. 256 * 257 * This version of ioremap ensures that the memory is marked with a strong 258 * preference as completely uncachable on the CPU when possible. For non-PAT 259 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 260 * systems this will set the PAT entry for the pages as strong UC. This call 261 * will honor existing caching rules from things like the PCI bus. Note that 262 * there are other caches and buffers on many busses. In particular driver 263 * authors should read up on PCI writes. 264 * 265 * It's useful if some control registers are in such an area and 266 * write combining or read caching is not desirable: 267 * 268 * Must be freed with iounmap. 269 */ 270 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 271 { 272 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 273 274 return __ioremap_caller(phys_addr, size, pcm, 275 __builtin_return_address(0)); 276 } 277 EXPORT_SYMBOL_GPL(ioremap_uc); 278 279 /** 280 * ioremap_wc - map memory into CPU space write combined 281 * @phys_addr: bus address of the memory 282 * @size: size of the resource to map 283 * 284 * This version of ioremap ensures that the memory is marked write combining. 285 * Write combining allows faster writes to some hardware devices. 286 * 287 * Must be freed with iounmap. 288 */ 289 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 290 { 291 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 292 __builtin_return_address(0)); 293 } 294 EXPORT_SYMBOL(ioremap_wc); 295 296 /** 297 * ioremap_wt - map memory into CPU space write through 298 * @phys_addr: bus address of the memory 299 * @size: size of the resource to map 300 * 301 * This version of ioremap ensures that the memory is marked write through. 302 * Write through stores data into memory while keeping the cache up-to-date. 303 * 304 * Must be freed with iounmap. 305 */ 306 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 307 { 308 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 309 __builtin_return_address(0)); 310 } 311 EXPORT_SYMBOL(ioremap_wt); 312 313 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 314 { 315 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 316 __builtin_return_address(0)); 317 } 318 EXPORT_SYMBOL(ioremap_cache); 319 320 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 321 unsigned long prot_val) 322 { 323 return __ioremap_caller(phys_addr, size, 324 pgprot2cachemode(__pgprot(prot_val)), 325 __builtin_return_address(0)); 326 } 327 EXPORT_SYMBOL(ioremap_prot); 328 329 /** 330 * iounmap - Free a IO remapping 331 * @addr: virtual address from ioremap_* 332 * 333 * Caller must ensure there is only one unmapping for the same pointer. 334 */ 335 void iounmap(volatile void __iomem *addr) 336 { 337 struct vm_struct *p, *o; 338 339 if ((void __force *)addr <= high_memory) 340 return; 341 342 /* 343 * __ioremap special-cases the PCI/ISA range by not instantiating a 344 * vm_area and by simply returning an address into the kernel mapping 345 * of ISA space. So handle that here. 346 */ 347 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 348 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) 349 return; 350 351 addr = (volatile void __iomem *) 352 (PAGE_MASK & (unsigned long __force)addr); 353 354 mmiotrace_iounmap(addr); 355 356 /* Use the vm area unlocked, assuming the caller 357 ensures there isn't another iounmap for the same address 358 in parallel. Reuse of the virtual address is prevented by 359 leaving it in the global lists until we're done with it. 360 cpa takes care of the direct mappings. */ 361 p = find_vm_area((void __force *)addr); 362 363 if (!p) { 364 printk(KERN_ERR "iounmap: bad address %p\n", addr); 365 dump_stack(); 366 return; 367 } 368 369 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 370 371 /* Finally remove it */ 372 o = remove_vm_area((void __force *)addr); 373 BUG_ON(p != o || o == NULL); 374 kfree(p); 375 } 376 EXPORT_SYMBOL(iounmap); 377 378 int __init arch_ioremap_pud_supported(void) 379 { 380 #ifdef CONFIG_X86_64 381 return cpu_has_gbpages; 382 #else 383 return 0; 384 #endif 385 } 386 387 int __init arch_ioremap_pmd_supported(void) 388 { 389 return cpu_has_pse; 390 } 391 392 /* 393 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 394 * access 395 */ 396 void *xlate_dev_mem_ptr(phys_addr_t phys) 397 { 398 unsigned long start = phys & PAGE_MASK; 399 unsigned long offset = phys & ~PAGE_MASK; 400 void *vaddr; 401 402 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ 403 if (page_is_ram(start >> PAGE_SHIFT)) 404 return __va(phys); 405 406 vaddr = ioremap_cache(start, PAGE_SIZE); 407 /* Only add the offset on success and return NULL if the ioremap() failed: */ 408 if (vaddr) 409 vaddr += offset; 410 411 return vaddr; 412 } 413 414 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 415 { 416 if (page_is_ram(phys >> PAGE_SHIFT)) 417 return; 418 419 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); 420 } 421 422 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 423 424 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 425 { 426 /* Don't assume we're using swapper_pg_dir at this point */ 427 pgd_t *base = __va(read_cr3()); 428 pgd_t *pgd = &base[pgd_index(addr)]; 429 pud_t *pud = pud_offset(pgd, addr); 430 pmd_t *pmd = pmd_offset(pud, addr); 431 432 return pmd; 433 } 434 435 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 436 { 437 return &bm_pte[pte_index(addr)]; 438 } 439 440 bool __init is_early_ioremap_ptep(pte_t *ptep) 441 { 442 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 443 } 444 445 void __init early_ioremap_init(void) 446 { 447 pmd_t *pmd; 448 449 #ifdef CONFIG_X86_64 450 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 451 #else 452 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 453 #endif 454 455 early_ioremap_setup(); 456 457 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 458 memset(bm_pte, 0, sizeof(bm_pte)); 459 pmd_populate_kernel(&init_mm, pmd, bm_pte); 460 461 /* 462 * The boot-ioremap range spans multiple pmds, for which 463 * we are not prepared: 464 */ 465 #define __FIXADDR_TOP (-PAGE_SIZE) 466 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 467 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 468 #undef __FIXADDR_TOP 469 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 470 WARN_ON(1); 471 printk(KERN_WARNING "pmd %p != %p\n", 472 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 473 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 474 fix_to_virt(FIX_BTMAP_BEGIN)); 475 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 476 fix_to_virt(FIX_BTMAP_END)); 477 478 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 479 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 480 FIX_BTMAP_BEGIN); 481 } 482 } 483 484 void __init __early_set_fixmap(enum fixed_addresses idx, 485 phys_addr_t phys, pgprot_t flags) 486 { 487 unsigned long addr = __fix_to_virt(idx); 488 pte_t *pte; 489 490 if (idx >= __end_of_fixed_addresses) { 491 BUG(); 492 return; 493 } 494 pte = early_ioremap_pte(addr); 495 496 if (pgprot_val(flags)) 497 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 498 else 499 pte_clear(&init_mm, addr, pte); 500 __flush_tlb_one(addr); 501 } 502