1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/ioport.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 #include <linux/mem_encrypt.h> 17 #include <linux/efi.h> 18 19 #include <asm/set_memory.h> 20 #include <asm/e820/api.h> 21 #include <asm/fixmap.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 #include <asm/pgalloc.h> 25 #include <asm/pat.h> 26 #include <asm/setup.h> 27 28 #include "physaddr.h" 29 30 struct ioremap_mem_flags { 31 bool system_ram; 32 bool desc_other; 33 }; 34 35 /* 36 * Fix up the linear direct mapping of the kernel to avoid cache attribute 37 * conflicts. 38 */ 39 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 40 enum page_cache_mode pcm) 41 { 42 unsigned long nrpages = size >> PAGE_SHIFT; 43 int err; 44 45 switch (pcm) { 46 case _PAGE_CACHE_MODE_UC: 47 default: 48 err = _set_memory_uc(vaddr, nrpages); 49 break; 50 case _PAGE_CACHE_MODE_WC: 51 err = _set_memory_wc(vaddr, nrpages); 52 break; 53 case _PAGE_CACHE_MODE_WT: 54 err = _set_memory_wt(vaddr, nrpages); 55 break; 56 case _PAGE_CACHE_MODE_WB: 57 err = _set_memory_wb(vaddr, nrpages); 58 break; 59 } 60 61 return err; 62 } 63 64 static bool __ioremap_check_ram(struct resource *res) 65 { 66 unsigned long start_pfn, stop_pfn; 67 unsigned long i; 68 69 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 70 return false; 71 72 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 73 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 74 if (stop_pfn > start_pfn) { 75 for (i = 0; i < (stop_pfn - start_pfn); ++i) 76 if (pfn_valid(start_pfn + i) && 77 !PageReserved(pfn_to_page(start_pfn + i))) 78 return true; 79 } 80 81 return false; 82 } 83 84 static int __ioremap_check_desc_other(struct resource *res) 85 { 86 return (res->desc != IORES_DESC_NONE); 87 } 88 89 static int __ioremap_res_check(struct resource *res, void *arg) 90 { 91 struct ioremap_mem_flags *flags = arg; 92 93 if (!flags->system_ram) 94 flags->system_ram = __ioremap_check_ram(res); 95 96 if (!flags->desc_other) 97 flags->desc_other = __ioremap_check_desc_other(res); 98 99 return flags->system_ram && flags->desc_other; 100 } 101 102 /* 103 * To avoid multiple resource walks, this function walks resources marked as 104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 106 */ 107 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 108 struct ioremap_mem_flags *flags) 109 { 110 u64 start, end; 111 112 start = (u64)addr; 113 end = start + size - 1; 114 memset(flags, 0, sizeof(*flags)); 115 116 walk_mem_res(start, end, flags, __ioremap_res_check); 117 } 118 119 /* 120 * Remap an arbitrary physical address space into the kernel virtual 121 * address space. It transparently creates kernel huge I/O mapping when 122 * the physical address is aligned by a huge page size (1GB or 2MB) and 123 * the requested size is at least the huge page size. 124 * 125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 126 * Therefore, the mapping code falls back to use a smaller page toward 4KB 127 * when a mapping range is covered by non-WB type of MTRRs. 128 * 129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 130 * have to convert them into an offset in a page-aligned mapping, but the 131 * caller shouldn't need to know that small detail. 132 */ 133 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 134 unsigned long size, enum page_cache_mode pcm, void *caller) 135 { 136 unsigned long offset, vaddr; 137 resource_size_t last_addr; 138 const resource_size_t unaligned_phys_addr = phys_addr; 139 const unsigned long unaligned_size = size; 140 struct ioremap_mem_flags mem_flags; 141 struct vm_struct *area; 142 enum page_cache_mode new_pcm; 143 pgprot_t prot; 144 int retval; 145 void __iomem *ret_addr; 146 147 /* Don't allow wraparound or zero size */ 148 last_addr = phys_addr + size - 1; 149 if (!size || last_addr < phys_addr) 150 return NULL; 151 152 if (!phys_addr_valid(phys_addr)) { 153 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 154 (unsigned long long)phys_addr); 155 WARN_ON_ONCE(1); 156 return NULL; 157 } 158 159 __ioremap_check_mem(phys_addr, size, &mem_flags); 160 161 /* 162 * Don't allow anybody to remap normal RAM that we're using.. 163 */ 164 if (mem_flags.system_ram) { 165 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 166 &phys_addr, &last_addr); 167 return NULL; 168 } 169 170 /* 171 * Mappings have to be page-aligned 172 */ 173 offset = phys_addr & ~PAGE_MASK; 174 phys_addr &= PHYSICAL_PAGE_MASK; 175 size = PAGE_ALIGN(last_addr+1) - phys_addr; 176 177 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 178 pcm, &new_pcm); 179 if (retval) { 180 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 181 return NULL; 182 } 183 184 if (pcm != new_pcm) { 185 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 186 printk(KERN_ERR 187 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 188 (unsigned long long)phys_addr, 189 (unsigned long long)(phys_addr + size), 190 pcm, new_pcm); 191 goto err_free_memtype; 192 } 193 pcm = new_pcm; 194 } 195 196 /* 197 * If the page being mapped is in memory and SEV is active then 198 * make sure the memory encryption attribute is enabled in the 199 * resulting mapping. 200 */ 201 prot = PAGE_KERNEL_IO; 202 if (sev_active() && mem_flags.desc_other) 203 prot = pgprot_encrypted(prot); 204 205 switch (pcm) { 206 case _PAGE_CACHE_MODE_UC: 207 default: 208 prot = __pgprot(pgprot_val(prot) | 209 cachemode2protval(_PAGE_CACHE_MODE_UC)); 210 break; 211 case _PAGE_CACHE_MODE_UC_MINUS: 212 prot = __pgprot(pgprot_val(prot) | 213 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 214 break; 215 case _PAGE_CACHE_MODE_WC: 216 prot = __pgprot(pgprot_val(prot) | 217 cachemode2protval(_PAGE_CACHE_MODE_WC)); 218 break; 219 case _PAGE_CACHE_MODE_WT: 220 prot = __pgprot(pgprot_val(prot) | 221 cachemode2protval(_PAGE_CACHE_MODE_WT)); 222 break; 223 case _PAGE_CACHE_MODE_WB: 224 break; 225 } 226 227 /* 228 * Ok, go for it.. 229 */ 230 area = get_vm_area_caller(size, VM_IOREMAP, caller); 231 if (!area) 232 goto err_free_memtype; 233 area->phys_addr = phys_addr; 234 vaddr = (unsigned long) area->addr; 235 236 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 237 goto err_free_area; 238 239 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 240 goto err_free_area; 241 242 ret_addr = (void __iomem *) (vaddr + offset); 243 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 244 245 /* 246 * Check if the request spans more than any BAR in the iomem resource 247 * tree. 248 */ 249 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 250 pr_warn("caller %pS mapping multiple BARs\n", caller); 251 252 return ret_addr; 253 err_free_area: 254 free_vm_area(area); 255 err_free_memtype: 256 free_memtype(phys_addr, phys_addr + size); 257 return NULL; 258 } 259 260 /** 261 * ioremap_nocache - map bus memory into CPU space 262 * @phys_addr: bus address of the memory 263 * @size: size of the resource to map 264 * 265 * ioremap_nocache performs a platform specific sequence of operations to 266 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 267 * writew/writel functions and the other mmio helpers. The returned 268 * address is not guaranteed to be usable directly as a virtual 269 * address. 270 * 271 * This version of ioremap ensures that the memory is marked uncachable 272 * on the CPU as well as honouring existing caching rules from things like 273 * the PCI bus. Note that there are other caches and buffers on many 274 * busses. In particular driver authors should read up on PCI writes 275 * 276 * It's useful if some control registers are in such an area and 277 * write combining or read caching is not desirable: 278 * 279 * Must be freed with iounmap. 280 */ 281 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 282 { 283 /* 284 * Ideally, this should be: 285 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 286 * 287 * Till we fix all X drivers to use ioremap_wc(), we will use 288 * UC MINUS. Drivers that are certain they need or can already 289 * be converted over to strong UC can use ioremap_uc(). 290 */ 291 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 292 293 return __ioremap_caller(phys_addr, size, pcm, 294 __builtin_return_address(0)); 295 } 296 EXPORT_SYMBOL(ioremap_nocache); 297 298 /** 299 * ioremap_uc - map bus memory into CPU space as strongly uncachable 300 * @phys_addr: bus address of the memory 301 * @size: size of the resource to map 302 * 303 * ioremap_uc performs a platform specific sequence of operations to 304 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 305 * writew/writel functions and the other mmio helpers. The returned 306 * address is not guaranteed to be usable directly as a virtual 307 * address. 308 * 309 * This version of ioremap ensures that the memory is marked with a strong 310 * preference as completely uncachable on the CPU when possible. For non-PAT 311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 312 * systems this will set the PAT entry for the pages as strong UC. This call 313 * will honor existing caching rules from things like the PCI bus. Note that 314 * there are other caches and buffers on many busses. In particular driver 315 * authors should read up on PCI writes. 316 * 317 * It's useful if some control registers are in such an area and 318 * write combining or read caching is not desirable: 319 * 320 * Must be freed with iounmap. 321 */ 322 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 323 { 324 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 325 326 return __ioremap_caller(phys_addr, size, pcm, 327 __builtin_return_address(0)); 328 } 329 EXPORT_SYMBOL_GPL(ioremap_uc); 330 331 /** 332 * ioremap_wc - map memory into CPU space write combined 333 * @phys_addr: bus address of the memory 334 * @size: size of the resource to map 335 * 336 * This version of ioremap ensures that the memory is marked write combining. 337 * Write combining allows faster writes to some hardware devices. 338 * 339 * Must be freed with iounmap. 340 */ 341 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 342 { 343 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 344 __builtin_return_address(0)); 345 } 346 EXPORT_SYMBOL(ioremap_wc); 347 348 /** 349 * ioremap_wt - map memory into CPU space write through 350 * @phys_addr: bus address of the memory 351 * @size: size of the resource to map 352 * 353 * This version of ioremap ensures that the memory is marked write through. 354 * Write through stores data into memory while keeping the cache up-to-date. 355 * 356 * Must be freed with iounmap. 357 */ 358 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 359 { 360 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 361 __builtin_return_address(0)); 362 } 363 EXPORT_SYMBOL(ioremap_wt); 364 365 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 366 { 367 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 368 __builtin_return_address(0)); 369 } 370 EXPORT_SYMBOL(ioremap_cache); 371 372 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 373 unsigned long prot_val) 374 { 375 return __ioremap_caller(phys_addr, size, 376 pgprot2cachemode(__pgprot(prot_val)), 377 __builtin_return_address(0)); 378 } 379 EXPORT_SYMBOL(ioremap_prot); 380 381 /** 382 * iounmap - Free a IO remapping 383 * @addr: virtual address from ioremap_* 384 * 385 * Caller must ensure there is only one unmapping for the same pointer. 386 */ 387 void iounmap(volatile void __iomem *addr) 388 { 389 struct vm_struct *p, *o; 390 391 if ((void __force *)addr <= high_memory) 392 return; 393 394 /* 395 * The PCI/ISA range special-casing was removed from __ioremap() 396 * so this check, in theory, can be removed. However, there are 397 * cases where iounmap() is called for addresses not obtained via 398 * ioremap() (vga16fb for example). Add a warning so that these 399 * cases can be caught and fixed. 400 */ 401 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 402 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 403 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 404 return; 405 } 406 407 mmiotrace_iounmap(addr); 408 409 addr = (volatile void __iomem *) 410 (PAGE_MASK & (unsigned long __force)addr); 411 412 /* Use the vm area unlocked, assuming the caller 413 ensures there isn't another iounmap for the same address 414 in parallel. Reuse of the virtual address is prevented by 415 leaving it in the global lists until we're done with it. 416 cpa takes care of the direct mappings. */ 417 p = find_vm_area((void __force *)addr); 418 419 if (!p) { 420 printk(KERN_ERR "iounmap: bad address %p\n", addr); 421 dump_stack(); 422 return; 423 } 424 425 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 426 427 /* Finally remove it */ 428 o = remove_vm_area((void __force *)addr); 429 BUG_ON(p != o || o == NULL); 430 kfree(p); 431 } 432 EXPORT_SYMBOL(iounmap); 433 434 int __init arch_ioremap_pud_supported(void) 435 { 436 #ifdef CONFIG_X86_64 437 return boot_cpu_has(X86_FEATURE_GBPAGES); 438 #else 439 return 0; 440 #endif 441 } 442 443 int __init arch_ioremap_pmd_supported(void) 444 { 445 return boot_cpu_has(X86_FEATURE_PSE); 446 } 447 448 /* 449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 450 * access 451 */ 452 void *xlate_dev_mem_ptr(phys_addr_t phys) 453 { 454 unsigned long start = phys & PAGE_MASK; 455 unsigned long offset = phys & ~PAGE_MASK; 456 void *vaddr; 457 458 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 459 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 460 461 /* Only add the offset on success and return NULL if memremap() failed */ 462 if (vaddr) 463 vaddr += offset; 464 465 return vaddr; 466 } 467 468 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 469 { 470 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 471 } 472 473 /* 474 * Examine the physical address to determine if it is an area of memory 475 * that should be mapped decrypted. If the memory is not part of the 476 * kernel usable area it was accessed and created decrypted, so these 477 * areas should be mapped decrypted. And since the encryption key can 478 * change across reboots, persistent memory should also be mapped 479 * decrypted. 480 * 481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 482 * only persistent memory should be mapped decrypted. 483 */ 484 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 485 unsigned long size) 486 { 487 int is_pmem; 488 489 /* 490 * Check if the address is part of a persistent memory region. 491 * This check covers areas added by E820, EFI and ACPI. 492 */ 493 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 494 IORES_DESC_PERSISTENT_MEMORY); 495 if (is_pmem != REGION_DISJOINT) 496 return true; 497 498 /* 499 * Check if the non-volatile attribute is set for an EFI 500 * reserved area. 501 */ 502 if (efi_enabled(EFI_BOOT)) { 503 switch (efi_mem_type(phys_addr)) { 504 case EFI_RESERVED_TYPE: 505 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 506 return true; 507 break; 508 default: 509 break; 510 } 511 } 512 513 /* Check if the address is outside kernel usable area */ 514 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 515 case E820_TYPE_RESERVED: 516 case E820_TYPE_ACPI: 517 case E820_TYPE_NVS: 518 case E820_TYPE_UNUSABLE: 519 /* For SEV, these areas are encrypted */ 520 if (sev_active()) 521 break; 522 /* Fallthrough */ 523 524 case E820_TYPE_PRAM: 525 return true; 526 default: 527 break; 528 } 529 530 return false; 531 } 532 533 /* 534 * Examine the physical address to determine if it is EFI data. Check 535 * it against the boot params structure and EFI tables and memory types. 536 */ 537 static bool memremap_is_efi_data(resource_size_t phys_addr, 538 unsigned long size) 539 { 540 u64 paddr; 541 542 /* Check if the address is part of EFI boot/runtime data */ 543 if (!efi_enabled(EFI_BOOT)) 544 return false; 545 546 paddr = boot_params.efi_info.efi_memmap_hi; 547 paddr <<= 32; 548 paddr |= boot_params.efi_info.efi_memmap; 549 if (phys_addr == paddr) 550 return true; 551 552 paddr = boot_params.efi_info.efi_systab_hi; 553 paddr <<= 32; 554 paddr |= boot_params.efi_info.efi_systab; 555 if (phys_addr == paddr) 556 return true; 557 558 if (efi_is_table_address(phys_addr)) 559 return true; 560 561 switch (efi_mem_type(phys_addr)) { 562 case EFI_BOOT_SERVICES_DATA: 563 case EFI_RUNTIME_SERVICES_DATA: 564 return true; 565 default: 566 break; 567 } 568 569 return false; 570 } 571 572 /* 573 * Examine the physical address to determine if it is boot data by checking 574 * it against the boot params setup_data chain. 575 */ 576 static bool memremap_is_setup_data(resource_size_t phys_addr, 577 unsigned long size) 578 { 579 struct setup_data *data; 580 u64 paddr, paddr_next; 581 582 paddr = boot_params.hdr.setup_data; 583 while (paddr) { 584 unsigned int len; 585 586 if (phys_addr == paddr) 587 return true; 588 589 data = memremap(paddr, sizeof(*data), 590 MEMREMAP_WB | MEMREMAP_DEC); 591 592 paddr_next = data->next; 593 len = data->len; 594 595 memunmap(data); 596 597 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 598 return true; 599 600 paddr = paddr_next; 601 } 602 603 return false; 604 } 605 606 /* 607 * Examine the physical address to determine if it is boot data by checking 608 * it against the boot params setup_data chain (early boot version). 609 */ 610 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 611 unsigned long size) 612 { 613 struct setup_data *data; 614 u64 paddr, paddr_next; 615 616 paddr = boot_params.hdr.setup_data; 617 while (paddr) { 618 unsigned int len; 619 620 if (phys_addr == paddr) 621 return true; 622 623 data = early_memremap_decrypted(paddr, sizeof(*data)); 624 625 paddr_next = data->next; 626 len = data->len; 627 628 early_memunmap(data, sizeof(*data)); 629 630 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 631 return true; 632 633 paddr = paddr_next; 634 } 635 636 return false; 637 } 638 639 /* 640 * Architecture function to determine if RAM remap is allowed. By default, a 641 * RAM remap will map the data as encrypted. Determine if a RAM remap should 642 * not be done so that the data will be mapped decrypted. 643 */ 644 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 645 unsigned long flags) 646 { 647 if (!mem_encrypt_active()) 648 return true; 649 650 if (flags & MEMREMAP_ENC) 651 return true; 652 653 if (flags & MEMREMAP_DEC) 654 return false; 655 656 if (sme_active()) { 657 if (memremap_is_setup_data(phys_addr, size) || 658 memremap_is_efi_data(phys_addr, size)) 659 return false; 660 } 661 662 return !memremap_should_map_decrypted(phys_addr, size); 663 } 664 665 /* 666 * Architecture override of __weak function to adjust the protection attributes 667 * used when remapping memory. By default, early_memremap() will map the data 668 * as encrypted. Determine if an encrypted mapping should not be done and set 669 * the appropriate protection attributes. 670 */ 671 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 672 unsigned long size, 673 pgprot_t prot) 674 { 675 bool encrypted_prot; 676 677 if (!mem_encrypt_active()) 678 return prot; 679 680 encrypted_prot = true; 681 682 if (sme_active()) { 683 if (early_memremap_is_setup_data(phys_addr, size) || 684 memremap_is_efi_data(phys_addr, size)) 685 encrypted_prot = false; 686 } 687 688 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 689 encrypted_prot = false; 690 691 return encrypted_prot ? pgprot_encrypted(prot) 692 : pgprot_decrypted(prot); 693 } 694 695 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 696 { 697 return arch_memremap_can_ram_remap(phys_addr, size, 0); 698 } 699 700 #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT 701 /* Remap memory with encryption */ 702 void __init *early_memremap_encrypted(resource_size_t phys_addr, 703 unsigned long size) 704 { 705 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 706 } 707 708 /* 709 * Remap memory with encryption and write-protected - cannot be called 710 * before pat_init() is called 711 */ 712 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 713 unsigned long size) 714 { 715 /* Be sure the write-protect PAT entry is set for write-protect */ 716 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 717 return NULL; 718 719 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 720 } 721 722 /* Remap memory without encryption */ 723 void __init *early_memremap_decrypted(resource_size_t phys_addr, 724 unsigned long size) 725 { 726 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 727 } 728 729 /* 730 * Remap memory without encryption and write-protected - cannot be called 731 * before pat_init() is called 732 */ 733 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 734 unsigned long size) 735 { 736 /* Be sure the write-protect PAT entry is set for write-protect */ 737 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 738 return NULL; 739 740 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 741 } 742 #endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */ 743 744 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 745 746 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 747 { 748 /* Don't assume we're using swapper_pg_dir at this point */ 749 pgd_t *base = __va(read_cr3_pa()); 750 pgd_t *pgd = &base[pgd_index(addr)]; 751 p4d_t *p4d = p4d_offset(pgd, addr); 752 pud_t *pud = pud_offset(p4d, addr); 753 pmd_t *pmd = pmd_offset(pud, addr); 754 755 return pmd; 756 } 757 758 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 759 { 760 return &bm_pte[pte_index(addr)]; 761 } 762 763 bool __init is_early_ioremap_ptep(pte_t *ptep) 764 { 765 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 766 } 767 768 void __init early_ioremap_init(void) 769 { 770 pmd_t *pmd; 771 772 #ifdef CONFIG_X86_64 773 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 774 #else 775 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 776 #endif 777 778 early_ioremap_setup(); 779 780 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 781 memset(bm_pte, 0, sizeof(bm_pte)); 782 pmd_populate_kernel(&init_mm, pmd, bm_pte); 783 784 /* 785 * The boot-ioremap range spans multiple pmds, for which 786 * we are not prepared: 787 */ 788 #define __FIXADDR_TOP (-PAGE_SIZE) 789 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 790 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 791 #undef __FIXADDR_TOP 792 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 793 WARN_ON(1); 794 printk(KERN_WARNING "pmd %p != %p\n", 795 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 796 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 797 fix_to_virt(FIX_BTMAP_BEGIN)); 798 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 799 fix_to_virt(FIX_BTMAP_END)); 800 801 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 802 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 803 FIX_BTMAP_BEGIN); 804 } 805 } 806 807 void __init __early_set_fixmap(enum fixed_addresses idx, 808 phys_addr_t phys, pgprot_t flags) 809 { 810 unsigned long addr = __fix_to_virt(idx); 811 pte_t *pte; 812 813 if (idx >= __end_of_fixed_addresses) { 814 BUG(); 815 return; 816 } 817 pte = early_ioremap_pte(addr); 818 819 if (pgprot_val(flags)) 820 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 821 else 822 pte_clear(&init_mm, addr, pte); 823 __flush_tlb_one_kernel(addr); 824 } 825