1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mmiotrace.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/efi.h> 19 20 #include <asm/set_memory.h> 21 #include <asm/e820/api.h> 22 #include <asm/fixmap.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/pgalloc.h> 26 #include <asm/pat.h> 27 #include <asm/setup.h> 28 29 #include "physaddr.h" 30 31 /* 32 * Descriptor controlling ioremap() behavior. 33 */ 34 struct ioremap_desc { 35 unsigned int flags; 36 }; 37 38 /* 39 * Fix up the linear direct mapping of the kernel to avoid cache attribute 40 * conflicts. 41 */ 42 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 43 enum page_cache_mode pcm) 44 { 45 unsigned long nrpages = size >> PAGE_SHIFT; 46 int err; 47 48 switch (pcm) { 49 case _PAGE_CACHE_MODE_UC: 50 default: 51 err = _set_memory_uc(vaddr, nrpages); 52 break; 53 case _PAGE_CACHE_MODE_WC: 54 err = _set_memory_wc(vaddr, nrpages); 55 break; 56 case _PAGE_CACHE_MODE_WT: 57 err = _set_memory_wt(vaddr, nrpages); 58 break; 59 case _PAGE_CACHE_MODE_WB: 60 err = _set_memory_wb(vaddr, nrpages); 61 break; 62 } 63 64 return err; 65 } 66 67 /* Does the range (or a subset of) contain normal RAM? */ 68 static unsigned int __ioremap_check_ram(struct resource *res) 69 { 70 unsigned long start_pfn, stop_pfn; 71 unsigned long i; 72 73 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 74 return 0; 75 76 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 77 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 78 if (stop_pfn > start_pfn) { 79 for (i = 0; i < (stop_pfn - start_pfn); ++i) 80 if (pfn_valid(start_pfn + i) && 81 !PageReserved(pfn_to_page(start_pfn + i))) 82 return IORES_MAP_SYSTEM_RAM; 83 } 84 85 return 0; 86 } 87 88 /* 89 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 90 * there the whole memory is already encrypted. 91 */ 92 static unsigned int __ioremap_check_encrypted(struct resource *res) 93 { 94 if (!sev_active()) 95 return 0; 96 97 switch (res->desc) { 98 case IORES_DESC_NONE: 99 case IORES_DESC_RESERVED: 100 break; 101 default: 102 return IORES_MAP_ENCRYPTED; 103 } 104 105 return 0; 106 } 107 108 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 109 { 110 struct ioremap_desc *desc = arg; 111 112 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 113 desc->flags |= __ioremap_check_ram(res); 114 115 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 116 desc->flags |= __ioremap_check_encrypted(res); 117 118 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 119 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 120 } 121 122 /* 123 * To avoid multiple resource walks, this function walks resources marked as 124 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 125 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 126 */ 127 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 128 struct ioremap_desc *desc) 129 { 130 u64 start, end; 131 132 start = (u64)addr; 133 end = start + size - 1; 134 memset(desc, 0, sizeof(struct ioremap_desc)); 135 136 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 137 } 138 139 /* 140 * Remap an arbitrary physical address space into the kernel virtual 141 * address space. It transparently creates kernel huge I/O mapping when 142 * the physical address is aligned by a huge page size (1GB or 2MB) and 143 * the requested size is at least the huge page size. 144 * 145 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 146 * Therefore, the mapping code falls back to use a smaller page toward 4KB 147 * when a mapping range is covered by non-WB type of MTRRs. 148 * 149 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 150 * have to convert them into an offset in a page-aligned mapping, but the 151 * caller shouldn't need to know that small detail. 152 */ 153 static void __iomem * 154 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 155 enum page_cache_mode pcm, void *caller, bool encrypted) 156 { 157 unsigned long offset, vaddr; 158 resource_size_t last_addr; 159 const resource_size_t unaligned_phys_addr = phys_addr; 160 const unsigned long unaligned_size = size; 161 struct ioremap_desc io_desc; 162 struct vm_struct *area; 163 enum page_cache_mode new_pcm; 164 pgprot_t prot; 165 int retval; 166 void __iomem *ret_addr; 167 168 /* Don't allow wraparound or zero size */ 169 last_addr = phys_addr + size - 1; 170 if (!size || last_addr < phys_addr) 171 return NULL; 172 173 if (!phys_addr_valid(phys_addr)) { 174 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 175 (unsigned long long)phys_addr); 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 __ioremap_check_mem(phys_addr, size, &io_desc); 181 182 /* 183 * Don't allow anybody to remap normal RAM that we're using.. 184 */ 185 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 186 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 187 &phys_addr, &last_addr); 188 return NULL; 189 } 190 191 /* 192 * Mappings have to be page-aligned 193 */ 194 offset = phys_addr & ~PAGE_MASK; 195 phys_addr &= PHYSICAL_PAGE_MASK; 196 size = PAGE_ALIGN(last_addr+1) - phys_addr; 197 198 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 199 pcm, &new_pcm); 200 if (retval) { 201 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 202 return NULL; 203 } 204 205 if (pcm != new_pcm) { 206 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 207 printk(KERN_ERR 208 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 209 (unsigned long long)phys_addr, 210 (unsigned long long)(phys_addr + size), 211 pcm, new_pcm); 212 goto err_free_memtype; 213 } 214 pcm = new_pcm; 215 } 216 217 /* 218 * If the page being mapped is in memory and SEV is active then 219 * make sure the memory encryption attribute is enabled in the 220 * resulting mapping. 221 */ 222 prot = PAGE_KERNEL_IO; 223 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 224 prot = pgprot_encrypted(prot); 225 226 switch (pcm) { 227 case _PAGE_CACHE_MODE_UC: 228 default: 229 prot = __pgprot(pgprot_val(prot) | 230 cachemode2protval(_PAGE_CACHE_MODE_UC)); 231 break; 232 case _PAGE_CACHE_MODE_UC_MINUS: 233 prot = __pgprot(pgprot_val(prot) | 234 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 235 break; 236 case _PAGE_CACHE_MODE_WC: 237 prot = __pgprot(pgprot_val(prot) | 238 cachemode2protval(_PAGE_CACHE_MODE_WC)); 239 break; 240 case _PAGE_CACHE_MODE_WT: 241 prot = __pgprot(pgprot_val(prot) | 242 cachemode2protval(_PAGE_CACHE_MODE_WT)); 243 break; 244 case _PAGE_CACHE_MODE_WB: 245 break; 246 } 247 248 /* 249 * Ok, go for it.. 250 */ 251 area = get_vm_area_caller(size, VM_IOREMAP, caller); 252 if (!area) 253 goto err_free_memtype; 254 area->phys_addr = phys_addr; 255 vaddr = (unsigned long) area->addr; 256 257 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 258 goto err_free_area; 259 260 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 261 goto err_free_area; 262 263 ret_addr = (void __iomem *) (vaddr + offset); 264 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 265 266 /* 267 * Check if the request spans more than any BAR in the iomem resource 268 * tree. 269 */ 270 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 271 pr_warn("caller %pS mapping multiple BARs\n", caller); 272 273 return ret_addr; 274 err_free_area: 275 free_vm_area(area); 276 err_free_memtype: 277 free_memtype(phys_addr, phys_addr + size); 278 return NULL; 279 } 280 281 /** 282 * ioremap_nocache - map bus memory into CPU space 283 * @phys_addr: bus address of the memory 284 * @size: size of the resource to map 285 * 286 * ioremap_nocache performs a platform specific sequence of operations to 287 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 288 * writew/writel functions and the other mmio helpers. The returned 289 * address is not guaranteed to be usable directly as a virtual 290 * address. 291 * 292 * This version of ioremap ensures that the memory is marked uncachable 293 * on the CPU as well as honouring existing caching rules from things like 294 * the PCI bus. Note that there are other caches and buffers on many 295 * busses. In particular driver authors should read up on PCI writes 296 * 297 * It's useful if some control registers are in such an area and 298 * write combining or read caching is not desirable: 299 * 300 * Must be freed with iounmap. 301 */ 302 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 303 { 304 /* 305 * Ideally, this should be: 306 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 307 * 308 * Till we fix all X drivers to use ioremap_wc(), we will use 309 * UC MINUS. Drivers that are certain they need or can already 310 * be converted over to strong UC can use ioremap_uc(). 311 */ 312 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 313 314 return __ioremap_caller(phys_addr, size, pcm, 315 __builtin_return_address(0), false); 316 } 317 EXPORT_SYMBOL(ioremap_nocache); 318 319 /** 320 * ioremap_uc - map bus memory into CPU space as strongly uncachable 321 * @phys_addr: bus address of the memory 322 * @size: size of the resource to map 323 * 324 * ioremap_uc performs a platform specific sequence of operations to 325 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 326 * writew/writel functions and the other mmio helpers. The returned 327 * address is not guaranteed to be usable directly as a virtual 328 * address. 329 * 330 * This version of ioremap ensures that the memory is marked with a strong 331 * preference as completely uncachable on the CPU when possible. For non-PAT 332 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 333 * systems this will set the PAT entry for the pages as strong UC. This call 334 * will honor existing caching rules from things like the PCI bus. Note that 335 * there are other caches and buffers on many busses. In particular driver 336 * authors should read up on PCI writes. 337 * 338 * It's useful if some control registers are in such an area and 339 * write combining or read caching is not desirable: 340 * 341 * Must be freed with iounmap. 342 */ 343 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 344 { 345 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 346 347 return __ioremap_caller(phys_addr, size, pcm, 348 __builtin_return_address(0), false); 349 } 350 EXPORT_SYMBOL_GPL(ioremap_uc); 351 352 /** 353 * ioremap_wc - map memory into CPU space write combined 354 * @phys_addr: bus address of the memory 355 * @size: size of the resource to map 356 * 357 * This version of ioremap ensures that the memory is marked write combining. 358 * Write combining allows faster writes to some hardware devices. 359 * 360 * Must be freed with iounmap. 361 */ 362 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 363 { 364 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 365 __builtin_return_address(0), false); 366 } 367 EXPORT_SYMBOL(ioremap_wc); 368 369 /** 370 * ioremap_wt - map memory into CPU space write through 371 * @phys_addr: bus address of the memory 372 * @size: size of the resource to map 373 * 374 * This version of ioremap ensures that the memory is marked write through. 375 * Write through stores data into memory while keeping the cache up-to-date. 376 * 377 * Must be freed with iounmap. 378 */ 379 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 380 { 381 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 382 __builtin_return_address(0), false); 383 } 384 EXPORT_SYMBOL(ioremap_wt); 385 386 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 387 { 388 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 389 __builtin_return_address(0), true); 390 } 391 EXPORT_SYMBOL(ioremap_encrypted); 392 393 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 394 { 395 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 396 __builtin_return_address(0), false); 397 } 398 EXPORT_SYMBOL(ioremap_cache); 399 400 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 401 unsigned long prot_val) 402 { 403 return __ioremap_caller(phys_addr, size, 404 pgprot2cachemode(__pgprot(prot_val)), 405 __builtin_return_address(0), false); 406 } 407 EXPORT_SYMBOL(ioremap_prot); 408 409 /** 410 * iounmap - Free a IO remapping 411 * @addr: virtual address from ioremap_* 412 * 413 * Caller must ensure there is only one unmapping for the same pointer. 414 */ 415 void iounmap(volatile void __iomem *addr) 416 { 417 struct vm_struct *p, *o; 418 419 if ((void __force *)addr <= high_memory) 420 return; 421 422 /* 423 * The PCI/ISA range special-casing was removed from __ioremap() 424 * so this check, in theory, can be removed. However, there are 425 * cases where iounmap() is called for addresses not obtained via 426 * ioremap() (vga16fb for example). Add a warning so that these 427 * cases can be caught and fixed. 428 */ 429 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 430 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 431 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 432 return; 433 } 434 435 mmiotrace_iounmap(addr); 436 437 addr = (volatile void __iomem *) 438 (PAGE_MASK & (unsigned long __force)addr); 439 440 /* Use the vm area unlocked, assuming the caller 441 ensures there isn't another iounmap for the same address 442 in parallel. Reuse of the virtual address is prevented by 443 leaving it in the global lists until we're done with it. 444 cpa takes care of the direct mappings. */ 445 p = find_vm_area((void __force *)addr); 446 447 if (!p) { 448 printk(KERN_ERR "iounmap: bad address %p\n", addr); 449 dump_stack(); 450 return; 451 } 452 453 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 454 455 /* Finally remove it */ 456 o = remove_vm_area((void __force *)addr); 457 BUG_ON(p != o || o == NULL); 458 kfree(p); 459 } 460 EXPORT_SYMBOL(iounmap); 461 462 int __init arch_ioremap_p4d_supported(void) 463 { 464 return 0; 465 } 466 467 int __init arch_ioremap_pud_supported(void) 468 { 469 #ifdef CONFIG_X86_64 470 return boot_cpu_has(X86_FEATURE_GBPAGES); 471 #else 472 return 0; 473 #endif 474 } 475 476 int __init arch_ioremap_pmd_supported(void) 477 { 478 return boot_cpu_has(X86_FEATURE_PSE); 479 } 480 481 /* 482 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 483 * access 484 */ 485 void *xlate_dev_mem_ptr(phys_addr_t phys) 486 { 487 unsigned long start = phys & PAGE_MASK; 488 unsigned long offset = phys & ~PAGE_MASK; 489 void *vaddr; 490 491 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 492 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 493 494 /* Only add the offset on success and return NULL if memremap() failed */ 495 if (vaddr) 496 vaddr += offset; 497 498 return vaddr; 499 } 500 501 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 502 { 503 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 504 } 505 506 /* 507 * Examine the physical address to determine if it is an area of memory 508 * that should be mapped decrypted. If the memory is not part of the 509 * kernel usable area it was accessed and created decrypted, so these 510 * areas should be mapped decrypted. And since the encryption key can 511 * change across reboots, persistent memory should also be mapped 512 * decrypted. 513 * 514 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 515 * only persistent memory should be mapped decrypted. 516 */ 517 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 518 unsigned long size) 519 { 520 int is_pmem; 521 522 /* 523 * Check if the address is part of a persistent memory region. 524 * This check covers areas added by E820, EFI and ACPI. 525 */ 526 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 527 IORES_DESC_PERSISTENT_MEMORY); 528 if (is_pmem != REGION_DISJOINT) 529 return true; 530 531 /* 532 * Check if the non-volatile attribute is set for an EFI 533 * reserved area. 534 */ 535 if (efi_enabled(EFI_BOOT)) { 536 switch (efi_mem_type(phys_addr)) { 537 case EFI_RESERVED_TYPE: 538 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 539 return true; 540 break; 541 default: 542 break; 543 } 544 } 545 546 /* Check if the address is outside kernel usable area */ 547 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 548 case E820_TYPE_RESERVED: 549 case E820_TYPE_ACPI: 550 case E820_TYPE_NVS: 551 case E820_TYPE_UNUSABLE: 552 /* For SEV, these areas are encrypted */ 553 if (sev_active()) 554 break; 555 /* Fallthrough */ 556 557 case E820_TYPE_PRAM: 558 return true; 559 default: 560 break; 561 } 562 563 return false; 564 } 565 566 /* 567 * Examine the physical address to determine if it is EFI data. Check 568 * it against the boot params structure and EFI tables and memory types. 569 */ 570 static bool memremap_is_efi_data(resource_size_t phys_addr, 571 unsigned long size) 572 { 573 u64 paddr; 574 575 /* Check if the address is part of EFI boot/runtime data */ 576 if (!efi_enabled(EFI_BOOT)) 577 return false; 578 579 paddr = boot_params.efi_info.efi_memmap_hi; 580 paddr <<= 32; 581 paddr |= boot_params.efi_info.efi_memmap; 582 if (phys_addr == paddr) 583 return true; 584 585 paddr = boot_params.efi_info.efi_systab_hi; 586 paddr <<= 32; 587 paddr |= boot_params.efi_info.efi_systab; 588 if (phys_addr == paddr) 589 return true; 590 591 if (efi_is_table_address(phys_addr)) 592 return true; 593 594 switch (efi_mem_type(phys_addr)) { 595 case EFI_BOOT_SERVICES_DATA: 596 case EFI_RUNTIME_SERVICES_DATA: 597 return true; 598 default: 599 break; 600 } 601 602 return false; 603 } 604 605 /* 606 * Examine the physical address to determine if it is boot data by checking 607 * it against the boot params setup_data chain. 608 */ 609 static bool memremap_is_setup_data(resource_size_t phys_addr, 610 unsigned long size) 611 { 612 struct setup_data *data; 613 u64 paddr, paddr_next; 614 615 paddr = boot_params.hdr.setup_data; 616 while (paddr) { 617 unsigned int len; 618 619 if (phys_addr == paddr) 620 return true; 621 622 data = memremap(paddr, sizeof(*data), 623 MEMREMAP_WB | MEMREMAP_DEC); 624 625 paddr_next = data->next; 626 len = data->len; 627 628 memunmap(data); 629 630 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 631 return true; 632 633 paddr = paddr_next; 634 } 635 636 return false; 637 } 638 639 /* 640 * Examine the physical address to determine if it is boot data by checking 641 * it against the boot params setup_data chain (early boot version). 642 */ 643 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 644 unsigned long size) 645 { 646 struct setup_data *data; 647 u64 paddr, paddr_next; 648 649 paddr = boot_params.hdr.setup_data; 650 while (paddr) { 651 unsigned int len; 652 653 if (phys_addr == paddr) 654 return true; 655 656 data = early_memremap_decrypted(paddr, sizeof(*data)); 657 658 paddr_next = data->next; 659 len = data->len; 660 661 early_memunmap(data, sizeof(*data)); 662 663 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 664 return true; 665 666 paddr = paddr_next; 667 } 668 669 return false; 670 } 671 672 /* 673 * Architecture function to determine if RAM remap is allowed. By default, a 674 * RAM remap will map the data as encrypted. Determine if a RAM remap should 675 * not be done so that the data will be mapped decrypted. 676 */ 677 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 678 unsigned long flags) 679 { 680 if (!mem_encrypt_active()) 681 return true; 682 683 if (flags & MEMREMAP_ENC) 684 return true; 685 686 if (flags & MEMREMAP_DEC) 687 return false; 688 689 if (sme_active()) { 690 if (memremap_is_setup_data(phys_addr, size) || 691 memremap_is_efi_data(phys_addr, size)) 692 return false; 693 } 694 695 return !memremap_should_map_decrypted(phys_addr, size); 696 } 697 698 /* 699 * Architecture override of __weak function to adjust the protection attributes 700 * used when remapping memory. By default, early_memremap() will map the data 701 * as encrypted. Determine if an encrypted mapping should not be done and set 702 * the appropriate protection attributes. 703 */ 704 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 705 unsigned long size, 706 pgprot_t prot) 707 { 708 bool encrypted_prot; 709 710 if (!mem_encrypt_active()) 711 return prot; 712 713 encrypted_prot = true; 714 715 if (sme_active()) { 716 if (early_memremap_is_setup_data(phys_addr, size) || 717 memremap_is_efi_data(phys_addr, size)) 718 encrypted_prot = false; 719 } 720 721 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 722 encrypted_prot = false; 723 724 return encrypted_prot ? pgprot_encrypted(prot) 725 : pgprot_decrypted(prot); 726 } 727 728 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 729 { 730 return arch_memremap_can_ram_remap(phys_addr, size, 0); 731 } 732 733 #ifdef CONFIG_AMD_MEM_ENCRYPT 734 /* Remap memory with encryption */ 735 void __init *early_memremap_encrypted(resource_size_t phys_addr, 736 unsigned long size) 737 { 738 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 739 } 740 741 /* 742 * Remap memory with encryption and write-protected - cannot be called 743 * before pat_init() is called 744 */ 745 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 746 unsigned long size) 747 { 748 /* Be sure the write-protect PAT entry is set for write-protect */ 749 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 750 return NULL; 751 752 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 753 } 754 755 /* Remap memory without encryption */ 756 void __init *early_memremap_decrypted(resource_size_t phys_addr, 757 unsigned long size) 758 { 759 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 760 } 761 762 /* 763 * Remap memory without encryption and write-protected - cannot be called 764 * before pat_init() is called 765 */ 766 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 767 unsigned long size) 768 { 769 /* Be sure the write-protect PAT entry is set for write-protect */ 770 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 771 return NULL; 772 773 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 774 } 775 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 776 777 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 778 779 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 780 { 781 /* Don't assume we're using swapper_pg_dir at this point */ 782 pgd_t *base = __va(read_cr3_pa()); 783 pgd_t *pgd = &base[pgd_index(addr)]; 784 p4d_t *p4d = p4d_offset(pgd, addr); 785 pud_t *pud = pud_offset(p4d, addr); 786 pmd_t *pmd = pmd_offset(pud, addr); 787 788 return pmd; 789 } 790 791 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 792 { 793 return &bm_pte[pte_index(addr)]; 794 } 795 796 bool __init is_early_ioremap_ptep(pte_t *ptep) 797 { 798 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 799 } 800 801 void __init early_ioremap_init(void) 802 { 803 pmd_t *pmd; 804 805 #ifdef CONFIG_X86_64 806 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 807 #else 808 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 809 #endif 810 811 early_ioremap_setup(); 812 813 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 814 memset(bm_pte, 0, sizeof(bm_pte)); 815 pmd_populate_kernel(&init_mm, pmd, bm_pte); 816 817 /* 818 * The boot-ioremap range spans multiple pmds, for which 819 * we are not prepared: 820 */ 821 #define __FIXADDR_TOP (-PAGE_SIZE) 822 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 823 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 824 #undef __FIXADDR_TOP 825 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 826 WARN_ON(1); 827 printk(KERN_WARNING "pmd %p != %p\n", 828 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 829 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 830 fix_to_virt(FIX_BTMAP_BEGIN)); 831 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 832 fix_to_virt(FIX_BTMAP_END)); 833 834 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 835 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 836 FIX_BTMAP_BEGIN); 837 } 838 } 839 840 void __init __early_set_fixmap(enum fixed_addresses idx, 841 phys_addr_t phys, pgprot_t flags) 842 { 843 unsigned long addr = __fix_to_virt(idx); 844 pte_t *pte; 845 846 if (idx >= __end_of_fixed_addresses) { 847 BUG(); 848 return; 849 } 850 pte = early_ioremap_pte(addr); 851 852 /* Sanitize 'prot' against any unsupported bits: */ 853 pgprot_val(flags) &= __supported_pte_mask; 854 855 if (pgprot_val(flags)) 856 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 857 else 858 pte_clear(&init_mm, addr, pte); 859 __flush_tlb_one_kernel(addr); 860 } 861