xref: /openbmc/linux/arch/x86/mm/ioremap.c (revision 867a0e05)
1 /*
2  * Re-map IO memory to kernel address space so that we can access it.
3  * This is needed for high PCI addresses that aren't mapped in the
4  * 640k-1MB IO memory area on PC's
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  */
8 
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 
17 #include <asm/cacheflush.h>
18 #include <asm/e820.h>
19 #include <asm/fixmap.h>
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgalloc.h>
23 #include <asm/pat.h>
24 
25 #include "physaddr.h"
26 
27 /*
28  * Fix up the linear direct mapping of the kernel to avoid cache attribute
29  * conflicts.
30  */
31 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
32 			enum page_cache_mode pcm)
33 {
34 	unsigned long nrpages = size >> PAGE_SHIFT;
35 	int err;
36 
37 	switch (pcm) {
38 	case _PAGE_CACHE_MODE_UC:
39 	default:
40 		err = _set_memory_uc(vaddr, nrpages);
41 		break;
42 	case _PAGE_CACHE_MODE_WC:
43 		err = _set_memory_wc(vaddr, nrpages);
44 		break;
45 	case _PAGE_CACHE_MODE_WB:
46 		err = _set_memory_wb(vaddr, nrpages);
47 		break;
48 	}
49 
50 	return err;
51 }
52 
53 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
54 			       void *arg)
55 {
56 	unsigned long i;
57 
58 	for (i = 0; i < nr_pages; ++i)
59 		if (pfn_valid(start_pfn + i) &&
60 		    !PageReserved(pfn_to_page(start_pfn + i)))
61 			return 1;
62 
63 	WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn);
64 
65 	return 0;
66 }
67 
68 /*
69  * Remap an arbitrary physical address space into the kernel virtual
70  * address space. Needed when the kernel wants to access high addresses
71  * directly.
72  *
73  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
74  * have to convert them into an offset in a page-aligned mapping, but the
75  * caller shouldn't need to know that small detail.
76  */
77 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
78 		unsigned long size, enum page_cache_mode pcm, void *caller)
79 {
80 	unsigned long offset, vaddr;
81 	resource_size_t pfn, last_pfn, last_addr;
82 	const resource_size_t unaligned_phys_addr = phys_addr;
83 	const unsigned long unaligned_size = size;
84 	struct vm_struct *area;
85 	enum page_cache_mode new_pcm;
86 	pgprot_t prot;
87 	int retval;
88 	void __iomem *ret_addr;
89 	int ram_region;
90 
91 	/* Don't allow wraparound or zero size */
92 	last_addr = phys_addr + size - 1;
93 	if (!size || last_addr < phys_addr)
94 		return NULL;
95 
96 	if (!phys_addr_valid(phys_addr)) {
97 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
98 		       (unsigned long long)phys_addr);
99 		WARN_ON_ONCE(1);
100 		return NULL;
101 	}
102 
103 	/*
104 	 * Don't remap the low PCI/ISA area, it's always mapped..
105 	 */
106 	if (is_ISA_range(phys_addr, last_addr))
107 		return (__force void __iomem *)phys_to_virt(phys_addr);
108 
109 	/*
110 	 * Don't allow anybody to remap normal RAM that we're using..
111 	 */
112 	/* First check if whole region can be identified as RAM or not */
113 	ram_region = region_is_ram(phys_addr, size);
114 	if (ram_region > 0) {
115 		WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n",
116 				(unsigned long int)phys_addr,
117 				(unsigned long int)last_addr);
118 		return NULL;
119 	}
120 
121 	/* If could not be identified(-1), check page by page */
122 	if (ram_region < 0) {
123 		pfn      = phys_addr >> PAGE_SHIFT;
124 		last_pfn = last_addr >> PAGE_SHIFT;
125 		if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
126 					  __ioremap_check_ram) == 1)
127 			return NULL;
128 	}
129 	/*
130 	 * Mappings have to be page-aligned
131 	 */
132 	offset = phys_addr & ~PAGE_MASK;
133 	phys_addr &= PHYSICAL_PAGE_MASK;
134 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
135 
136 	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
137 						pcm, &new_pcm);
138 	if (retval) {
139 		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
140 		return NULL;
141 	}
142 
143 	if (pcm != new_pcm) {
144 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
145 			printk(KERN_ERR
146 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
147 				(unsigned long long)phys_addr,
148 				(unsigned long long)(phys_addr + size),
149 				pcm, new_pcm);
150 			goto err_free_memtype;
151 		}
152 		pcm = new_pcm;
153 	}
154 
155 	prot = PAGE_KERNEL_IO;
156 	switch (pcm) {
157 	case _PAGE_CACHE_MODE_UC:
158 	default:
159 		prot = __pgprot(pgprot_val(prot) |
160 				cachemode2protval(_PAGE_CACHE_MODE_UC));
161 		break;
162 	case _PAGE_CACHE_MODE_UC_MINUS:
163 		prot = __pgprot(pgprot_val(prot) |
164 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
165 		break;
166 	case _PAGE_CACHE_MODE_WC:
167 		prot = __pgprot(pgprot_val(prot) |
168 				cachemode2protval(_PAGE_CACHE_MODE_WC));
169 		break;
170 	case _PAGE_CACHE_MODE_WB:
171 		break;
172 	}
173 
174 	/*
175 	 * Ok, go for it..
176 	 */
177 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
178 	if (!area)
179 		goto err_free_memtype;
180 	area->phys_addr = phys_addr;
181 	vaddr = (unsigned long) area->addr;
182 
183 	if (kernel_map_sync_memtype(phys_addr, size, pcm))
184 		goto err_free_area;
185 
186 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
187 		goto err_free_area;
188 
189 	ret_addr = (void __iomem *) (vaddr + offset);
190 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
191 
192 	/*
193 	 * Check if the request spans more than any BAR in the iomem resource
194 	 * tree.
195 	 */
196 	WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
197 		  KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
198 
199 	return ret_addr;
200 err_free_area:
201 	free_vm_area(area);
202 err_free_memtype:
203 	free_memtype(phys_addr, phys_addr + size);
204 	return NULL;
205 }
206 
207 /**
208  * ioremap_nocache     -   map bus memory into CPU space
209  * @phys_addr:    bus address of the memory
210  * @size:      size of the resource to map
211  *
212  * ioremap_nocache performs a platform specific sequence of operations to
213  * make bus memory CPU accessible via the readb/readw/readl/writeb/
214  * writew/writel functions and the other mmio helpers. The returned
215  * address is not guaranteed to be usable directly as a virtual
216  * address.
217  *
218  * This version of ioremap ensures that the memory is marked uncachable
219  * on the CPU as well as honouring existing caching rules from things like
220  * the PCI bus. Note that there are other caches and buffers on many
221  * busses. In particular driver authors should read up on PCI writes
222  *
223  * It's useful if some control registers are in such an area and
224  * write combining or read caching is not desirable:
225  *
226  * Must be freed with iounmap.
227  */
228 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
229 {
230 	/*
231 	 * Ideally, this should be:
232 	 *	pat_enabled ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
233 	 *
234 	 * Till we fix all X drivers to use ioremap_wc(), we will use
235 	 * UC MINUS.
236 	 */
237 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
238 
239 	return __ioremap_caller(phys_addr, size, pcm,
240 				__builtin_return_address(0));
241 }
242 EXPORT_SYMBOL(ioremap_nocache);
243 
244 /**
245  * ioremap_wc	-	map memory into CPU space write combined
246  * @phys_addr:	bus address of the memory
247  * @size:	size of the resource to map
248  *
249  * This version of ioremap ensures that the memory is marked write combining.
250  * Write combining allows faster writes to some hardware devices.
251  *
252  * Must be freed with iounmap.
253  */
254 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
255 {
256 	if (pat_enabled)
257 		return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
258 					__builtin_return_address(0));
259 	else
260 		return ioremap_nocache(phys_addr, size);
261 }
262 EXPORT_SYMBOL(ioremap_wc);
263 
264 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
265 {
266 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
267 				__builtin_return_address(0));
268 }
269 EXPORT_SYMBOL(ioremap_cache);
270 
271 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
272 				unsigned long prot_val)
273 {
274 	return __ioremap_caller(phys_addr, size,
275 				pgprot2cachemode(__pgprot(prot_val)),
276 				__builtin_return_address(0));
277 }
278 EXPORT_SYMBOL(ioremap_prot);
279 
280 /**
281  * iounmap - Free a IO remapping
282  * @addr: virtual address from ioremap_*
283  *
284  * Caller must ensure there is only one unmapping for the same pointer.
285  */
286 void iounmap(volatile void __iomem *addr)
287 {
288 	struct vm_struct *p, *o;
289 
290 	if ((void __force *)addr <= high_memory)
291 		return;
292 
293 	/*
294 	 * __ioremap special-cases the PCI/ISA range by not instantiating a
295 	 * vm_area and by simply returning an address into the kernel mapping
296 	 * of ISA space.   So handle that here.
297 	 */
298 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
299 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
300 		return;
301 
302 	addr = (volatile void __iomem *)
303 		(PAGE_MASK & (unsigned long __force)addr);
304 
305 	mmiotrace_iounmap(addr);
306 
307 	/* Use the vm area unlocked, assuming the caller
308 	   ensures there isn't another iounmap for the same address
309 	   in parallel. Reuse of the virtual address is prevented by
310 	   leaving it in the global lists until we're done with it.
311 	   cpa takes care of the direct mappings. */
312 	p = find_vm_area((void __force *)addr);
313 
314 	if (!p) {
315 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
316 		dump_stack();
317 		return;
318 	}
319 
320 	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
321 
322 	/* Finally remove it */
323 	o = remove_vm_area((void __force *)addr);
324 	BUG_ON(p != o || o == NULL);
325 	kfree(p);
326 }
327 EXPORT_SYMBOL(iounmap);
328 
329 /*
330  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
331  * access
332  */
333 void *xlate_dev_mem_ptr(phys_addr_t phys)
334 {
335 	void *addr;
336 	unsigned long start = phys & PAGE_MASK;
337 
338 	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
339 	if (page_is_ram(start >> PAGE_SHIFT))
340 		return __va(phys);
341 
342 	addr = (void __force *)ioremap_cache(start, PAGE_SIZE);
343 	if (addr)
344 		addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
345 
346 	return addr;
347 }
348 
349 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
350 {
351 	if (page_is_ram(phys >> PAGE_SHIFT))
352 		return;
353 
354 	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
355 	return;
356 }
357 
358 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
359 
360 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
361 {
362 	/* Don't assume we're using swapper_pg_dir at this point */
363 	pgd_t *base = __va(read_cr3());
364 	pgd_t *pgd = &base[pgd_index(addr)];
365 	pud_t *pud = pud_offset(pgd, addr);
366 	pmd_t *pmd = pmd_offset(pud, addr);
367 
368 	return pmd;
369 }
370 
371 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
372 {
373 	return &bm_pte[pte_index(addr)];
374 }
375 
376 bool __init is_early_ioremap_ptep(pte_t *ptep)
377 {
378 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
379 }
380 
381 void __init early_ioremap_init(void)
382 {
383 	pmd_t *pmd;
384 
385 #ifdef CONFIG_X86_64
386 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
387 #else
388 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
389 #endif
390 
391 	early_ioremap_setup();
392 
393 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
394 	memset(bm_pte, 0, sizeof(bm_pte));
395 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
396 
397 	/*
398 	 * The boot-ioremap range spans multiple pmds, for which
399 	 * we are not prepared:
400 	 */
401 #define __FIXADDR_TOP (-PAGE_SIZE)
402 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
403 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
404 #undef __FIXADDR_TOP
405 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
406 		WARN_ON(1);
407 		printk(KERN_WARNING "pmd %p != %p\n",
408 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
409 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
410 			fix_to_virt(FIX_BTMAP_BEGIN));
411 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
412 			fix_to_virt(FIX_BTMAP_END));
413 
414 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
415 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
416 		       FIX_BTMAP_BEGIN);
417 	}
418 }
419 
420 void __init __early_set_fixmap(enum fixed_addresses idx,
421 			       phys_addr_t phys, pgprot_t flags)
422 {
423 	unsigned long addr = __fix_to_virt(idx);
424 	pte_t *pte;
425 
426 	if (idx >= __end_of_fixed_addresses) {
427 		BUG();
428 		return;
429 	}
430 	pte = early_ioremap_pte(addr);
431 
432 	if (pgprot_val(flags))
433 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
434 	else
435 		pte_clear(&init_mm, addr, pte);
436 	__flush_tlb_one(addr);
437 }
438