xref: /openbmc/linux/arch/x86/mm/ioremap.c (revision 8047f98c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9 
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/cc_platform.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20 
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29 
30 #include "physaddr.h"
31 
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36 	unsigned int flags;
37 };
38 
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 			enum page_cache_mode pcm)
45 {
46 	unsigned long nrpages = size >> PAGE_SHIFT;
47 	int err;
48 
49 	switch (pcm) {
50 	case _PAGE_CACHE_MODE_UC:
51 	default:
52 		err = _set_memory_uc(vaddr, nrpages);
53 		break;
54 	case _PAGE_CACHE_MODE_WC:
55 		err = _set_memory_wc(vaddr, nrpages);
56 		break;
57 	case _PAGE_CACHE_MODE_WT:
58 		err = _set_memory_wt(vaddr, nrpages);
59 		break;
60 	case _PAGE_CACHE_MODE_WB:
61 		err = _set_memory_wb(vaddr, nrpages);
62 		break;
63 	}
64 
65 	return err;
66 }
67 
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 	unsigned long start_pfn, stop_pfn;
72 	unsigned long i;
73 
74 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 		return 0;
76 
77 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 	if (stop_pfn > start_pfn) {
80 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 			if (pfn_valid(start_pfn + i) &&
82 			    !PageReserved(pfn_to_page(start_pfn + i)))
83 				return IORES_MAP_SYSTEM_RAM;
84 	}
85 
86 	return 0;
87 }
88 
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
96 		return 0;
97 
98 	switch (res->desc) {
99 	case IORES_DESC_NONE:
100 	case IORES_DESC_RESERVED:
101 		break;
102 	default:
103 		return IORES_MAP_ENCRYPTED;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
116 		return;
117 
118 	if (!IS_ENABLED(CONFIG_EFI))
119 		return;
120 
121 	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 		desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126 
127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 	struct ioremap_desc *desc = arg;
130 
131 	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 		desc->flags |= __ioremap_check_ram(res);
133 
134 	if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 		desc->flags |= __ioremap_check_encrypted(res);
136 
137 	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140 
141 /*
142  * To avoid multiple resource walks, this function walks resources marked as
143  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145  *
146  * After that, deal with misc other ranges in __ioremap_check_other() which do
147  * not fall into the above category.
148  */
149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 				struct ioremap_desc *desc)
151 {
152 	u64 start, end;
153 
154 	start = (u64)addr;
155 	end = start + size - 1;
156 	memset(desc, 0, sizeof(struct ioremap_desc));
157 
158 	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159 
160 	__ioremap_check_other(addr, desc);
161 }
162 
163 /*
164  * Remap an arbitrary physical address space into the kernel virtual
165  * address space. It transparently creates kernel huge I/O mapping when
166  * the physical address is aligned by a huge page size (1GB or 2MB) and
167  * the requested size is at least the huge page size.
168  *
169  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170  * Therefore, the mapping code falls back to use a smaller page toward 4KB
171  * when a mapping range is covered by non-WB type of MTRRs.
172  *
173  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174  * have to convert them into an offset in a page-aligned mapping, but the
175  * caller shouldn't need to know that small detail.
176  */
177 static void __iomem *
178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 		 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 	unsigned long offset, vaddr;
182 	resource_size_t last_addr;
183 	const resource_size_t unaligned_phys_addr = phys_addr;
184 	const unsigned long unaligned_size = size;
185 	struct ioremap_desc io_desc;
186 	struct vm_struct *area;
187 	enum page_cache_mode new_pcm;
188 	pgprot_t prot;
189 	int retval;
190 	void __iomem *ret_addr;
191 
192 	/* Don't allow wraparound or zero size */
193 	last_addr = phys_addr + size - 1;
194 	if (!size || last_addr < phys_addr)
195 		return NULL;
196 
197 	if (!phys_addr_valid(phys_addr)) {
198 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 		       (unsigned long long)phys_addr);
200 		WARN_ON_ONCE(1);
201 		return NULL;
202 	}
203 
204 	__ioremap_check_mem(phys_addr, size, &io_desc);
205 
206 	/*
207 	 * Don't allow anybody to remap normal RAM that we're using..
208 	 */
209 	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 			  &phys_addr, &last_addr);
212 		return NULL;
213 	}
214 
215 	/*
216 	 * Mappings have to be page-aligned
217 	 */
218 	offset = phys_addr & ~PAGE_MASK;
219 	phys_addr &= PHYSICAL_PAGE_MASK;
220 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
221 
222 	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223 						pcm, &new_pcm);
224 	if (retval) {
225 		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226 		return NULL;
227 	}
228 
229 	if (pcm != new_pcm) {
230 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231 			printk(KERN_ERR
232 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233 				(unsigned long long)phys_addr,
234 				(unsigned long long)(phys_addr + size),
235 				pcm, new_pcm);
236 			goto err_free_memtype;
237 		}
238 		pcm = new_pcm;
239 	}
240 
241 	/*
242 	 * If the page being mapped is in memory and SEV is active then
243 	 * make sure the memory encryption attribute is enabled in the
244 	 * resulting mapping.
245 	 */
246 	prot = PAGE_KERNEL_IO;
247 	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248 		prot = pgprot_encrypted(prot);
249 
250 	switch (pcm) {
251 	case _PAGE_CACHE_MODE_UC:
252 	default:
253 		prot = __pgprot(pgprot_val(prot) |
254 				cachemode2protval(_PAGE_CACHE_MODE_UC));
255 		break;
256 	case _PAGE_CACHE_MODE_UC_MINUS:
257 		prot = __pgprot(pgprot_val(prot) |
258 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
259 		break;
260 	case _PAGE_CACHE_MODE_WC:
261 		prot = __pgprot(pgprot_val(prot) |
262 				cachemode2protval(_PAGE_CACHE_MODE_WC));
263 		break;
264 	case _PAGE_CACHE_MODE_WT:
265 		prot = __pgprot(pgprot_val(prot) |
266 				cachemode2protval(_PAGE_CACHE_MODE_WT));
267 		break;
268 	case _PAGE_CACHE_MODE_WB:
269 		break;
270 	}
271 
272 	/*
273 	 * Ok, go for it..
274 	 */
275 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
276 	if (!area)
277 		goto err_free_memtype;
278 	area->phys_addr = phys_addr;
279 	vaddr = (unsigned long) area->addr;
280 
281 	if (memtype_kernel_map_sync(phys_addr, size, pcm))
282 		goto err_free_area;
283 
284 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
285 		goto err_free_area;
286 
287 	ret_addr = (void __iomem *) (vaddr + offset);
288 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
289 
290 	/*
291 	 * Check if the request spans more than any BAR in the iomem resource
292 	 * tree.
293 	 */
294 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295 		pr_warn("caller %pS mapping multiple BARs\n", caller);
296 
297 	return ret_addr;
298 err_free_area:
299 	free_vm_area(area);
300 err_free_memtype:
301 	memtype_free(phys_addr, phys_addr + size);
302 	return NULL;
303 }
304 
305 /**
306  * ioremap     -   map bus memory into CPU space
307  * @phys_addr:    bus address of the memory
308  * @size:      size of the resource to map
309  *
310  * ioremap performs a platform specific sequence of operations to
311  * make bus memory CPU accessible via the readb/readw/readl/writeb/
312  * writew/writel functions and the other mmio helpers. The returned
313  * address is not guaranteed to be usable directly as a virtual
314  * address.
315  *
316  * This version of ioremap ensures that the memory is marked uncachable
317  * on the CPU as well as honouring existing caching rules from things like
318  * the PCI bus. Note that there are other caches and buffers on many
319  * busses. In particular driver authors should read up on PCI writes
320  *
321  * It's useful if some control registers are in such an area and
322  * write combining or read caching is not desirable:
323  *
324  * Must be freed with iounmap.
325  */
326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
327 {
328 	/*
329 	 * Ideally, this should be:
330 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
331 	 *
332 	 * Till we fix all X drivers to use ioremap_wc(), we will use
333 	 * UC MINUS. Drivers that are certain they need or can already
334 	 * be converted over to strong UC can use ioremap_uc().
335 	 */
336 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
337 
338 	return __ioremap_caller(phys_addr, size, pcm,
339 				__builtin_return_address(0), false);
340 }
341 EXPORT_SYMBOL(ioremap);
342 
343 /**
344  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
345  * @phys_addr:    bus address of the memory
346  * @size:      size of the resource to map
347  *
348  * ioremap_uc performs a platform specific sequence of operations to
349  * make bus memory CPU accessible via the readb/readw/readl/writeb/
350  * writew/writel functions and the other mmio helpers. The returned
351  * address is not guaranteed to be usable directly as a virtual
352  * address.
353  *
354  * This version of ioremap ensures that the memory is marked with a strong
355  * preference as completely uncachable on the CPU when possible. For non-PAT
356  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357  * systems this will set the PAT entry for the pages as strong UC.  This call
358  * will honor existing caching rules from things like the PCI bus. Note that
359  * there are other caches and buffers on many busses. In particular driver
360  * authors should read up on PCI writes.
361  *
362  * It's useful if some control registers are in such an area and
363  * write combining or read caching is not desirable:
364  *
365  * Must be freed with iounmap.
366  */
367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
368 {
369 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
370 
371 	return __ioremap_caller(phys_addr, size, pcm,
372 				__builtin_return_address(0), false);
373 }
374 EXPORT_SYMBOL_GPL(ioremap_uc);
375 
376 /**
377  * ioremap_wc	-	map memory into CPU space write combined
378  * @phys_addr:	bus address of the memory
379  * @size:	size of the resource to map
380  *
381  * This version of ioremap ensures that the memory is marked write combining.
382  * Write combining allows faster writes to some hardware devices.
383  *
384  * Must be freed with iounmap.
385  */
386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
387 {
388 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389 					__builtin_return_address(0), false);
390 }
391 EXPORT_SYMBOL(ioremap_wc);
392 
393 /**
394  * ioremap_wt	-	map memory into CPU space write through
395  * @phys_addr:	bus address of the memory
396  * @size:	size of the resource to map
397  *
398  * This version of ioremap ensures that the memory is marked write through.
399  * Write through stores data into memory while keeping the cache up-to-date.
400  *
401  * Must be freed with iounmap.
402  */
403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
404 {
405 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406 					__builtin_return_address(0), false);
407 }
408 EXPORT_SYMBOL(ioremap_wt);
409 
410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
411 {
412 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413 				__builtin_return_address(0), true);
414 }
415 EXPORT_SYMBOL(ioremap_encrypted);
416 
417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
418 {
419 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420 				__builtin_return_address(0), false);
421 }
422 EXPORT_SYMBOL(ioremap_cache);
423 
424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425 				unsigned long prot_val)
426 {
427 	return __ioremap_caller(phys_addr, size,
428 				pgprot2cachemode(__pgprot(prot_val)),
429 				__builtin_return_address(0), false);
430 }
431 EXPORT_SYMBOL(ioremap_prot);
432 
433 /**
434  * iounmap - Free a IO remapping
435  * @addr: virtual address from ioremap_*
436  *
437  * Caller must ensure there is only one unmapping for the same pointer.
438  */
439 void iounmap(volatile void __iomem *addr)
440 {
441 	struct vm_struct *p, *o;
442 
443 	if ((void __force *)addr <= high_memory)
444 		return;
445 
446 	/*
447 	 * The PCI/ISA range special-casing was removed from __ioremap()
448 	 * so this check, in theory, can be removed. However, there are
449 	 * cases where iounmap() is called for addresses not obtained via
450 	 * ioremap() (vga16fb for example). Add a warning so that these
451 	 * cases can be caught and fixed.
452 	 */
453 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
456 		return;
457 	}
458 
459 	mmiotrace_iounmap(addr);
460 
461 	addr = (volatile void __iomem *)
462 		(PAGE_MASK & (unsigned long __force)addr);
463 
464 	/* Use the vm area unlocked, assuming the caller
465 	   ensures there isn't another iounmap for the same address
466 	   in parallel. Reuse of the virtual address is prevented by
467 	   leaving it in the global lists until we're done with it.
468 	   cpa takes care of the direct mappings. */
469 	p = find_vm_area((void __force *)addr);
470 
471 	if (!p) {
472 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
473 		dump_stack();
474 		return;
475 	}
476 
477 	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
478 
479 	/* Finally remove it */
480 	o = remove_vm_area((void __force *)addr);
481 	BUG_ON(p != o || o == NULL);
482 	kfree(p);
483 }
484 EXPORT_SYMBOL(iounmap);
485 
486 /*
487  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
488  * access
489  */
490 void *xlate_dev_mem_ptr(phys_addr_t phys)
491 {
492 	unsigned long start  = phys &  PAGE_MASK;
493 	unsigned long offset = phys & ~PAGE_MASK;
494 	void *vaddr;
495 
496 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
497 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
498 
499 	/* Only add the offset on success and return NULL if memremap() failed */
500 	if (vaddr)
501 		vaddr += offset;
502 
503 	return vaddr;
504 }
505 
506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
507 {
508 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
509 }
510 
511 #ifdef CONFIG_AMD_MEM_ENCRYPT
512 /*
513  * Examine the physical address to determine if it is an area of memory
514  * that should be mapped decrypted.  If the memory is not part of the
515  * kernel usable area it was accessed and created decrypted, so these
516  * areas should be mapped decrypted. And since the encryption key can
517  * change across reboots, persistent memory should also be mapped
518  * decrypted.
519  *
520  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
521  * only persistent memory should be mapped decrypted.
522  */
523 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
524 					  unsigned long size)
525 {
526 	int is_pmem;
527 
528 	/*
529 	 * Check if the address is part of a persistent memory region.
530 	 * This check covers areas added by E820, EFI and ACPI.
531 	 */
532 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
533 				    IORES_DESC_PERSISTENT_MEMORY);
534 	if (is_pmem != REGION_DISJOINT)
535 		return true;
536 
537 	/*
538 	 * Check if the non-volatile attribute is set for an EFI
539 	 * reserved area.
540 	 */
541 	if (efi_enabled(EFI_BOOT)) {
542 		switch (efi_mem_type(phys_addr)) {
543 		case EFI_RESERVED_TYPE:
544 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
545 				return true;
546 			break;
547 		default:
548 			break;
549 		}
550 	}
551 
552 	/* Check if the address is outside kernel usable area */
553 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
554 	case E820_TYPE_RESERVED:
555 	case E820_TYPE_ACPI:
556 	case E820_TYPE_NVS:
557 	case E820_TYPE_UNUSABLE:
558 		/* For SEV, these areas are encrypted */
559 		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
560 			break;
561 		fallthrough;
562 
563 	case E820_TYPE_PRAM:
564 		return true;
565 	default:
566 		break;
567 	}
568 
569 	return false;
570 }
571 
572 /*
573  * Examine the physical address to determine if it is EFI data. Check
574  * it against the boot params structure and EFI tables and memory types.
575  */
576 static bool memremap_is_efi_data(resource_size_t phys_addr,
577 				 unsigned long size)
578 {
579 	u64 paddr;
580 
581 	/* Check if the address is part of EFI boot/runtime data */
582 	if (!efi_enabled(EFI_BOOT))
583 		return false;
584 
585 	paddr = boot_params.efi_info.efi_memmap_hi;
586 	paddr <<= 32;
587 	paddr |= boot_params.efi_info.efi_memmap;
588 	if (phys_addr == paddr)
589 		return true;
590 
591 	paddr = boot_params.efi_info.efi_systab_hi;
592 	paddr <<= 32;
593 	paddr |= boot_params.efi_info.efi_systab;
594 	if (phys_addr == paddr)
595 		return true;
596 
597 	if (efi_is_table_address(phys_addr))
598 		return true;
599 
600 	switch (efi_mem_type(phys_addr)) {
601 	case EFI_BOOT_SERVICES_DATA:
602 	case EFI_RUNTIME_SERVICES_DATA:
603 		return true;
604 	default:
605 		break;
606 	}
607 
608 	return false;
609 }
610 
611 /*
612  * Examine the physical address to determine if it is boot data by checking
613  * it against the boot params setup_data chain.
614  */
615 static bool memremap_is_setup_data(resource_size_t phys_addr,
616 				   unsigned long size)
617 {
618 	struct setup_indirect *indirect;
619 	struct setup_data *data;
620 	u64 paddr, paddr_next;
621 
622 	paddr = boot_params.hdr.setup_data;
623 	while (paddr) {
624 		unsigned int len;
625 
626 		if (phys_addr == paddr)
627 			return true;
628 
629 		data = memremap(paddr, sizeof(*data),
630 				MEMREMAP_WB | MEMREMAP_DEC);
631 		if (!data) {
632 			pr_warn("failed to memremap setup_data entry\n");
633 			return false;
634 		}
635 
636 		paddr_next = data->next;
637 		len = data->len;
638 
639 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
640 			memunmap(data);
641 			return true;
642 		}
643 
644 		if (data->type == SETUP_INDIRECT) {
645 			memunmap(data);
646 			data = memremap(paddr, sizeof(*data) + len,
647 					MEMREMAP_WB | MEMREMAP_DEC);
648 			if (!data) {
649 				pr_warn("failed to memremap indirect setup_data\n");
650 				return false;
651 			}
652 
653 			indirect = (struct setup_indirect *)data->data;
654 
655 			if (indirect->type != SETUP_INDIRECT) {
656 				paddr = indirect->addr;
657 				len = indirect->len;
658 			}
659 		}
660 
661 		memunmap(data);
662 
663 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
664 			return true;
665 
666 		paddr = paddr_next;
667 	}
668 
669 	return false;
670 }
671 
672 /*
673  * Examine the physical address to determine if it is boot data by checking
674  * it against the boot params setup_data chain (early boot version).
675  */
676 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
677 						unsigned long size)
678 {
679 	struct setup_indirect *indirect;
680 	struct setup_data *data;
681 	u64 paddr, paddr_next;
682 
683 	paddr = boot_params.hdr.setup_data;
684 	while (paddr) {
685 		unsigned int len, size;
686 
687 		if (phys_addr == paddr)
688 			return true;
689 
690 		data = early_memremap_decrypted(paddr, sizeof(*data));
691 		if (!data) {
692 			pr_warn("failed to early memremap setup_data entry\n");
693 			return false;
694 		}
695 
696 		size = sizeof(*data);
697 
698 		paddr_next = data->next;
699 		len = data->len;
700 
701 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
702 			early_memunmap(data, sizeof(*data));
703 			return true;
704 		}
705 
706 		if (data->type == SETUP_INDIRECT) {
707 			size += len;
708 			early_memunmap(data, sizeof(*data));
709 			data = early_memremap_decrypted(paddr, size);
710 			if (!data) {
711 				pr_warn("failed to early memremap indirect setup_data\n");
712 				return false;
713 			}
714 
715 			indirect = (struct setup_indirect *)data->data;
716 
717 			if (indirect->type != SETUP_INDIRECT) {
718 				paddr = indirect->addr;
719 				len = indirect->len;
720 			}
721 		}
722 
723 		early_memunmap(data, size);
724 
725 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
726 			return true;
727 
728 		paddr = paddr_next;
729 	}
730 
731 	return false;
732 }
733 
734 /*
735  * Architecture function to determine if RAM remap is allowed. By default, a
736  * RAM remap will map the data as encrypted. Determine if a RAM remap should
737  * not be done so that the data will be mapped decrypted.
738  */
739 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
740 				 unsigned long flags)
741 {
742 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
743 		return true;
744 
745 	if (flags & MEMREMAP_ENC)
746 		return true;
747 
748 	if (flags & MEMREMAP_DEC)
749 		return false;
750 
751 	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
752 		if (memremap_is_setup_data(phys_addr, size) ||
753 		    memremap_is_efi_data(phys_addr, size))
754 			return false;
755 	}
756 
757 	return !memremap_should_map_decrypted(phys_addr, size);
758 }
759 
760 /*
761  * Architecture override of __weak function to adjust the protection attributes
762  * used when remapping memory. By default, early_memremap() will map the data
763  * as encrypted. Determine if an encrypted mapping should not be done and set
764  * the appropriate protection attributes.
765  */
766 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
767 					     unsigned long size,
768 					     pgprot_t prot)
769 {
770 	bool encrypted_prot;
771 
772 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
773 		return prot;
774 
775 	encrypted_prot = true;
776 
777 	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
778 		if (early_memremap_is_setup_data(phys_addr, size) ||
779 		    memremap_is_efi_data(phys_addr, size))
780 			encrypted_prot = false;
781 	}
782 
783 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
784 		encrypted_prot = false;
785 
786 	return encrypted_prot ? pgprot_encrypted(prot)
787 			      : pgprot_decrypted(prot);
788 }
789 
790 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
791 {
792 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
793 }
794 
795 /* Remap memory with encryption */
796 void __init *early_memremap_encrypted(resource_size_t phys_addr,
797 				      unsigned long size)
798 {
799 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
800 }
801 
802 /*
803  * Remap memory with encryption and write-protected - cannot be called
804  * before pat_init() is called
805  */
806 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
807 					 unsigned long size)
808 {
809 	if (!x86_has_pat_wp())
810 		return NULL;
811 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
812 }
813 
814 /* Remap memory without encryption */
815 void __init *early_memremap_decrypted(resource_size_t phys_addr,
816 				      unsigned long size)
817 {
818 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
819 }
820 
821 /*
822  * Remap memory without encryption and write-protected - cannot be called
823  * before pat_init() is called
824  */
825 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
826 					 unsigned long size)
827 {
828 	if (!x86_has_pat_wp())
829 		return NULL;
830 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
831 }
832 #endif	/* CONFIG_AMD_MEM_ENCRYPT */
833 
834 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
835 
836 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
837 {
838 	/* Don't assume we're using swapper_pg_dir at this point */
839 	pgd_t *base = __va(read_cr3_pa());
840 	pgd_t *pgd = &base[pgd_index(addr)];
841 	p4d_t *p4d = p4d_offset(pgd, addr);
842 	pud_t *pud = pud_offset(p4d, addr);
843 	pmd_t *pmd = pmd_offset(pud, addr);
844 
845 	return pmd;
846 }
847 
848 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
849 {
850 	return &bm_pte[pte_index(addr)];
851 }
852 
853 bool __init is_early_ioremap_ptep(pte_t *ptep)
854 {
855 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
856 }
857 
858 void __init early_ioremap_init(void)
859 {
860 	pmd_t *pmd;
861 
862 #ifdef CONFIG_X86_64
863 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
864 #else
865 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
866 #endif
867 
868 	early_ioremap_setup();
869 
870 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
871 	memset(bm_pte, 0, sizeof(bm_pte));
872 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
873 
874 	/*
875 	 * The boot-ioremap range spans multiple pmds, for which
876 	 * we are not prepared:
877 	 */
878 #define __FIXADDR_TOP (-PAGE_SIZE)
879 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
880 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
881 #undef __FIXADDR_TOP
882 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
883 		WARN_ON(1);
884 		printk(KERN_WARNING "pmd %p != %p\n",
885 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
886 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
887 			fix_to_virt(FIX_BTMAP_BEGIN));
888 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
889 			fix_to_virt(FIX_BTMAP_END));
890 
891 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
892 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
893 		       FIX_BTMAP_BEGIN);
894 	}
895 }
896 
897 void __init __early_set_fixmap(enum fixed_addresses idx,
898 			       phys_addr_t phys, pgprot_t flags)
899 {
900 	unsigned long addr = __fix_to_virt(idx);
901 	pte_t *pte;
902 
903 	if (idx >= __end_of_fixed_addresses) {
904 		BUG();
905 		return;
906 	}
907 	pte = early_ioremap_pte(addr);
908 
909 	/* Sanitize 'prot' against any unsupported bits: */
910 	pgprot_val(flags) &= __supported_pte_mask;
911 
912 	if (pgprot_val(flags))
913 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
914 	else
915 		pte_clear(&init_mm, addr, pte);
916 	flush_tlb_one_kernel(addr);
917 }
918