1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mmiotrace.h> 17 #include <linux/cc_platform.h> 18 #include <linux/efi.h> 19 #include <linux/pgtable.h> 20 21 #include <asm/set_memory.h> 22 #include <asm/e820/api.h> 23 #include <asm/efi.h> 24 #include <asm/fixmap.h> 25 #include <asm/tlbflush.h> 26 #include <asm/pgalloc.h> 27 #include <asm/memtype.h> 28 #include <asm/setup.h> 29 30 #include "physaddr.h" 31 32 /* 33 * Descriptor controlling ioremap() behavior. 34 */ 35 struct ioremap_desc { 36 unsigned int flags; 37 }; 38 39 /* 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute 41 * conflicts. 42 */ 43 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 44 enum page_cache_mode pcm) 45 { 46 unsigned long nrpages = size >> PAGE_SHIFT; 47 int err; 48 49 switch (pcm) { 50 case _PAGE_CACHE_MODE_UC: 51 default: 52 err = _set_memory_uc(vaddr, nrpages); 53 break; 54 case _PAGE_CACHE_MODE_WC: 55 err = _set_memory_wc(vaddr, nrpages); 56 break; 57 case _PAGE_CACHE_MODE_WT: 58 err = _set_memory_wt(vaddr, nrpages); 59 break; 60 case _PAGE_CACHE_MODE_WB: 61 err = _set_memory_wb(vaddr, nrpages); 62 break; 63 } 64 65 return err; 66 } 67 68 /* Does the range (or a subset of) contain normal RAM? */ 69 static unsigned int __ioremap_check_ram(struct resource *res) 70 { 71 unsigned long start_pfn, stop_pfn; 72 unsigned long i; 73 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 75 return 0; 76 77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 79 if (stop_pfn > start_pfn) { 80 for (i = 0; i < (stop_pfn - start_pfn); ++i) 81 if (pfn_valid(start_pfn + i) && 82 !PageReserved(pfn_to_page(start_pfn + i))) 83 return IORES_MAP_SYSTEM_RAM; 84 } 85 86 return 0; 87 } 88 89 /* 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 91 * there the whole memory is already encrypted. 92 */ 93 static unsigned int __ioremap_check_encrypted(struct resource *res) 94 { 95 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 96 return 0; 97 98 switch (res->desc) { 99 case IORES_DESC_NONE: 100 case IORES_DESC_RESERVED: 101 break; 102 default: 103 return IORES_MAP_ENCRYPTED; 104 } 105 106 return 0; 107 } 108 109 /* 110 * The EFI runtime services data area is not covered by walk_mem_res(), but must 111 * be mapped encrypted when SEV is active. 112 */ 113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 114 { 115 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 116 return; 117 118 if (!IS_ENABLED(CONFIG_EFI)) 119 return; 120 121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA || 122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA && 123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME)) 124 desc->flags |= IORES_MAP_ENCRYPTED; 125 } 126 127 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 128 { 129 struct ioremap_desc *desc = arg; 130 131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 132 desc->flags |= __ioremap_check_ram(res); 133 134 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 135 desc->flags |= __ioremap_check_encrypted(res); 136 137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 139 } 140 141 /* 142 * To avoid multiple resource walks, this function walks resources marked as 143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 145 * 146 * After that, deal with misc other ranges in __ioremap_check_other() which do 147 * not fall into the above category. 148 */ 149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 150 struct ioremap_desc *desc) 151 { 152 u64 start, end; 153 154 start = (u64)addr; 155 end = start + size - 1; 156 memset(desc, 0, sizeof(struct ioremap_desc)); 157 158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 159 160 __ioremap_check_other(addr, desc); 161 } 162 163 /* 164 * Remap an arbitrary physical address space into the kernel virtual 165 * address space. It transparently creates kernel huge I/O mapping when 166 * the physical address is aligned by a huge page size (1GB or 2MB) and 167 * the requested size is at least the huge page size. 168 * 169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 170 * Therefore, the mapping code falls back to use a smaller page toward 4KB 171 * when a mapping range is covered by non-WB type of MTRRs. 172 * 173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 174 * have to convert them into an offset in a page-aligned mapping, but the 175 * caller shouldn't need to know that small detail. 176 */ 177 static void __iomem * 178 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 179 enum page_cache_mode pcm, void *caller, bool encrypted) 180 { 181 unsigned long offset, vaddr; 182 resource_size_t last_addr; 183 const resource_size_t unaligned_phys_addr = phys_addr; 184 const unsigned long unaligned_size = size; 185 struct ioremap_desc io_desc; 186 struct vm_struct *area; 187 enum page_cache_mode new_pcm; 188 pgprot_t prot; 189 int retval; 190 void __iomem *ret_addr; 191 192 /* Don't allow wraparound or zero size */ 193 last_addr = phys_addr + size - 1; 194 if (!size || last_addr < phys_addr) 195 return NULL; 196 197 if (!phys_addr_valid(phys_addr)) { 198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 199 (unsigned long long)phys_addr); 200 WARN_ON_ONCE(1); 201 return NULL; 202 } 203 204 __ioremap_check_mem(phys_addr, size, &io_desc); 205 206 /* 207 * Don't allow anybody to remap normal RAM that we're using.. 208 */ 209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 211 &phys_addr, &last_addr); 212 return NULL; 213 } 214 215 /* 216 * Mappings have to be page-aligned 217 */ 218 offset = phys_addr & ~PAGE_MASK; 219 phys_addr &= PHYSICAL_PAGE_MASK; 220 size = PAGE_ALIGN(last_addr+1) - phys_addr; 221 222 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 223 pcm, &new_pcm); 224 if (retval) { 225 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 226 return NULL; 227 } 228 229 if (pcm != new_pcm) { 230 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 231 printk(KERN_ERR 232 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 233 (unsigned long long)phys_addr, 234 (unsigned long long)(phys_addr + size), 235 pcm, new_pcm); 236 goto err_free_memtype; 237 } 238 pcm = new_pcm; 239 } 240 241 /* 242 * If the page being mapped is in memory and SEV is active then 243 * make sure the memory encryption attribute is enabled in the 244 * resulting mapping. 245 */ 246 prot = PAGE_KERNEL_IO; 247 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 248 prot = pgprot_encrypted(prot); 249 250 switch (pcm) { 251 case _PAGE_CACHE_MODE_UC: 252 default: 253 prot = __pgprot(pgprot_val(prot) | 254 cachemode2protval(_PAGE_CACHE_MODE_UC)); 255 break; 256 case _PAGE_CACHE_MODE_UC_MINUS: 257 prot = __pgprot(pgprot_val(prot) | 258 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 259 break; 260 case _PAGE_CACHE_MODE_WC: 261 prot = __pgprot(pgprot_val(prot) | 262 cachemode2protval(_PAGE_CACHE_MODE_WC)); 263 break; 264 case _PAGE_CACHE_MODE_WT: 265 prot = __pgprot(pgprot_val(prot) | 266 cachemode2protval(_PAGE_CACHE_MODE_WT)); 267 break; 268 case _PAGE_CACHE_MODE_WB: 269 break; 270 } 271 272 /* 273 * Ok, go for it.. 274 */ 275 area = get_vm_area_caller(size, VM_IOREMAP, caller); 276 if (!area) 277 goto err_free_memtype; 278 area->phys_addr = phys_addr; 279 vaddr = (unsigned long) area->addr; 280 281 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 282 goto err_free_area; 283 284 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 285 goto err_free_area; 286 287 ret_addr = (void __iomem *) (vaddr + offset); 288 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 289 290 /* 291 * Check if the request spans more than any BAR in the iomem resource 292 * tree. 293 */ 294 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 295 pr_warn("caller %pS mapping multiple BARs\n", caller); 296 297 return ret_addr; 298 err_free_area: 299 free_vm_area(area); 300 err_free_memtype: 301 memtype_free(phys_addr, phys_addr + size); 302 return NULL; 303 } 304 305 /** 306 * ioremap - map bus memory into CPU space 307 * @phys_addr: bus address of the memory 308 * @size: size of the resource to map 309 * 310 * ioremap performs a platform specific sequence of operations to 311 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 312 * writew/writel functions and the other mmio helpers. The returned 313 * address is not guaranteed to be usable directly as a virtual 314 * address. 315 * 316 * This version of ioremap ensures that the memory is marked uncachable 317 * on the CPU as well as honouring existing caching rules from things like 318 * the PCI bus. Note that there are other caches and buffers on many 319 * busses. In particular driver authors should read up on PCI writes 320 * 321 * It's useful if some control registers are in such an area and 322 * write combining or read caching is not desirable: 323 * 324 * Must be freed with iounmap. 325 */ 326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 327 { 328 /* 329 * Ideally, this should be: 330 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 331 * 332 * Till we fix all X drivers to use ioremap_wc(), we will use 333 * UC MINUS. Drivers that are certain they need or can already 334 * be converted over to strong UC can use ioremap_uc(). 335 */ 336 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 337 338 return __ioremap_caller(phys_addr, size, pcm, 339 __builtin_return_address(0), false); 340 } 341 EXPORT_SYMBOL(ioremap); 342 343 /** 344 * ioremap_uc - map bus memory into CPU space as strongly uncachable 345 * @phys_addr: bus address of the memory 346 * @size: size of the resource to map 347 * 348 * ioremap_uc performs a platform specific sequence of operations to 349 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 350 * writew/writel functions and the other mmio helpers. The returned 351 * address is not guaranteed to be usable directly as a virtual 352 * address. 353 * 354 * This version of ioremap ensures that the memory is marked with a strong 355 * preference as completely uncachable on the CPU when possible. For non-PAT 356 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 357 * systems this will set the PAT entry for the pages as strong UC. This call 358 * will honor existing caching rules from things like the PCI bus. Note that 359 * there are other caches and buffers on many busses. In particular driver 360 * authors should read up on PCI writes. 361 * 362 * It's useful if some control registers are in such an area and 363 * write combining or read caching is not desirable: 364 * 365 * Must be freed with iounmap. 366 */ 367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 368 { 369 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 370 371 return __ioremap_caller(phys_addr, size, pcm, 372 __builtin_return_address(0), false); 373 } 374 EXPORT_SYMBOL_GPL(ioremap_uc); 375 376 /** 377 * ioremap_wc - map memory into CPU space write combined 378 * @phys_addr: bus address of the memory 379 * @size: size of the resource to map 380 * 381 * This version of ioremap ensures that the memory is marked write combining. 382 * Write combining allows faster writes to some hardware devices. 383 * 384 * Must be freed with iounmap. 385 */ 386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 387 { 388 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 389 __builtin_return_address(0), false); 390 } 391 EXPORT_SYMBOL(ioremap_wc); 392 393 /** 394 * ioremap_wt - map memory into CPU space write through 395 * @phys_addr: bus address of the memory 396 * @size: size of the resource to map 397 * 398 * This version of ioremap ensures that the memory is marked write through. 399 * Write through stores data into memory while keeping the cache up-to-date. 400 * 401 * Must be freed with iounmap. 402 */ 403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 404 { 405 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 406 __builtin_return_address(0), false); 407 } 408 EXPORT_SYMBOL(ioremap_wt); 409 410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 411 { 412 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 413 __builtin_return_address(0), true); 414 } 415 EXPORT_SYMBOL(ioremap_encrypted); 416 417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 418 { 419 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 420 __builtin_return_address(0), false); 421 } 422 EXPORT_SYMBOL(ioremap_cache); 423 424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 425 unsigned long prot_val) 426 { 427 return __ioremap_caller(phys_addr, size, 428 pgprot2cachemode(__pgprot(prot_val)), 429 __builtin_return_address(0), false); 430 } 431 EXPORT_SYMBOL(ioremap_prot); 432 433 /** 434 * iounmap - Free a IO remapping 435 * @addr: virtual address from ioremap_* 436 * 437 * Caller must ensure there is only one unmapping for the same pointer. 438 */ 439 void iounmap(volatile void __iomem *addr) 440 { 441 struct vm_struct *p, *o; 442 443 if ((void __force *)addr <= high_memory) 444 return; 445 446 /* 447 * The PCI/ISA range special-casing was removed from __ioremap() 448 * so this check, in theory, can be removed. However, there are 449 * cases where iounmap() is called for addresses not obtained via 450 * ioremap() (vga16fb for example). Add a warning so that these 451 * cases can be caught and fixed. 452 */ 453 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 454 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 455 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 456 return; 457 } 458 459 mmiotrace_iounmap(addr); 460 461 addr = (volatile void __iomem *) 462 (PAGE_MASK & (unsigned long __force)addr); 463 464 /* Use the vm area unlocked, assuming the caller 465 ensures there isn't another iounmap for the same address 466 in parallel. Reuse of the virtual address is prevented by 467 leaving it in the global lists until we're done with it. 468 cpa takes care of the direct mappings. */ 469 p = find_vm_area((void __force *)addr); 470 471 if (!p) { 472 printk(KERN_ERR "iounmap: bad address %p\n", addr); 473 dump_stack(); 474 return; 475 } 476 477 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 478 479 /* Finally remove it */ 480 o = remove_vm_area((void __force *)addr); 481 BUG_ON(p != o || o == NULL); 482 kfree(p); 483 } 484 EXPORT_SYMBOL(iounmap); 485 486 /* 487 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 488 * access 489 */ 490 void *xlate_dev_mem_ptr(phys_addr_t phys) 491 { 492 unsigned long start = phys & PAGE_MASK; 493 unsigned long offset = phys & ~PAGE_MASK; 494 void *vaddr; 495 496 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 497 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 498 499 /* Only add the offset on success and return NULL if memremap() failed */ 500 if (vaddr) 501 vaddr += offset; 502 503 return vaddr; 504 } 505 506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 507 { 508 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 509 } 510 511 #ifdef CONFIG_AMD_MEM_ENCRYPT 512 /* 513 * Examine the physical address to determine if it is an area of memory 514 * that should be mapped decrypted. If the memory is not part of the 515 * kernel usable area it was accessed and created decrypted, so these 516 * areas should be mapped decrypted. And since the encryption key can 517 * change across reboots, persistent memory should also be mapped 518 * decrypted. 519 * 520 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 521 * only persistent memory should be mapped decrypted. 522 */ 523 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 524 unsigned long size) 525 { 526 int is_pmem; 527 528 /* 529 * Check if the address is part of a persistent memory region. 530 * This check covers areas added by E820, EFI and ACPI. 531 */ 532 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 533 IORES_DESC_PERSISTENT_MEMORY); 534 if (is_pmem != REGION_DISJOINT) 535 return true; 536 537 /* 538 * Check if the non-volatile attribute is set for an EFI 539 * reserved area. 540 */ 541 if (efi_enabled(EFI_BOOT)) { 542 switch (efi_mem_type(phys_addr)) { 543 case EFI_RESERVED_TYPE: 544 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 545 return true; 546 break; 547 default: 548 break; 549 } 550 } 551 552 /* Check if the address is outside kernel usable area */ 553 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 554 case E820_TYPE_RESERVED: 555 case E820_TYPE_ACPI: 556 case E820_TYPE_NVS: 557 case E820_TYPE_UNUSABLE: 558 /* For SEV, these areas are encrypted */ 559 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 560 break; 561 fallthrough; 562 563 case E820_TYPE_PRAM: 564 return true; 565 default: 566 break; 567 } 568 569 return false; 570 } 571 572 /* 573 * Examine the physical address to determine if it is EFI data. Check 574 * it against the boot params structure and EFI tables and memory types. 575 */ 576 static bool memremap_is_efi_data(resource_size_t phys_addr, 577 unsigned long size) 578 { 579 u64 paddr; 580 581 /* Check if the address is part of EFI boot/runtime data */ 582 if (!efi_enabled(EFI_BOOT)) 583 return false; 584 585 paddr = boot_params.efi_info.efi_memmap_hi; 586 paddr <<= 32; 587 paddr |= boot_params.efi_info.efi_memmap; 588 if (phys_addr == paddr) 589 return true; 590 591 paddr = boot_params.efi_info.efi_systab_hi; 592 paddr <<= 32; 593 paddr |= boot_params.efi_info.efi_systab; 594 if (phys_addr == paddr) 595 return true; 596 597 if (efi_is_table_address(phys_addr)) 598 return true; 599 600 switch (efi_mem_type(phys_addr)) { 601 case EFI_BOOT_SERVICES_DATA: 602 case EFI_RUNTIME_SERVICES_DATA: 603 return true; 604 default: 605 break; 606 } 607 608 return false; 609 } 610 611 /* 612 * Examine the physical address to determine if it is boot data by checking 613 * it against the boot params setup_data chain. 614 */ 615 static bool memremap_is_setup_data(resource_size_t phys_addr, 616 unsigned long size) 617 { 618 struct setup_data *data; 619 u64 paddr, paddr_next; 620 621 paddr = boot_params.hdr.setup_data; 622 while (paddr) { 623 unsigned int len; 624 625 if (phys_addr == paddr) 626 return true; 627 628 data = memremap(paddr, sizeof(*data), 629 MEMREMAP_WB | MEMREMAP_DEC); 630 631 paddr_next = data->next; 632 len = data->len; 633 634 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 635 memunmap(data); 636 return true; 637 } 638 639 if (data->type == SETUP_INDIRECT && 640 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { 641 paddr = ((struct setup_indirect *)data->data)->addr; 642 len = ((struct setup_indirect *)data->data)->len; 643 } 644 645 memunmap(data); 646 647 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 648 return true; 649 650 paddr = paddr_next; 651 } 652 653 return false; 654 } 655 656 /* 657 * Examine the physical address to determine if it is boot data by checking 658 * it against the boot params setup_data chain (early boot version). 659 */ 660 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 661 unsigned long size) 662 { 663 struct setup_data *data; 664 u64 paddr, paddr_next; 665 666 paddr = boot_params.hdr.setup_data; 667 while (paddr) { 668 unsigned int len; 669 670 if (phys_addr == paddr) 671 return true; 672 673 data = early_memremap_decrypted(paddr, sizeof(*data)); 674 675 paddr_next = data->next; 676 len = data->len; 677 678 early_memunmap(data, sizeof(*data)); 679 680 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 681 return true; 682 683 paddr = paddr_next; 684 } 685 686 return false; 687 } 688 689 /* 690 * Architecture function to determine if RAM remap is allowed. By default, a 691 * RAM remap will map the data as encrypted. Determine if a RAM remap should 692 * not be done so that the data will be mapped decrypted. 693 */ 694 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 695 unsigned long flags) 696 { 697 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 698 return true; 699 700 if (flags & MEMREMAP_ENC) 701 return true; 702 703 if (flags & MEMREMAP_DEC) 704 return false; 705 706 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 707 if (memremap_is_setup_data(phys_addr, size) || 708 memremap_is_efi_data(phys_addr, size)) 709 return false; 710 } 711 712 return !memremap_should_map_decrypted(phys_addr, size); 713 } 714 715 /* 716 * Architecture override of __weak function to adjust the protection attributes 717 * used when remapping memory. By default, early_memremap() will map the data 718 * as encrypted. Determine if an encrypted mapping should not be done and set 719 * the appropriate protection attributes. 720 */ 721 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 722 unsigned long size, 723 pgprot_t prot) 724 { 725 bool encrypted_prot; 726 727 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 728 return prot; 729 730 encrypted_prot = true; 731 732 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 733 if (early_memremap_is_setup_data(phys_addr, size) || 734 memremap_is_efi_data(phys_addr, size)) 735 encrypted_prot = false; 736 } 737 738 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 739 encrypted_prot = false; 740 741 return encrypted_prot ? pgprot_encrypted(prot) 742 : pgprot_decrypted(prot); 743 } 744 745 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 746 { 747 return arch_memremap_can_ram_remap(phys_addr, size, 0); 748 } 749 750 /* Remap memory with encryption */ 751 void __init *early_memremap_encrypted(resource_size_t phys_addr, 752 unsigned long size) 753 { 754 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 755 } 756 757 /* 758 * Remap memory with encryption and write-protected - cannot be called 759 * before pat_init() is called 760 */ 761 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 762 unsigned long size) 763 { 764 if (!x86_has_pat_wp()) 765 return NULL; 766 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 767 } 768 769 /* Remap memory without encryption */ 770 void __init *early_memremap_decrypted(resource_size_t phys_addr, 771 unsigned long size) 772 { 773 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 774 } 775 776 /* 777 * Remap memory without encryption and write-protected - cannot be called 778 * before pat_init() is called 779 */ 780 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 781 unsigned long size) 782 { 783 if (!x86_has_pat_wp()) 784 return NULL; 785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 786 } 787 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 788 789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 790 791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 792 { 793 /* Don't assume we're using swapper_pg_dir at this point */ 794 pgd_t *base = __va(read_cr3_pa()); 795 pgd_t *pgd = &base[pgd_index(addr)]; 796 p4d_t *p4d = p4d_offset(pgd, addr); 797 pud_t *pud = pud_offset(p4d, addr); 798 pmd_t *pmd = pmd_offset(pud, addr); 799 800 return pmd; 801 } 802 803 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 804 { 805 return &bm_pte[pte_index(addr)]; 806 } 807 808 bool __init is_early_ioremap_ptep(pte_t *ptep) 809 { 810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 811 } 812 813 void __init early_ioremap_init(void) 814 { 815 pmd_t *pmd; 816 817 #ifdef CONFIG_X86_64 818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 819 #else 820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 821 #endif 822 823 early_ioremap_setup(); 824 825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 826 memset(bm_pte, 0, sizeof(bm_pte)); 827 pmd_populate_kernel(&init_mm, pmd, bm_pte); 828 829 /* 830 * The boot-ioremap range spans multiple pmds, for which 831 * we are not prepared: 832 */ 833 #define __FIXADDR_TOP (-PAGE_SIZE) 834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 836 #undef __FIXADDR_TOP 837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 838 WARN_ON(1); 839 printk(KERN_WARNING "pmd %p != %p\n", 840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 842 fix_to_virt(FIX_BTMAP_BEGIN)); 843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 844 fix_to_virt(FIX_BTMAP_END)); 845 846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 848 FIX_BTMAP_BEGIN); 849 } 850 } 851 852 void __init __early_set_fixmap(enum fixed_addresses idx, 853 phys_addr_t phys, pgprot_t flags) 854 { 855 unsigned long addr = __fix_to_virt(idx); 856 pte_t *pte; 857 858 if (idx >= __end_of_fixed_addresses) { 859 BUG(); 860 return; 861 } 862 pte = early_ioremap_pte(addr); 863 864 /* Sanitize 'prot' against any unsupported bits: */ 865 pgprot_val(flags) &= __supported_pte_mask; 866 867 if (pgprot_val(flags)) 868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 869 else 870 pte_clear(&init_mm, addr, pte); 871 flush_tlb_one_kernel(addr); 872 } 873