1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 17 #include <asm/cacheflush.h> 18 #include <asm/e820.h> 19 #include <asm/fixmap.h> 20 #include <asm/pgtable.h> 21 #include <asm/tlbflush.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pat.h> 24 25 #include "physaddr.h" 26 27 /* 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute 29 * conflicts. 30 */ 31 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 32 enum page_cache_mode pcm) 33 { 34 unsigned long nrpages = size >> PAGE_SHIFT; 35 int err; 36 37 switch (pcm) { 38 case _PAGE_CACHE_MODE_UC: 39 default: 40 err = _set_memory_uc(vaddr, nrpages); 41 break; 42 case _PAGE_CACHE_MODE_WC: 43 err = _set_memory_wc(vaddr, nrpages); 44 break; 45 case _PAGE_CACHE_MODE_WB: 46 err = _set_memory_wb(vaddr, nrpages); 47 break; 48 } 49 50 return err; 51 } 52 53 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, 54 void *arg) 55 { 56 unsigned long i; 57 58 for (i = 0; i < nr_pages; ++i) 59 if (pfn_valid(start_pfn + i) && 60 !PageReserved(pfn_to_page(start_pfn + i))) 61 return 1; 62 63 WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn); 64 65 return 0; 66 } 67 68 /* 69 * Remap an arbitrary physical address space into the kernel virtual 70 * address space. It transparently creates kernel huge I/O mapping when 71 * the physical address is aligned by a huge page size (1GB or 2MB) and 72 * the requested size is at least the huge page size. 73 * 74 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 75 * Therefore, the mapping code falls back to use a smaller page toward 4KB 76 * when a mapping range is covered by non-WB type of MTRRs. 77 * 78 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 79 * have to convert them into an offset in a page-aligned mapping, but the 80 * caller shouldn't need to know that small detail. 81 */ 82 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 83 unsigned long size, enum page_cache_mode pcm, void *caller) 84 { 85 unsigned long offset, vaddr; 86 resource_size_t pfn, last_pfn, last_addr; 87 const resource_size_t unaligned_phys_addr = phys_addr; 88 const unsigned long unaligned_size = size; 89 struct vm_struct *area; 90 enum page_cache_mode new_pcm; 91 pgprot_t prot; 92 int retval; 93 void __iomem *ret_addr; 94 int ram_region; 95 96 /* Don't allow wraparound or zero size */ 97 last_addr = phys_addr + size - 1; 98 if (!size || last_addr < phys_addr) 99 return NULL; 100 101 if (!phys_addr_valid(phys_addr)) { 102 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 103 (unsigned long long)phys_addr); 104 WARN_ON_ONCE(1); 105 return NULL; 106 } 107 108 /* 109 * Don't remap the low PCI/ISA area, it's always mapped.. 110 */ 111 if (is_ISA_range(phys_addr, last_addr)) 112 return (__force void __iomem *)phys_to_virt(phys_addr); 113 114 /* 115 * Don't allow anybody to remap normal RAM that we're using.. 116 */ 117 /* First check if whole region can be identified as RAM or not */ 118 ram_region = region_is_ram(phys_addr, size); 119 if (ram_region > 0) { 120 WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n", 121 (unsigned long int)phys_addr, 122 (unsigned long int)last_addr); 123 return NULL; 124 } 125 126 /* If could not be identified(-1), check page by page */ 127 if (ram_region < 0) { 128 pfn = phys_addr >> PAGE_SHIFT; 129 last_pfn = last_addr >> PAGE_SHIFT; 130 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, 131 __ioremap_check_ram) == 1) 132 return NULL; 133 } 134 /* 135 * Mappings have to be page-aligned 136 */ 137 offset = phys_addr & ~PAGE_MASK; 138 phys_addr &= PHYSICAL_PAGE_MASK; 139 size = PAGE_ALIGN(last_addr+1) - phys_addr; 140 141 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 142 pcm, &new_pcm); 143 if (retval) { 144 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 145 return NULL; 146 } 147 148 if (pcm != new_pcm) { 149 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 150 printk(KERN_ERR 151 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 152 (unsigned long long)phys_addr, 153 (unsigned long long)(phys_addr + size), 154 pcm, new_pcm); 155 goto err_free_memtype; 156 } 157 pcm = new_pcm; 158 } 159 160 prot = PAGE_KERNEL_IO; 161 switch (pcm) { 162 case _PAGE_CACHE_MODE_UC: 163 default: 164 prot = __pgprot(pgprot_val(prot) | 165 cachemode2protval(_PAGE_CACHE_MODE_UC)); 166 break; 167 case _PAGE_CACHE_MODE_UC_MINUS: 168 prot = __pgprot(pgprot_val(prot) | 169 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 170 break; 171 case _PAGE_CACHE_MODE_WC: 172 prot = __pgprot(pgprot_val(prot) | 173 cachemode2protval(_PAGE_CACHE_MODE_WC)); 174 break; 175 case _PAGE_CACHE_MODE_WB: 176 break; 177 } 178 179 /* 180 * Ok, go for it.. 181 */ 182 area = get_vm_area_caller(size, VM_IOREMAP, caller); 183 if (!area) 184 goto err_free_memtype; 185 area->phys_addr = phys_addr; 186 vaddr = (unsigned long) area->addr; 187 188 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 189 goto err_free_area; 190 191 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 192 goto err_free_area; 193 194 ret_addr = (void __iomem *) (vaddr + offset); 195 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 196 197 /* 198 * Check if the request spans more than any BAR in the iomem resource 199 * tree. 200 */ 201 WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size), 202 KERN_INFO "Info: mapping multiple BARs. Your kernel is fine."); 203 204 return ret_addr; 205 err_free_area: 206 free_vm_area(area); 207 err_free_memtype: 208 free_memtype(phys_addr, phys_addr + size); 209 return NULL; 210 } 211 212 /** 213 * ioremap_nocache - map bus memory into CPU space 214 * @phys_addr: bus address of the memory 215 * @size: size of the resource to map 216 * 217 * ioremap_nocache performs a platform specific sequence of operations to 218 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 219 * writew/writel functions and the other mmio helpers. The returned 220 * address is not guaranteed to be usable directly as a virtual 221 * address. 222 * 223 * This version of ioremap ensures that the memory is marked uncachable 224 * on the CPU as well as honouring existing caching rules from things like 225 * the PCI bus. Note that there are other caches and buffers on many 226 * busses. In particular driver authors should read up on PCI writes 227 * 228 * It's useful if some control registers are in such an area and 229 * write combining or read caching is not desirable: 230 * 231 * Must be freed with iounmap. 232 */ 233 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 234 { 235 /* 236 * Ideally, this should be: 237 * pat_enabled ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 238 * 239 * Till we fix all X drivers to use ioremap_wc(), we will use 240 * UC MINUS. 241 */ 242 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 243 244 return __ioremap_caller(phys_addr, size, pcm, 245 __builtin_return_address(0)); 246 } 247 EXPORT_SYMBOL(ioremap_nocache); 248 249 /** 250 * ioremap_wc - map memory into CPU space write combined 251 * @phys_addr: bus address of the memory 252 * @size: size of the resource to map 253 * 254 * This version of ioremap ensures that the memory is marked write combining. 255 * Write combining allows faster writes to some hardware devices. 256 * 257 * Must be freed with iounmap. 258 */ 259 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 260 { 261 if (pat_enabled) 262 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 263 __builtin_return_address(0)); 264 else 265 return ioremap_nocache(phys_addr, size); 266 } 267 EXPORT_SYMBOL(ioremap_wc); 268 269 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 270 { 271 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 272 __builtin_return_address(0)); 273 } 274 EXPORT_SYMBOL(ioremap_cache); 275 276 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 277 unsigned long prot_val) 278 { 279 return __ioremap_caller(phys_addr, size, 280 pgprot2cachemode(__pgprot(prot_val)), 281 __builtin_return_address(0)); 282 } 283 EXPORT_SYMBOL(ioremap_prot); 284 285 /** 286 * iounmap - Free a IO remapping 287 * @addr: virtual address from ioremap_* 288 * 289 * Caller must ensure there is only one unmapping for the same pointer. 290 */ 291 void iounmap(volatile void __iomem *addr) 292 { 293 struct vm_struct *p, *o; 294 295 if ((void __force *)addr <= high_memory) 296 return; 297 298 /* 299 * __ioremap special-cases the PCI/ISA range by not instantiating a 300 * vm_area and by simply returning an address into the kernel mapping 301 * of ISA space. So handle that here. 302 */ 303 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 304 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) 305 return; 306 307 addr = (volatile void __iomem *) 308 (PAGE_MASK & (unsigned long __force)addr); 309 310 mmiotrace_iounmap(addr); 311 312 /* Use the vm area unlocked, assuming the caller 313 ensures there isn't another iounmap for the same address 314 in parallel. Reuse of the virtual address is prevented by 315 leaving it in the global lists until we're done with it. 316 cpa takes care of the direct mappings. */ 317 p = find_vm_area((void __force *)addr); 318 319 if (!p) { 320 printk(KERN_ERR "iounmap: bad address %p\n", addr); 321 dump_stack(); 322 return; 323 } 324 325 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 326 327 /* Finally remove it */ 328 o = remove_vm_area((void __force *)addr); 329 BUG_ON(p != o || o == NULL); 330 kfree(p); 331 } 332 EXPORT_SYMBOL(iounmap); 333 334 int arch_ioremap_pud_supported(void) 335 { 336 #ifdef CONFIG_X86_64 337 return cpu_has_gbpages; 338 #else 339 return 0; 340 #endif 341 } 342 343 int arch_ioremap_pmd_supported(void) 344 { 345 return cpu_has_pse; 346 } 347 348 /* 349 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 350 * access 351 */ 352 void *xlate_dev_mem_ptr(phys_addr_t phys) 353 { 354 void *addr; 355 unsigned long start = phys & PAGE_MASK; 356 357 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ 358 if (page_is_ram(start >> PAGE_SHIFT)) 359 return __va(phys); 360 361 addr = (void __force *)ioremap_cache(start, PAGE_SIZE); 362 if (addr) 363 addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK)); 364 365 return addr; 366 } 367 368 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 369 { 370 if (page_is_ram(phys >> PAGE_SHIFT)) 371 return; 372 373 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); 374 return; 375 } 376 377 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 378 379 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 380 { 381 /* Don't assume we're using swapper_pg_dir at this point */ 382 pgd_t *base = __va(read_cr3()); 383 pgd_t *pgd = &base[pgd_index(addr)]; 384 pud_t *pud = pud_offset(pgd, addr); 385 pmd_t *pmd = pmd_offset(pud, addr); 386 387 return pmd; 388 } 389 390 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 391 { 392 return &bm_pte[pte_index(addr)]; 393 } 394 395 bool __init is_early_ioremap_ptep(pte_t *ptep) 396 { 397 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 398 } 399 400 void __init early_ioremap_init(void) 401 { 402 pmd_t *pmd; 403 404 #ifdef CONFIG_X86_64 405 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 406 #else 407 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 408 #endif 409 410 early_ioremap_setup(); 411 412 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 413 memset(bm_pte, 0, sizeof(bm_pte)); 414 pmd_populate_kernel(&init_mm, pmd, bm_pte); 415 416 /* 417 * The boot-ioremap range spans multiple pmds, for which 418 * we are not prepared: 419 */ 420 #define __FIXADDR_TOP (-PAGE_SIZE) 421 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 422 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 423 #undef __FIXADDR_TOP 424 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 425 WARN_ON(1); 426 printk(KERN_WARNING "pmd %p != %p\n", 427 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 428 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 429 fix_to_virt(FIX_BTMAP_BEGIN)); 430 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 431 fix_to_virt(FIX_BTMAP_END)); 432 433 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 434 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 435 FIX_BTMAP_BEGIN); 436 } 437 } 438 439 void __init __early_set_fixmap(enum fixed_addresses idx, 440 phys_addr_t phys, pgprot_t flags) 441 { 442 unsigned long addr = __fix_to_virt(idx); 443 pte_t *pte; 444 445 if (idx >= __end_of_fixed_addresses) { 446 BUG(); 447 return; 448 } 449 pte = early_ioremap_pte(addr); 450 451 if (pgprot_val(flags)) 452 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 453 else 454 pte_clear(&init_mm, addr, pte); 455 __flush_tlb_one(addr); 456 } 457