1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mmiotrace.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/efi.h> 19 20 #include <asm/set_memory.h> 21 #include <asm/e820/api.h> 22 #include <asm/efi.h> 23 #include <asm/fixmap.h> 24 #include <asm/pgtable.h> 25 #include <asm/tlbflush.h> 26 #include <asm/pgalloc.h> 27 #include <asm/pat.h> 28 #include <asm/setup.h> 29 30 #include "physaddr.h" 31 32 /* 33 * Descriptor controlling ioremap() behavior. 34 */ 35 struct ioremap_desc { 36 unsigned int flags; 37 }; 38 39 /* 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute 41 * conflicts. 42 */ 43 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 44 enum page_cache_mode pcm) 45 { 46 unsigned long nrpages = size >> PAGE_SHIFT; 47 int err; 48 49 switch (pcm) { 50 case _PAGE_CACHE_MODE_UC: 51 default: 52 err = _set_memory_uc(vaddr, nrpages); 53 break; 54 case _PAGE_CACHE_MODE_WC: 55 err = _set_memory_wc(vaddr, nrpages); 56 break; 57 case _PAGE_CACHE_MODE_WT: 58 err = _set_memory_wt(vaddr, nrpages); 59 break; 60 case _PAGE_CACHE_MODE_WB: 61 err = _set_memory_wb(vaddr, nrpages); 62 break; 63 } 64 65 return err; 66 } 67 68 /* Does the range (or a subset of) contain normal RAM? */ 69 static unsigned int __ioremap_check_ram(struct resource *res) 70 { 71 unsigned long start_pfn, stop_pfn; 72 unsigned long i; 73 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 75 return 0; 76 77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 79 if (stop_pfn > start_pfn) { 80 for (i = 0; i < (stop_pfn - start_pfn); ++i) 81 if (pfn_valid(start_pfn + i) && 82 !PageReserved(pfn_to_page(start_pfn + i))) 83 return IORES_MAP_SYSTEM_RAM; 84 } 85 86 return 0; 87 } 88 89 /* 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 91 * there the whole memory is already encrypted. 92 */ 93 static unsigned int __ioremap_check_encrypted(struct resource *res) 94 { 95 if (!sev_active()) 96 return 0; 97 98 switch (res->desc) { 99 case IORES_DESC_NONE: 100 case IORES_DESC_RESERVED: 101 break; 102 default: 103 return IORES_MAP_ENCRYPTED; 104 } 105 106 return 0; 107 } 108 109 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 110 { 111 struct ioremap_desc *desc = arg; 112 113 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 114 desc->flags |= __ioremap_check_ram(res); 115 116 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 117 desc->flags |= __ioremap_check_encrypted(res); 118 119 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 120 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 121 } 122 123 /* 124 * To avoid multiple resource walks, this function walks resources marked as 125 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 126 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 127 */ 128 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 129 struct ioremap_desc *desc) 130 { 131 u64 start, end; 132 133 start = (u64)addr; 134 end = start + size - 1; 135 memset(desc, 0, sizeof(struct ioremap_desc)); 136 137 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 138 } 139 140 /* 141 * Remap an arbitrary physical address space into the kernel virtual 142 * address space. It transparently creates kernel huge I/O mapping when 143 * the physical address is aligned by a huge page size (1GB or 2MB) and 144 * the requested size is at least the huge page size. 145 * 146 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 147 * Therefore, the mapping code falls back to use a smaller page toward 4KB 148 * when a mapping range is covered by non-WB type of MTRRs. 149 * 150 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 151 * have to convert them into an offset in a page-aligned mapping, but the 152 * caller shouldn't need to know that small detail. 153 */ 154 static void __iomem * 155 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 156 enum page_cache_mode pcm, void *caller, bool encrypted) 157 { 158 unsigned long offset, vaddr; 159 resource_size_t last_addr; 160 const resource_size_t unaligned_phys_addr = phys_addr; 161 const unsigned long unaligned_size = size; 162 struct ioremap_desc io_desc; 163 struct vm_struct *area; 164 enum page_cache_mode new_pcm; 165 pgprot_t prot; 166 int retval; 167 void __iomem *ret_addr; 168 169 /* Don't allow wraparound or zero size */ 170 last_addr = phys_addr + size - 1; 171 if (!size || last_addr < phys_addr) 172 return NULL; 173 174 if (!phys_addr_valid(phys_addr)) { 175 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 176 (unsigned long long)phys_addr); 177 WARN_ON_ONCE(1); 178 return NULL; 179 } 180 181 __ioremap_check_mem(phys_addr, size, &io_desc); 182 183 /* 184 * Don't allow anybody to remap normal RAM that we're using.. 185 */ 186 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 187 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 188 &phys_addr, &last_addr); 189 return NULL; 190 } 191 192 /* 193 * Mappings have to be page-aligned 194 */ 195 offset = phys_addr & ~PAGE_MASK; 196 phys_addr &= PHYSICAL_PAGE_MASK; 197 size = PAGE_ALIGN(last_addr+1) - phys_addr; 198 199 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 200 pcm, &new_pcm); 201 if (retval) { 202 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 203 return NULL; 204 } 205 206 if (pcm != new_pcm) { 207 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 208 printk(KERN_ERR 209 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 210 (unsigned long long)phys_addr, 211 (unsigned long long)(phys_addr + size), 212 pcm, new_pcm); 213 goto err_free_memtype; 214 } 215 pcm = new_pcm; 216 } 217 218 /* 219 * If the page being mapped is in memory and SEV is active then 220 * make sure the memory encryption attribute is enabled in the 221 * resulting mapping. 222 */ 223 prot = PAGE_KERNEL_IO; 224 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 225 prot = pgprot_encrypted(prot); 226 227 switch (pcm) { 228 case _PAGE_CACHE_MODE_UC: 229 default: 230 prot = __pgprot(pgprot_val(prot) | 231 cachemode2protval(_PAGE_CACHE_MODE_UC)); 232 break; 233 case _PAGE_CACHE_MODE_UC_MINUS: 234 prot = __pgprot(pgprot_val(prot) | 235 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 236 break; 237 case _PAGE_CACHE_MODE_WC: 238 prot = __pgprot(pgprot_val(prot) | 239 cachemode2protval(_PAGE_CACHE_MODE_WC)); 240 break; 241 case _PAGE_CACHE_MODE_WT: 242 prot = __pgprot(pgprot_val(prot) | 243 cachemode2protval(_PAGE_CACHE_MODE_WT)); 244 break; 245 case _PAGE_CACHE_MODE_WB: 246 break; 247 } 248 249 /* 250 * Ok, go for it.. 251 */ 252 area = get_vm_area_caller(size, VM_IOREMAP, caller); 253 if (!area) 254 goto err_free_memtype; 255 area->phys_addr = phys_addr; 256 vaddr = (unsigned long) area->addr; 257 258 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 259 goto err_free_area; 260 261 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 262 goto err_free_area; 263 264 ret_addr = (void __iomem *) (vaddr + offset); 265 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 266 267 /* 268 * Check if the request spans more than any BAR in the iomem resource 269 * tree. 270 */ 271 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 272 pr_warn("caller %pS mapping multiple BARs\n", caller); 273 274 return ret_addr; 275 err_free_area: 276 free_vm_area(area); 277 err_free_memtype: 278 free_memtype(phys_addr, phys_addr + size); 279 return NULL; 280 } 281 282 /** 283 * ioremap - map bus memory into CPU space 284 * @phys_addr: bus address of the memory 285 * @size: size of the resource to map 286 * 287 * ioremap performs a platform specific sequence of operations to 288 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 289 * writew/writel functions and the other mmio helpers. The returned 290 * address is not guaranteed to be usable directly as a virtual 291 * address. 292 * 293 * This version of ioremap ensures that the memory is marked uncachable 294 * on the CPU as well as honouring existing caching rules from things like 295 * the PCI bus. Note that there are other caches and buffers on many 296 * busses. In particular driver authors should read up on PCI writes 297 * 298 * It's useful if some control registers are in such an area and 299 * write combining or read caching is not desirable: 300 * 301 * Must be freed with iounmap. 302 */ 303 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 304 { 305 /* 306 * Ideally, this should be: 307 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 308 * 309 * Till we fix all X drivers to use ioremap_wc(), we will use 310 * UC MINUS. Drivers that are certain they need or can already 311 * be converted over to strong UC can use ioremap_uc(). 312 */ 313 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 314 315 return __ioremap_caller(phys_addr, size, pcm, 316 __builtin_return_address(0), false); 317 } 318 EXPORT_SYMBOL(ioremap); 319 320 /** 321 * ioremap_uc - map bus memory into CPU space as strongly uncachable 322 * @phys_addr: bus address of the memory 323 * @size: size of the resource to map 324 * 325 * ioremap_uc performs a platform specific sequence of operations to 326 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 327 * writew/writel functions and the other mmio helpers. The returned 328 * address is not guaranteed to be usable directly as a virtual 329 * address. 330 * 331 * This version of ioremap ensures that the memory is marked with a strong 332 * preference as completely uncachable on the CPU when possible. For non-PAT 333 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 334 * systems this will set the PAT entry for the pages as strong UC. This call 335 * will honor existing caching rules from things like the PCI bus. Note that 336 * there are other caches and buffers on many busses. In particular driver 337 * authors should read up on PCI writes. 338 * 339 * It's useful if some control registers are in such an area and 340 * write combining or read caching is not desirable: 341 * 342 * Must be freed with iounmap. 343 */ 344 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 345 { 346 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 347 348 return __ioremap_caller(phys_addr, size, pcm, 349 __builtin_return_address(0), false); 350 } 351 EXPORT_SYMBOL_GPL(ioremap_uc); 352 353 /** 354 * ioremap_wc - map memory into CPU space write combined 355 * @phys_addr: bus address of the memory 356 * @size: size of the resource to map 357 * 358 * This version of ioremap ensures that the memory is marked write combining. 359 * Write combining allows faster writes to some hardware devices. 360 * 361 * Must be freed with iounmap. 362 */ 363 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 364 { 365 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 366 __builtin_return_address(0), false); 367 } 368 EXPORT_SYMBOL(ioremap_wc); 369 370 /** 371 * ioremap_wt - map memory into CPU space write through 372 * @phys_addr: bus address of the memory 373 * @size: size of the resource to map 374 * 375 * This version of ioremap ensures that the memory is marked write through. 376 * Write through stores data into memory while keeping the cache up-to-date. 377 * 378 * Must be freed with iounmap. 379 */ 380 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 381 { 382 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 383 __builtin_return_address(0), false); 384 } 385 EXPORT_SYMBOL(ioremap_wt); 386 387 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 388 { 389 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 390 __builtin_return_address(0), true); 391 } 392 EXPORT_SYMBOL(ioremap_encrypted); 393 394 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 395 { 396 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 397 __builtin_return_address(0), false); 398 } 399 EXPORT_SYMBOL(ioremap_cache); 400 401 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 402 unsigned long prot_val) 403 { 404 return __ioremap_caller(phys_addr, size, 405 pgprot2cachemode(__pgprot(prot_val)), 406 __builtin_return_address(0), false); 407 } 408 EXPORT_SYMBOL(ioremap_prot); 409 410 /** 411 * iounmap - Free a IO remapping 412 * @addr: virtual address from ioremap_* 413 * 414 * Caller must ensure there is only one unmapping for the same pointer. 415 */ 416 void iounmap(volatile void __iomem *addr) 417 { 418 struct vm_struct *p, *o; 419 420 if ((void __force *)addr <= high_memory) 421 return; 422 423 /* 424 * The PCI/ISA range special-casing was removed from __ioremap() 425 * so this check, in theory, can be removed. However, there are 426 * cases where iounmap() is called for addresses not obtained via 427 * ioremap() (vga16fb for example). Add a warning so that these 428 * cases can be caught and fixed. 429 */ 430 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 431 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 432 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 433 return; 434 } 435 436 mmiotrace_iounmap(addr); 437 438 addr = (volatile void __iomem *) 439 (PAGE_MASK & (unsigned long __force)addr); 440 441 /* Use the vm area unlocked, assuming the caller 442 ensures there isn't another iounmap for the same address 443 in parallel. Reuse of the virtual address is prevented by 444 leaving it in the global lists until we're done with it. 445 cpa takes care of the direct mappings. */ 446 p = find_vm_area((void __force *)addr); 447 448 if (!p) { 449 printk(KERN_ERR "iounmap: bad address %p\n", addr); 450 dump_stack(); 451 return; 452 } 453 454 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 455 456 /* Finally remove it */ 457 o = remove_vm_area((void __force *)addr); 458 BUG_ON(p != o || o == NULL); 459 kfree(p); 460 } 461 EXPORT_SYMBOL(iounmap); 462 463 int __init arch_ioremap_p4d_supported(void) 464 { 465 return 0; 466 } 467 468 int __init arch_ioremap_pud_supported(void) 469 { 470 #ifdef CONFIG_X86_64 471 return boot_cpu_has(X86_FEATURE_GBPAGES); 472 #else 473 return 0; 474 #endif 475 } 476 477 int __init arch_ioremap_pmd_supported(void) 478 { 479 return boot_cpu_has(X86_FEATURE_PSE); 480 } 481 482 /* 483 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 484 * access 485 */ 486 void *xlate_dev_mem_ptr(phys_addr_t phys) 487 { 488 unsigned long start = phys & PAGE_MASK; 489 unsigned long offset = phys & ~PAGE_MASK; 490 void *vaddr; 491 492 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 493 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 494 495 /* Only add the offset on success and return NULL if memremap() failed */ 496 if (vaddr) 497 vaddr += offset; 498 499 return vaddr; 500 } 501 502 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 503 { 504 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 505 } 506 507 /* 508 * Examine the physical address to determine if it is an area of memory 509 * that should be mapped decrypted. If the memory is not part of the 510 * kernel usable area it was accessed and created decrypted, so these 511 * areas should be mapped decrypted. And since the encryption key can 512 * change across reboots, persistent memory should also be mapped 513 * decrypted. 514 * 515 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 516 * only persistent memory should be mapped decrypted. 517 */ 518 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 519 unsigned long size) 520 { 521 int is_pmem; 522 523 /* 524 * Check if the address is part of a persistent memory region. 525 * This check covers areas added by E820, EFI and ACPI. 526 */ 527 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 528 IORES_DESC_PERSISTENT_MEMORY); 529 if (is_pmem != REGION_DISJOINT) 530 return true; 531 532 /* 533 * Check if the non-volatile attribute is set for an EFI 534 * reserved area. 535 */ 536 if (efi_enabled(EFI_BOOT)) { 537 switch (efi_mem_type(phys_addr)) { 538 case EFI_RESERVED_TYPE: 539 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 540 return true; 541 break; 542 default: 543 break; 544 } 545 } 546 547 /* Check if the address is outside kernel usable area */ 548 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 549 case E820_TYPE_RESERVED: 550 case E820_TYPE_ACPI: 551 case E820_TYPE_NVS: 552 case E820_TYPE_UNUSABLE: 553 /* For SEV, these areas are encrypted */ 554 if (sev_active()) 555 break; 556 /* Fallthrough */ 557 558 case E820_TYPE_PRAM: 559 return true; 560 default: 561 break; 562 } 563 564 return false; 565 } 566 567 /* 568 * Examine the physical address to determine if it is EFI data. Check 569 * it against the boot params structure and EFI tables and memory types. 570 */ 571 static bool memremap_is_efi_data(resource_size_t phys_addr, 572 unsigned long size) 573 { 574 u64 paddr; 575 576 /* Check if the address is part of EFI boot/runtime data */ 577 if (!efi_enabled(EFI_BOOT)) 578 return false; 579 580 paddr = boot_params.efi_info.efi_memmap_hi; 581 paddr <<= 32; 582 paddr |= boot_params.efi_info.efi_memmap; 583 if (phys_addr == paddr) 584 return true; 585 586 paddr = boot_params.efi_info.efi_systab_hi; 587 paddr <<= 32; 588 paddr |= boot_params.efi_info.efi_systab; 589 if (phys_addr == paddr) 590 return true; 591 592 if (efi_is_table_address(phys_addr)) 593 return true; 594 595 switch (efi_mem_type(phys_addr)) { 596 case EFI_BOOT_SERVICES_DATA: 597 case EFI_RUNTIME_SERVICES_DATA: 598 return true; 599 default: 600 break; 601 } 602 603 return false; 604 } 605 606 /* 607 * Examine the physical address to determine if it is boot data by checking 608 * it against the boot params setup_data chain. 609 */ 610 static bool memremap_is_setup_data(resource_size_t phys_addr, 611 unsigned long size) 612 { 613 struct setup_data *data; 614 u64 paddr, paddr_next; 615 616 paddr = boot_params.hdr.setup_data; 617 while (paddr) { 618 unsigned int len; 619 620 if (phys_addr == paddr) 621 return true; 622 623 data = memremap(paddr, sizeof(*data), 624 MEMREMAP_WB | MEMREMAP_DEC); 625 626 paddr_next = data->next; 627 len = data->len; 628 629 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 630 memunmap(data); 631 return true; 632 } 633 634 if (data->type == SETUP_INDIRECT && 635 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { 636 paddr = ((struct setup_indirect *)data->data)->addr; 637 len = ((struct setup_indirect *)data->data)->len; 638 } 639 640 memunmap(data); 641 642 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 643 return true; 644 645 paddr = paddr_next; 646 } 647 648 return false; 649 } 650 651 /* 652 * Examine the physical address to determine if it is boot data by checking 653 * it against the boot params setup_data chain (early boot version). 654 */ 655 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 656 unsigned long size) 657 { 658 struct setup_data *data; 659 u64 paddr, paddr_next; 660 661 paddr = boot_params.hdr.setup_data; 662 while (paddr) { 663 unsigned int len; 664 665 if (phys_addr == paddr) 666 return true; 667 668 data = early_memremap_decrypted(paddr, sizeof(*data)); 669 670 paddr_next = data->next; 671 len = data->len; 672 673 early_memunmap(data, sizeof(*data)); 674 675 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 676 return true; 677 678 paddr = paddr_next; 679 } 680 681 return false; 682 } 683 684 /* 685 * Architecture function to determine if RAM remap is allowed. By default, a 686 * RAM remap will map the data as encrypted. Determine if a RAM remap should 687 * not be done so that the data will be mapped decrypted. 688 */ 689 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 690 unsigned long flags) 691 { 692 if (!mem_encrypt_active()) 693 return true; 694 695 if (flags & MEMREMAP_ENC) 696 return true; 697 698 if (flags & MEMREMAP_DEC) 699 return false; 700 701 if (sme_active()) { 702 if (memremap_is_setup_data(phys_addr, size) || 703 memremap_is_efi_data(phys_addr, size)) 704 return false; 705 } 706 707 return !memremap_should_map_decrypted(phys_addr, size); 708 } 709 710 /* 711 * Architecture override of __weak function to adjust the protection attributes 712 * used when remapping memory. By default, early_memremap() will map the data 713 * as encrypted. Determine if an encrypted mapping should not be done and set 714 * the appropriate protection attributes. 715 */ 716 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 717 unsigned long size, 718 pgprot_t prot) 719 { 720 bool encrypted_prot; 721 722 if (!mem_encrypt_active()) 723 return prot; 724 725 encrypted_prot = true; 726 727 if (sme_active()) { 728 if (early_memremap_is_setup_data(phys_addr, size) || 729 memremap_is_efi_data(phys_addr, size)) 730 encrypted_prot = false; 731 } 732 733 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 734 encrypted_prot = false; 735 736 return encrypted_prot ? pgprot_encrypted(prot) 737 : pgprot_decrypted(prot); 738 } 739 740 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 741 { 742 return arch_memremap_can_ram_remap(phys_addr, size, 0); 743 } 744 745 #ifdef CONFIG_AMD_MEM_ENCRYPT 746 /* Remap memory with encryption */ 747 void __init *early_memremap_encrypted(resource_size_t phys_addr, 748 unsigned long size) 749 { 750 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 751 } 752 753 /* 754 * Remap memory with encryption and write-protected - cannot be called 755 * before pat_init() is called 756 */ 757 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 758 unsigned long size) 759 { 760 /* Be sure the write-protect PAT entry is set for write-protect */ 761 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 762 return NULL; 763 764 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 765 } 766 767 /* Remap memory without encryption */ 768 void __init *early_memremap_decrypted(resource_size_t phys_addr, 769 unsigned long size) 770 { 771 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 772 } 773 774 /* 775 * Remap memory without encryption and write-protected - cannot be called 776 * before pat_init() is called 777 */ 778 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 779 unsigned long size) 780 { 781 /* Be sure the write-protect PAT entry is set for write-protect */ 782 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) 783 return NULL; 784 785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 786 } 787 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 788 789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 790 791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 792 { 793 /* Don't assume we're using swapper_pg_dir at this point */ 794 pgd_t *base = __va(read_cr3_pa()); 795 pgd_t *pgd = &base[pgd_index(addr)]; 796 p4d_t *p4d = p4d_offset(pgd, addr); 797 pud_t *pud = pud_offset(p4d, addr); 798 pmd_t *pmd = pmd_offset(pud, addr); 799 800 return pmd; 801 } 802 803 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 804 { 805 return &bm_pte[pte_index(addr)]; 806 } 807 808 bool __init is_early_ioremap_ptep(pte_t *ptep) 809 { 810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 811 } 812 813 void __init early_ioremap_init(void) 814 { 815 pmd_t *pmd; 816 817 #ifdef CONFIG_X86_64 818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 819 #else 820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 821 #endif 822 823 early_ioremap_setup(); 824 825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 826 memset(bm_pte, 0, sizeof(bm_pte)); 827 pmd_populate_kernel(&init_mm, pmd, bm_pte); 828 829 /* 830 * The boot-ioremap range spans multiple pmds, for which 831 * we are not prepared: 832 */ 833 #define __FIXADDR_TOP (-PAGE_SIZE) 834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 836 #undef __FIXADDR_TOP 837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 838 WARN_ON(1); 839 printk(KERN_WARNING "pmd %p != %p\n", 840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 842 fix_to_virt(FIX_BTMAP_BEGIN)); 843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 844 fix_to_virt(FIX_BTMAP_END)); 845 846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 848 FIX_BTMAP_BEGIN); 849 } 850 } 851 852 void __init __early_set_fixmap(enum fixed_addresses idx, 853 phys_addr_t phys, pgprot_t flags) 854 { 855 unsigned long addr = __fix_to_virt(idx); 856 pte_t *pte; 857 858 if (idx >= __end_of_fixed_addresses) { 859 BUG(); 860 return; 861 } 862 pte = early_ioremap_pte(addr); 863 864 /* Sanitize 'prot' against any unsupported bits: */ 865 pgprot_val(flags) &= __supported_pte_mask; 866 867 if (pgprot_val(flags)) 868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 869 else 870 pte_clear(&init_mm, addr, pte); 871 __flush_tlb_one_kernel(addr); 872 } 873