xref: /openbmc/linux/arch/x86/mm/ioremap.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9 
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20 
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29 
30 #include "physaddr.h"
31 
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36 	unsigned int flags;
37 };
38 
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 			enum page_cache_mode pcm)
45 {
46 	unsigned long nrpages = size >> PAGE_SHIFT;
47 	int err;
48 
49 	switch (pcm) {
50 	case _PAGE_CACHE_MODE_UC:
51 	default:
52 		err = _set_memory_uc(vaddr, nrpages);
53 		break;
54 	case _PAGE_CACHE_MODE_WC:
55 		err = _set_memory_wc(vaddr, nrpages);
56 		break;
57 	case _PAGE_CACHE_MODE_WT:
58 		err = _set_memory_wt(vaddr, nrpages);
59 		break;
60 	case _PAGE_CACHE_MODE_WB:
61 		err = _set_memory_wb(vaddr, nrpages);
62 		break;
63 	}
64 
65 	return err;
66 }
67 
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 	unsigned long start_pfn, stop_pfn;
72 	unsigned long i;
73 
74 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 		return 0;
76 
77 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 	if (stop_pfn > start_pfn) {
80 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 			if (pfn_valid(start_pfn + i) &&
82 			    !PageReserved(pfn_to_page(start_pfn + i)))
83 				return IORES_MAP_SYSTEM_RAM;
84 	}
85 
86 	return 0;
87 }
88 
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 	if (!sev_active())
96 		return 0;
97 
98 	switch (res->desc) {
99 	case IORES_DESC_NONE:
100 	case IORES_DESC_RESERVED:
101 		break;
102 	default:
103 		return IORES_MAP_ENCRYPTED;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 	if (!sev_active())
116 		return;
117 
118 	if (!IS_ENABLED(CONFIG_EFI))
119 		return;
120 
121 	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 		desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126 
127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 	struct ioremap_desc *desc = arg;
130 
131 	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 		desc->flags |= __ioremap_check_ram(res);
133 
134 	if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 		desc->flags |= __ioremap_check_encrypted(res);
136 
137 	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140 
141 /*
142  * To avoid multiple resource walks, this function walks resources marked as
143  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145  *
146  * After that, deal with misc other ranges in __ioremap_check_other() which do
147  * not fall into the above category.
148  */
149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 				struct ioremap_desc *desc)
151 {
152 	u64 start, end;
153 
154 	start = (u64)addr;
155 	end = start + size - 1;
156 	memset(desc, 0, sizeof(struct ioremap_desc));
157 
158 	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159 
160 	__ioremap_check_other(addr, desc);
161 }
162 
163 /*
164  * Remap an arbitrary physical address space into the kernel virtual
165  * address space. It transparently creates kernel huge I/O mapping when
166  * the physical address is aligned by a huge page size (1GB or 2MB) and
167  * the requested size is at least the huge page size.
168  *
169  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170  * Therefore, the mapping code falls back to use a smaller page toward 4KB
171  * when a mapping range is covered by non-WB type of MTRRs.
172  *
173  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174  * have to convert them into an offset in a page-aligned mapping, but the
175  * caller shouldn't need to know that small detail.
176  */
177 static void __iomem *
178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 		 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 	unsigned long offset, vaddr;
182 	resource_size_t last_addr;
183 	const resource_size_t unaligned_phys_addr = phys_addr;
184 	const unsigned long unaligned_size = size;
185 	struct ioremap_desc io_desc;
186 	struct vm_struct *area;
187 	enum page_cache_mode new_pcm;
188 	pgprot_t prot;
189 	int retval;
190 	void __iomem *ret_addr;
191 
192 	/* Don't allow wraparound or zero size */
193 	last_addr = phys_addr + size - 1;
194 	if (!size || last_addr < phys_addr)
195 		return NULL;
196 
197 	if (!phys_addr_valid(phys_addr)) {
198 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 		       (unsigned long long)phys_addr);
200 		WARN_ON_ONCE(1);
201 		return NULL;
202 	}
203 
204 	__ioremap_check_mem(phys_addr, size, &io_desc);
205 
206 	/*
207 	 * Don't allow anybody to remap normal RAM that we're using..
208 	 */
209 	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 			  &phys_addr, &last_addr);
212 		return NULL;
213 	}
214 
215 	/*
216 	 * Mappings have to be page-aligned
217 	 */
218 	offset = phys_addr & ~PAGE_MASK;
219 	phys_addr &= PHYSICAL_PAGE_MASK;
220 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
221 
222 	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223 						pcm, &new_pcm);
224 	if (retval) {
225 		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226 		return NULL;
227 	}
228 
229 	if (pcm != new_pcm) {
230 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231 			printk(KERN_ERR
232 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233 				(unsigned long long)phys_addr,
234 				(unsigned long long)(phys_addr + size),
235 				pcm, new_pcm);
236 			goto err_free_memtype;
237 		}
238 		pcm = new_pcm;
239 	}
240 
241 	/*
242 	 * If the page being mapped is in memory and SEV is active then
243 	 * make sure the memory encryption attribute is enabled in the
244 	 * resulting mapping.
245 	 */
246 	prot = PAGE_KERNEL_IO;
247 	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248 		prot = pgprot_encrypted(prot);
249 
250 	switch (pcm) {
251 	case _PAGE_CACHE_MODE_UC:
252 	default:
253 		prot = __pgprot(pgprot_val(prot) |
254 				cachemode2protval(_PAGE_CACHE_MODE_UC));
255 		break;
256 	case _PAGE_CACHE_MODE_UC_MINUS:
257 		prot = __pgprot(pgprot_val(prot) |
258 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
259 		break;
260 	case _PAGE_CACHE_MODE_WC:
261 		prot = __pgprot(pgprot_val(prot) |
262 				cachemode2protval(_PAGE_CACHE_MODE_WC));
263 		break;
264 	case _PAGE_CACHE_MODE_WT:
265 		prot = __pgprot(pgprot_val(prot) |
266 				cachemode2protval(_PAGE_CACHE_MODE_WT));
267 		break;
268 	case _PAGE_CACHE_MODE_WB:
269 		break;
270 	}
271 
272 	/*
273 	 * Ok, go for it..
274 	 */
275 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
276 	if (!area)
277 		goto err_free_memtype;
278 	area->phys_addr = phys_addr;
279 	vaddr = (unsigned long) area->addr;
280 
281 	if (memtype_kernel_map_sync(phys_addr, size, pcm))
282 		goto err_free_area;
283 
284 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
285 		goto err_free_area;
286 
287 	ret_addr = (void __iomem *) (vaddr + offset);
288 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
289 
290 	/*
291 	 * Check if the request spans more than any BAR in the iomem resource
292 	 * tree.
293 	 */
294 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295 		pr_warn("caller %pS mapping multiple BARs\n", caller);
296 
297 	return ret_addr;
298 err_free_area:
299 	free_vm_area(area);
300 err_free_memtype:
301 	memtype_free(phys_addr, phys_addr + size);
302 	return NULL;
303 }
304 
305 /**
306  * ioremap     -   map bus memory into CPU space
307  * @phys_addr:    bus address of the memory
308  * @size:      size of the resource to map
309  *
310  * ioremap performs a platform specific sequence of operations to
311  * make bus memory CPU accessible via the readb/readw/readl/writeb/
312  * writew/writel functions and the other mmio helpers. The returned
313  * address is not guaranteed to be usable directly as a virtual
314  * address.
315  *
316  * This version of ioremap ensures that the memory is marked uncachable
317  * on the CPU as well as honouring existing caching rules from things like
318  * the PCI bus. Note that there are other caches and buffers on many
319  * busses. In particular driver authors should read up on PCI writes
320  *
321  * It's useful if some control registers are in such an area and
322  * write combining or read caching is not desirable:
323  *
324  * Must be freed with iounmap.
325  */
326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
327 {
328 	/*
329 	 * Ideally, this should be:
330 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
331 	 *
332 	 * Till we fix all X drivers to use ioremap_wc(), we will use
333 	 * UC MINUS. Drivers that are certain they need or can already
334 	 * be converted over to strong UC can use ioremap_uc().
335 	 */
336 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
337 
338 	return __ioremap_caller(phys_addr, size, pcm,
339 				__builtin_return_address(0), false);
340 }
341 EXPORT_SYMBOL(ioremap);
342 
343 /**
344  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
345  * @phys_addr:    bus address of the memory
346  * @size:      size of the resource to map
347  *
348  * ioremap_uc performs a platform specific sequence of operations to
349  * make bus memory CPU accessible via the readb/readw/readl/writeb/
350  * writew/writel functions and the other mmio helpers. The returned
351  * address is not guaranteed to be usable directly as a virtual
352  * address.
353  *
354  * This version of ioremap ensures that the memory is marked with a strong
355  * preference as completely uncachable on the CPU when possible. For non-PAT
356  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357  * systems this will set the PAT entry for the pages as strong UC.  This call
358  * will honor existing caching rules from things like the PCI bus. Note that
359  * there are other caches and buffers on many busses. In particular driver
360  * authors should read up on PCI writes.
361  *
362  * It's useful if some control registers are in such an area and
363  * write combining or read caching is not desirable:
364  *
365  * Must be freed with iounmap.
366  */
367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
368 {
369 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
370 
371 	return __ioremap_caller(phys_addr, size, pcm,
372 				__builtin_return_address(0), false);
373 }
374 EXPORT_SYMBOL_GPL(ioremap_uc);
375 
376 /**
377  * ioremap_wc	-	map memory into CPU space write combined
378  * @phys_addr:	bus address of the memory
379  * @size:	size of the resource to map
380  *
381  * This version of ioremap ensures that the memory is marked write combining.
382  * Write combining allows faster writes to some hardware devices.
383  *
384  * Must be freed with iounmap.
385  */
386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
387 {
388 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389 					__builtin_return_address(0), false);
390 }
391 EXPORT_SYMBOL(ioremap_wc);
392 
393 /**
394  * ioremap_wt	-	map memory into CPU space write through
395  * @phys_addr:	bus address of the memory
396  * @size:	size of the resource to map
397  *
398  * This version of ioremap ensures that the memory is marked write through.
399  * Write through stores data into memory while keeping the cache up-to-date.
400  *
401  * Must be freed with iounmap.
402  */
403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
404 {
405 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406 					__builtin_return_address(0), false);
407 }
408 EXPORT_SYMBOL(ioremap_wt);
409 
410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
411 {
412 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413 				__builtin_return_address(0), true);
414 }
415 EXPORT_SYMBOL(ioremap_encrypted);
416 
417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
418 {
419 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420 				__builtin_return_address(0), false);
421 }
422 EXPORT_SYMBOL(ioremap_cache);
423 
424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425 				unsigned long prot_val)
426 {
427 	return __ioremap_caller(phys_addr, size,
428 				pgprot2cachemode(__pgprot(prot_val)),
429 				__builtin_return_address(0), false);
430 }
431 EXPORT_SYMBOL(ioremap_prot);
432 
433 /**
434  * iounmap - Free a IO remapping
435  * @addr: virtual address from ioremap_*
436  *
437  * Caller must ensure there is only one unmapping for the same pointer.
438  */
439 void iounmap(volatile void __iomem *addr)
440 {
441 	struct vm_struct *p, *o;
442 
443 	if ((void __force *)addr <= high_memory)
444 		return;
445 
446 	/*
447 	 * The PCI/ISA range special-casing was removed from __ioremap()
448 	 * so this check, in theory, can be removed. However, there are
449 	 * cases where iounmap() is called for addresses not obtained via
450 	 * ioremap() (vga16fb for example). Add a warning so that these
451 	 * cases can be caught and fixed.
452 	 */
453 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
456 		return;
457 	}
458 
459 	mmiotrace_iounmap(addr);
460 
461 	addr = (volatile void __iomem *)
462 		(PAGE_MASK & (unsigned long __force)addr);
463 
464 	/* Use the vm area unlocked, assuming the caller
465 	   ensures there isn't another iounmap for the same address
466 	   in parallel. Reuse of the virtual address is prevented by
467 	   leaving it in the global lists until we're done with it.
468 	   cpa takes care of the direct mappings. */
469 	p = find_vm_area((void __force *)addr);
470 
471 	if (!p) {
472 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
473 		dump_stack();
474 		return;
475 	}
476 
477 	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
478 
479 	/* Finally remove it */
480 	o = remove_vm_area((void __force *)addr);
481 	BUG_ON(p != o || o == NULL);
482 	kfree(p);
483 }
484 EXPORT_SYMBOL(iounmap);
485 
486 /*
487  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
488  * access
489  */
490 void *xlate_dev_mem_ptr(phys_addr_t phys)
491 {
492 	unsigned long start  = phys &  PAGE_MASK;
493 	unsigned long offset = phys & ~PAGE_MASK;
494 	void *vaddr;
495 
496 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
497 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
498 
499 	/* Only add the offset on success and return NULL if memremap() failed */
500 	if (vaddr)
501 		vaddr += offset;
502 
503 	return vaddr;
504 }
505 
506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
507 {
508 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
509 }
510 
511 /*
512  * Examine the physical address to determine if it is an area of memory
513  * that should be mapped decrypted.  If the memory is not part of the
514  * kernel usable area it was accessed and created decrypted, so these
515  * areas should be mapped decrypted. And since the encryption key can
516  * change across reboots, persistent memory should also be mapped
517  * decrypted.
518  *
519  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
520  * only persistent memory should be mapped decrypted.
521  */
522 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
523 					  unsigned long size)
524 {
525 	int is_pmem;
526 
527 	/*
528 	 * Check if the address is part of a persistent memory region.
529 	 * This check covers areas added by E820, EFI and ACPI.
530 	 */
531 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
532 				    IORES_DESC_PERSISTENT_MEMORY);
533 	if (is_pmem != REGION_DISJOINT)
534 		return true;
535 
536 	/*
537 	 * Check if the non-volatile attribute is set for an EFI
538 	 * reserved area.
539 	 */
540 	if (efi_enabled(EFI_BOOT)) {
541 		switch (efi_mem_type(phys_addr)) {
542 		case EFI_RESERVED_TYPE:
543 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
544 				return true;
545 			break;
546 		default:
547 			break;
548 		}
549 	}
550 
551 	/* Check if the address is outside kernel usable area */
552 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
553 	case E820_TYPE_RESERVED:
554 	case E820_TYPE_ACPI:
555 	case E820_TYPE_NVS:
556 	case E820_TYPE_UNUSABLE:
557 		/* For SEV, these areas are encrypted */
558 		if (sev_active())
559 			break;
560 		fallthrough;
561 
562 	case E820_TYPE_PRAM:
563 		return true;
564 	default:
565 		break;
566 	}
567 
568 	return false;
569 }
570 
571 /*
572  * Examine the physical address to determine if it is EFI data. Check
573  * it against the boot params structure and EFI tables and memory types.
574  */
575 static bool memremap_is_efi_data(resource_size_t phys_addr,
576 				 unsigned long size)
577 {
578 	u64 paddr;
579 
580 	/* Check if the address is part of EFI boot/runtime data */
581 	if (!efi_enabled(EFI_BOOT))
582 		return false;
583 
584 	paddr = boot_params.efi_info.efi_memmap_hi;
585 	paddr <<= 32;
586 	paddr |= boot_params.efi_info.efi_memmap;
587 	if (phys_addr == paddr)
588 		return true;
589 
590 	paddr = boot_params.efi_info.efi_systab_hi;
591 	paddr <<= 32;
592 	paddr |= boot_params.efi_info.efi_systab;
593 	if (phys_addr == paddr)
594 		return true;
595 
596 	if (efi_is_table_address(phys_addr))
597 		return true;
598 
599 	switch (efi_mem_type(phys_addr)) {
600 	case EFI_BOOT_SERVICES_DATA:
601 	case EFI_RUNTIME_SERVICES_DATA:
602 		return true;
603 	default:
604 		break;
605 	}
606 
607 	return false;
608 }
609 
610 /*
611  * Examine the physical address to determine if it is boot data by checking
612  * it against the boot params setup_data chain.
613  */
614 static bool memremap_is_setup_data(resource_size_t phys_addr,
615 				   unsigned long size)
616 {
617 	struct setup_data *data;
618 	u64 paddr, paddr_next;
619 
620 	paddr = boot_params.hdr.setup_data;
621 	while (paddr) {
622 		unsigned int len;
623 
624 		if (phys_addr == paddr)
625 			return true;
626 
627 		data = memremap(paddr, sizeof(*data),
628 				MEMREMAP_WB | MEMREMAP_DEC);
629 
630 		paddr_next = data->next;
631 		len = data->len;
632 
633 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
634 			memunmap(data);
635 			return true;
636 		}
637 
638 		if (data->type == SETUP_INDIRECT &&
639 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
640 			paddr = ((struct setup_indirect *)data->data)->addr;
641 			len = ((struct setup_indirect *)data->data)->len;
642 		}
643 
644 		memunmap(data);
645 
646 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
647 			return true;
648 
649 		paddr = paddr_next;
650 	}
651 
652 	return false;
653 }
654 
655 /*
656  * Examine the physical address to determine if it is boot data by checking
657  * it against the boot params setup_data chain (early boot version).
658  */
659 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
660 						unsigned long size)
661 {
662 	struct setup_data *data;
663 	u64 paddr, paddr_next;
664 
665 	paddr = boot_params.hdr.setup_data;
666 	while (paddr) {
667 		unsigned int len;
668 
669 		if (phys_addr == paddr)
670 			return true;
671 
672 		data = early_memremap_decrypted(paddr, sizeof(*data));
673 
674 		paddr_next = data->next;
675 		len = data->len;
676 
677 		early_memunmap(data, sizeof(*data));
678 
679 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
680 			return true;
681 
682 		paddr = paddr_next;
683 	}
684 
685 	return false;
686 }
687 
688 /*
689  * Architecture function to determine if RAM remap is allowed. By default, a
690  * RAM remap will map the data as encrypted. Determine if a RAM remap should
691  * not be done so that the data will be mapped decrypted.
692  */
693 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
694 				 unsigned long flags)
695 {
696 	if (!mem_encrypt_active())
697 		return true;
698 
699 	if (flags & MEMREMAP_ENC)
700 		return true;
701 
702 	if (flags & MEMREMAP_DEC)
703 		return false;
704 
705 	if (sme_active()) {
706 		if (memremap_is_setup_data(phys_addr, size) ||
707 		    memremap_is_efi_data(phys_addr, size))
708 			return false;
709 	}
710 
711 	return !memremap_should_map_decrypted(phys_addr, size);
712 }
713 
714 /*
715  * Architecture override of __weak function to adjust the protection attributes
716  * used when remapping memory. By default, early_memremap() will map the data
717  * as encrypted. Determine if an encrypted mapping should not be done and set
718  * the appropriate protection attributes.
719  */
720 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
721 					     unsigned long size,
722 					     pgprot_t prot)
723 {
724 	bool encrypted_prot;
725 
726 	if (!mem_encrypt_active())
727 		return prot;
728 
729 	encrypted_prot = true;
730 
731 	if (sme_active()) {
732 		if (early_memremap_is_setup_data(phys_addr, size) ||
733 		    memremap_is_efi_data(phys_addr, size))
734 			encrypted_prot = false;
735 	}
736 
737 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
738 		encrypted_prot = false;
739 
740 	return encrypted_prot ? pgprot_encrypted(prot)
741 			      : pgprot_decrypted(prot);
742 }
743 
744 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
745 {
746 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
747 }
748 
749 #ifdef CONFIG_AMD_MEM_ENCRYPT
750 /* Remap memory with encryption */
751 void __init *early_memremap_encrypted(resource_size_t phys_addr,
752 				      unsigned long size)
753 {
754 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
755 }
756 
757 /*
758  * Remap memory with encryption and write-protected - cannot be called
759  * before pat_init() is called
760  */
761 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
762 					 unsigned long size)
763 {
764 	if (!x86_has_pat_wp())
765 		return NULL;
766 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
767 }
768 
769 /* Remap memory without encryption */
770 void __init *early_memremap_decrypted(resource_size_t phys_addr,
771 				      unsigned long size)
772 {
773 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
774 }
775 
776 /*
777  * Remap memory without encryption and write-protected - cannot be called
778  * before pat_init() is called
779  */
780 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
781 					 unsigned long size)
782 {
783 	if (!x86_has_pat_wp())
784 		return NULL;
785 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
786 }
787 #endif	/* CONFIG_AMD_MEM_ENCRYPT */
788 
789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
790 
791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
792 {
793 	/* Don't assume we're using swapper_pg_dir at this point */
794 	pgd_t *base = __va(read_cr3_pa());
795 	pgd_t *pgd = &base[pgd_index(addr)];
796 	p4d_t *p4d = p4d_offset(pgd, addr);
797 	pud_t *pud = pud_offset(p4d, addr);
798 	pmd_t *pmd = pmd_offset(pud, addr);
799 
800 	return pmd;
801 }
802 
803 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
804 {
805 	return &bm_pte[pte_index(addr)];
806 }
807 
808 bool __init is_early_ioremap_ptep(pte_t *ptep)
809 {
810 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
811 }
812 
813 void __init early_ioremap_init(void)
814 {
815 	pmd_t *pmd;
816 
817 #ifdef CONFIG_X86_64
818 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
819 #else
820 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
821 #endif
822 
823 	early_ioremap_setup();
824 
825 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
826 	memset(bm_pte, 0, sizeof(bm_pte));
827 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
828 
829 	/*
830 	 * The boot-ioremap range spans multiple pmds, for which
831 	 * we are not prepared:
832 	 */
833 #define __FIXADDR_TOP (-PAGE_SIZE)
834 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
835 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
836 #undef __FIXADDR_TOP
837 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
838 		WARN_ON(1);
839 		printk(KERN_WARNING "pmd %p != %p\n",
840 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
841 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
842 			fix_to_virt(FIX_BTMAP_BEGIN));
843 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
844 			fix_to_virt(FIX_BTMAP_END));
845 
846 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
847 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
848 		       FIX_BTMAP_BEGIN);
849 	}
850 }
851 
852 void __init __early_set_fixmap(enum fixed_addresses idx,
853 			       phys_addr_t phys, pgprot_t flags)
854 {
855 	unsigned long addr = __fix_to_virt(idx);
856 	pte_t *pte;
857 
858 	if (idx >= __end_of_fixed_addresses) {
859 		BUG();
860 		return;
861 	}
862 	pte = early_ioremap_pte(addr);
863 
864 	/* Sanitize 'prot' against any unsupported bits: */
865 	pgprot_val(flags) &= __supported_pte_mask;
866 
867 	if (pgprot_val(flags))
868 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
869 	else
870 		pte_clear(&init_mm, addr, pte);
871 	flush_tlb_one_kernel(addr);
872 }
873