xref: /openbmc/linux/arch/x86/mm/init_64.c (revision fd589a8f)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 #include <asm/init.h>
52 
53 static unsigned long dma_reserve __initdata;
54 
55 static int __init parse_direct_gbpages_off(char *arg)
56 {
57 	direct_gbpages = 0;
58 	return 0;
59 }
60 early_param("nogbpages", parse_direct_gbpages_off);
61 
62 static int __init parse_direct_gbpages_on(char *arg)
63 {
64 	direct_gbpages = 1;
65 	return 0;
66 }
67 early_param("gbpages", parse_direct_gbpages_on);
68 
69 /*
70  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71  * physical space so we can cache the place of the first one and move
72  * around without checking the pgd every time.
73  */
74 
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
77 
78 int force_personality32;
79 
80 /*
81  * noexec32=on|off
82  * Control non executable heap for 32bit processes.
83  * To control the stack too use noexec=off
84  *
85  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86  * off	PROT_READ implies PROT_EXEC
87  */
88 static int __init nonx32_setup(char *str)
89 {
90 	if (!strcmp(str, "on"))
91 		force_personality32 &= ~READ_IMPLIES_EXEC;
92 	else if (!strcmp(str, "off"))
93 		force_personality32 |= READ_IMPLIES_EXEC;
94 	return 1;
95 }
96 __setup("noexec32=", nonx32_setup);
97 
98 /*
99  * NOTE: This function is marked __ref because it calls __init function
100  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
101  */
102 static __ref void *spp_getpage(void)
103 {
104 	void *ptr;
105 
106 	if (after_bootmem)
107 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
108 	else
109 		ptr = alloc_bootmem_pages(PAGE_SIZE);
110 
111 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
112 		panic("set_pte_phys: cannot allocate page data %s\n",
113 			after_bootmem ? "after bootmem" : "");
114 	}
115 
116 	pr_debug("spp_getpage %p\n", ptr);
117 
118 	return ptr;
119 }
120 
121 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
122 {
123 	if (pgd_none(*pgd)) {
124 		pud_t *pud = (pud_t *)spp_getpage();
125 		pgd_populate(&init_mm, pgd, pud);
126 		if (pud != pud_offset(pgd, 0))
127 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
128 			       pud, pud_offset(pgd, 0));
129 	}
130 	return pud_offset(pgd, vaddr);
131 }
132 
133 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
134 {
135 	if (pud_none(*pud)) {
136 		pmd_t *pmd = (pmd_t *) spp_getpage();
137 		pud_populate(&init_mm, pud, pmd);
138 		if (pmd != pmd_offset(pud, 0))
139 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
140 			       pmd, pmd_offset(pud, 0));
141 	}
142 	return pmd_offset(pud, vaddr);
143 }
144 
145 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
146 {
147 	if (pmd_none(*pmd)) {
148 		pte_t *pte = (pte_t *) spp_getpage();
149 		pmd_populate_kernel(&init_mm, pmd, pte);
150 		if (pte != pte_offset_kernel(pmd, 0))
151 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
152 	}
153 	return pte_offset_kernel(pmd, vaddr);
154 }
155 
156 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
157 {
158 	pud_t *pud;
159 	pmd_t *pmd;
160 	pte_t *pte;
161 
162 	pud = pud_page + pud_index(vaddr);
163 	pmd = fill_pmd(pud, vaddr);
164 	pte = fill_pte(pmd, vaddr);
165 
166 	set_pte(pte, new_pte);
167 
168 	/*
169 	 * It's enough to flush this one mapping.
170 	 * (PGE mappings get flushed as well)
171 	 */
172 	__flush_tlb_one(vaddr);
173 }
174 
175 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
176 {
177 	pgd_t *pgd;
178 	pud_t *pud_page;
179 
180 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
181 
182 	pgd = pgd_offset_k(vaddr);
183 	if (pgd_none(*pgd)) {
184 		printk(KERN_ERR
185 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
186 		return;
187 	}
188 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
189 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
190 }
191 
192 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
193 {
194 	pgd_t *pgd;
195 	pud_t *pud;
196 
197 	pgd = pgd_offset_k(vaddr);
198 	pud = fill_pud(pgd, vaddr);
199 	return fill_pmd(pud, vaddr);
200 }
201 
202 pte_t * __init populate_extra_pte(unsigned long vaddr)
203 {
204 	pmd_t *pmd;
205 
206 	pmd = populate_extra_pmd(vaddr);
207 	return fill_pte(pmd, vaddr);
208 }
209 
210 /*
211  * Create large page table mappings for a range of physical addresses.
212  */
213 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
214 						pgprot_t prot)
215 {
216 	pgd_t *pgd;
217 	pud_t *pud;
218 	pmd_t *pmd;
219 
220 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
221 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
222 		pgd = pgd_offset_k((unsigned long)__va(phys));
223 		if (pgd_none(*pgd)) {
224 			pud = (pud_t *) spp_getpage();
225 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
226 						_PAGE_USER));
227 		}
228 		pud = pud_offset(pgd, (unsigned long)__va(phys));
229 		if (pud_none(*pud)) {
230 			pmd = (pmd_t *) spp_getpage();
231 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
232 						_PAGE_USER));
233 		}
234 		pmd = pmd_offset(pud, phys);
235 		BUG_ON(!pmd_none(*pmd));
236 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
237 	}
238 }
239 
240 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
241 {
242 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
243 }
244 
245 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
246 {
247 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
248 }
249 
250 /*
251  * The head.S code sets up the kernel high mapping:
252  *
253  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
254  *
255  * phys_addr holds the negative offset to the kernel, which is added
256  * to the compile time generated pmds. This results in invalid pmds up
257  * to the point where we hit the physaddr 0 mapping.
258  *
259  * We limit the mappings to the region from _text to _end.  _end is
260  * rounded up to the 2MB boundary. This catches the invalid pmds as
261  * well, as they are located before _text:
262  */
263 void __init cleanup_highmap(void)
264 {
265 	unsigned long vaddr = __START_KERNEL_map;
266 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
267 	pmd_t *pmd = level2_kernel_pgt;
268 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
269 
270 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
271 		if (pmd_none(*pmd))
272 			continue;
273 		if (vaddr < (unsigned long) _text || vaddr > end)
274 			set_pmd(pmd, __pmd(0));
275 	}
276 }
277 
278 static __ref void *alloc_low_page(unsigned long *phys)
279 {
280 	unsigned long pfn = e820_table_end++;
281 	void *adr;
282 
283 	if (after_bootmem) {
284 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
285 		*phys = __pa(adr);
286 
287 		return adr;
288 	}
289 
290 	if (pfn >= e820_table_top)
291 		panic("alloc_low_page: ran out of memory");
292 
293 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
294 	memset(adr, 0, PAGE_SIZE);
295 	*phys  = pfn * PAGE_SIZE;
296 	return adr;
297 }
298 
299 static __ref void unmap_low_page(void *adr)
300 {
301 	if (after_bootmem)
302 		return;
303 
304 	early_iounmap(adr, PAGE_SIZE);
305 }
306 
307 static unsigned long __meminit
308 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
309 	      pgprot_t prot)
310 {
311 	unsigned pages = 0;
312 	unsigned long last_map_addr = end;
313 	int i;
314 
315 	pte_t *pte = pte_page + pte_index(addr);
316 
317 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
318 
319 		if (addr >= end) {
320 			if (!after_bootmem) {
321 				for(; i < PTRS_PER_PTE; i++, pte++)
322 					set_pte(pte, __pte(0));
323 			}
324 			break;
325 		}
326 
327 		/*
328 		 * We will re-use the existing mapping.
329 		 * Xen for example has some special requirements, like mapping
330 		 * pagetable pages as RO. So assume someone who pre-setup
331 		 * these mappings are more intelligent.
332 		 */
333 		if (pte_val(*pte)) {
334 			pages++;
335 			continue;
336 		}
337 
338 		if (0)
339 			printk("   pte=%p addr=%lx pte=%016lx\n",
340 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
341 		pages++;
342 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
343 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
344 	}
345 
346 	update_page_count(PG_LEVEL_4K, pages);
347 
348 	return last_map_addr;
349 }
350 
351 static unsigned long __meminit
352 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
353 		pgprot_t prot)
354 {
355 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
356 
357 	return phys_pte_init(pte, address, end, prot);
358 }
359 
360 static unsigned long __meminit
361 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
362 	      unsigned long page_size_mask, pgprot_t prot)
363 {
364 	unsigned long pages = 0;
365 	unsigned long last_map_addr = end;
366 
367 	int i = pmd_index(address);
368 
369 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
370 		unsigned long pte_phys;
371 		pmd_t *pmd = pmd_page + pmd_index(address);
372 		pte_t *pte;
373 		pgprot_t new_prot = prot;
374 
375 		if (address >= end) {
376 			if (!after_bootmem) {
377 				for (; i < PTRS_PER_PMD; i++, pmd++)
378 					set_pmd(pmd, __pmd(0));
379 			}
380 			break;
381 		}
382 
383 		if (pmd_val(*pmd)) {
384 			if (!pmd_large(*pmd)) {
385 				spin_lock(&init_mm.page_table_lock);
386 				last_map_addr = phys_pte_update(pmd, address,
387 								end, prot);
388 				spin_unlock(&init_mm.page_table_lock);
389 				continue;
390 			}
391 			/*
392 			 * If we are ok with PG_LEVEL_2M mapping, then we will
393 			 * use the existing mapping,
394 			 *
395 			 * Otherwise, we will split the large page mapping but
396 			 * use the same existing protection bits except for
397 			 * large page, so that we don't violate Intel's TLB
398 			 * Application note (317080) which says, while changing
399 			 * the page sizes, new and old translations should
400 			 * not differ with respect to page frame and
401 			 * attributes.
402 			 */
403 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
404 				pages++;
405 				continue;
406 			}
407 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
408 		}
409 
410 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
411 			pages++;
412 			spin_lock(&init_mm.page_table_lock);
413 			set_pte((pte_t *)pmd,
414 				pfn_pte(address >> PAGE_SHIFT,
415 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
416 			spin_unlock(&init_mm.page_table_lock);
417 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
418 			continue;
419 		}
420 
421 		pte = alloc_low_page(&pte_phys);
422 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
423 		unmap_low_page(pte);
424 
425 		spin_lock(&init_mm.page_table_lock);
426 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
427 		spin_unlock(&init_mm.page_table_lock);
428 	}
429 	update_page_count(PG_LEVEL_2M, pages);
430 	return last_map_addr;
431 }
432 
433 static unsigned long __meminit
434 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
435 		unsigned long page_size_mask, pgprot_t prot)
436 {
437 	pmd_t *pmd = pmd_offset(pud, 0);
438 	unsigned long last_map_addr;
439 
440 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
441 	__flush_tlb_all();
442 	return last_map_addr;
443 }
444 
445 static unsigned long __meminit
446 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
447 			 unsigned long page_size_mask)
448 {
449 	unsigned long pages = 0;
450 	unsigned long last_map_addr = end;
451 	int i = pud_index(addr);
452 
453 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
454 		unsigned long pmd_phys;
455 		pud_t *pud = pud_page + pud_index(addr);
456 		pmd_t *pmd;
457 		pgprot_t prot = PAGE_KERNEL;
458 
459 		if (addr >= end)
460 			break;
461 
462 		if (!after_bootmem &&
463 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
464 			set_pud(pud, __pud(0));
465 			continue;
466 		}
467 
468 		if (pud_val(*pud)) {
469 			if (!pud_large(*pud)) {
470 				last_map_addr = phys_pmd_update(pud, addr, end,
471 							 page_size_mask, prot);
472 				continue;
473 			}
474 			/*
475 			 * If we are ok with PG_LEVEL_1G mapping, then we will
476 			 * use the existing mapping.
477 			 *
478 			 * Otherwise, we will split the gbpage mapping but use
479 			 * the same existing protection  bits except for large
480 			 * page, so that we don't violate Intel's TLB
481 			 * Application note (317080) which says, while changing
482 			 * the page sizes, new and old translations should
483 			 * not differ with respect to page frame and
484 			 * attributes.
485 			 */
486 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
487 				pages++;
488 				continue;
489 			}
490 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
491 		}
492 
493 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
494 			pages++;
495 			spin_lock(&init_mm.page_table_lock);
496 			set_pte((pte_t *)pud,
497 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
498 			spin_unlock(&init_mm.page_table_lock);
499 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
500 			continue;
501 		}
502 
503 		pmd = alloc_low_page(&pmd_phys);
504 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
505 					      prot);
506 		unmap_low_page(pmd);
507 
508 		spin_lock(&init_mm.page_table_lock);
509 		pud_populate(&init_mm, pud, __va(pmd_phys));
510 		spin_unlock(&init_mm.page_table_lock);
511 	}
512 	__flush_tlb_all();
513 
514 	update_page_count(PG_LEVEL_1G, pages);
515 
516 	return last_map_addr;
517 }
518 
519 static unsigned long __meminit
520 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
521 		 unsigned long page_size_mask)
522 {
523 	pud_t *pud;
524 
525 	pud = (pud_t *)pgd_page_vaddr(*pgd);
526 
527 	return phys_pud_init(pud, addr, end, page_size_mask);
528 }
529 
530 unsigned long __meminit
531 kernel_physical_mapping_init(unsigned long start,
532 			     unsigned long end,
533 			     unsigned long page_size_mask)
534 {
535 
536 	unsigned long next, last_map_addr = end;
537 
538 	start = (unsigned long)__va(start);
539 	end = (unsigned long)__va(end);
540 
541 	for (; start < end; start = next) {
542 		pgd_t *pgd = pgd_offset_k(start);
543 		unsigned long pud_phys;
544 		pud_t *pud;
545 
546 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
547 		if (next > end)
548 			next = end;
549 
550 		if (pgd_val(*pgd)) {
551 			last_map_addr = phys_pud_update(pgd, __pa(start),
552 						 __pa(end), page_size_mask);
553 			continue;
554 		}
555 
556 		pud = alloc_low_page(&pud_phys);
557 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
558 						 page_size_mask);
559 		unmap_low_page(pud);
560 
561 		spin_lock(&init_mm.page_table_lock);
562 		pgd_populate(&init_mm, pgd, __va(pud_phys));
563 		spin_unlock(&init_mm.page_table_lock);
564 	}
565 	__flush_tlb_all();
566 
567 	return last_map_addr;
568 }
569 
570 #ifndef CONFIG_NUMA
571 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
572 {
573 	unsigned long bootmap_size, bootmap;
574 
575 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
576 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
577 				 PAGE_SIZE);
578 	if (bootmap == -1L)
579 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
580 	/* don't touch min_low_pfn */
581 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
582 					 0, end_pfn);
583 	e820_register_active_regions(0, start_pfn, end_pfn);
584 	free_bootmem_with_active_regions(0, end_pfn);
585 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
586 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
587 }
588 #endif
589 
590 void __init paging_init(void)
591 {
592 	unsigned long max_zone_pfns[MAX_NR_ZONES];
593 
594 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
595 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
596 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
597 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
598 
599 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
600 	sparse_init();
601 
602 	/*
603 	 * clear the default setting with node 0
604 	 * note: don't use nodes_clear here, that is really clearing when
605 	 *	 numa support is not compiled in, and later node_set_state
606 	 *	 will not set it back.
607 	 */
608 	node_clear_state(0, N_NORMAL_MEMORY);
609 
610 	free_area_init_nodes(max_zone_pfns);
611 }
612 
613 /*
614  * Memory hotplug specific functions
615  */
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618  * Memory is added always to NORMAL zone. This means you will never get
619  * additional DMA/DMA32 memory.
620  */
621 int arch_add_memory(int nid, u64 start, u64 size)
622 {
623 	struct pglist_data *pgdat = NODE_DATA(nid);
624 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
625 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
626 	unsigned long nr_pages = size >> PAGE_SHIFT;
627 	int ret;
628 
629 	last_mapped_pfn = init_memory_mapping(start, start + size);
630 	if (last_mapped_pfn > max_pfn_mapped)
631 		max_pfn_mapped = last_mapped_pfn;
632 
633 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
634 	WARN_ON_ONCE(ret);
635 
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(arch_add_memory);
639 
640 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
641 int memory_add_physaddr_to_nid(u64 start)
642 {
643 	return 0;
644 }
645 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
646 #endif
647 
648 #endif /* CONFIG_MEMORY_HOTPLUG */
649 
650 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
651 			 kcore_modules, kcore_vsyscall;
652 
653 void __init mem_init(void)
654 {
655 	long codesize, reservedpages, datasize, initsize;
656 	unsigned long absent_pages;
657 
658 	pci_iommu_alloc();
659 
660 	/* clear_bss() already clear the empty_zero_page */
661 
662 	reservedpages = 0;
663 
664 	/* this will put all low memory onto the freelists */
665 #ifdef CONFIG_NUMA
666 	totalram_pages = numa_free_all_bootmem();
667 #else
668 	totalram_pages = free_all_bootmem();
669 #endif
670 
671 	absent_pages = absent_pages_in_range(0, max_pfn);
672 	reservedpages = max_pfn - totalram_pages - absent_pages;
673 	after_bootmem = 1;
674 
675 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
676 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
677 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
678 
679 	/* Register memory areas for /proc/kcore */
680 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
681 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
682 		   VMALLOC_END-VMALLOC_START);
683 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
684 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
685 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
686 				 VSYSCALL_END - VSYSCALL_START);
687 
688 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
689 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
690 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
691 		max_pfn << (PAGE_SHIFT-10),
692 		codesize >> 10,
693 		absent_pages << (PAGE_SHIFT-10),
694 		reservedpages << (PAGE_SHIFT-10),
695 		datasize >> 10,
696 		initsize >> 10);
697 }
698 
699 #ifdef CONFIG_DEBUG_RODATA
700 const int rodata_test_data = 0xC3;
701 EXPORT_SYMBOL_GPL(rodata_test_data);
702 
703 static int kernel_set_to_readonly;
704 
705 void set_kernel_text_rw(void)
706 {
707 	unsigned long start = PFN_ALIGN(_stext);
708 	unsigned long end = PFN_ALIGN(__start_rodata);
709 
710 	if (!kernel_set_to_readonly)
711 		return;
712 
713 	pr_debug("Set kernel text: %lx - %lx for read write\n",
714 		 start, end);
715 
716 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
717 }
718 
719 void set_kernel_text_ro(void)
720 {
721 	unsigned long start = PFN_ALIGN(_stext);
722 	unsigned long end = PFN_ALIGN(__start_rodata);
723 
724 	if (!kernel_set_to_readonly)
725 		return;
726 
727 	pr_debug("Set kernel text: %lx - %lx for read only\n",
728 		 start, end);
729 
730 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
731 }
732 
733 void mark_rodata_ro(void)
734 {
735 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
736 	unsigned long rodata_start =
737 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
738 
739 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
740 	       (end - start) >> 10);
741 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
742 
743 	kernel_set_to_readonly = 1;
744 
745 	/*
746 	 * The rodata section (but not the kernel text!) should also be
747 	 * not-executable.
748 	 */
749 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
750 
751 	rodata_test();
752 
753 #ifdef CONFIG_CPA_DEBUG
754 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
755 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
756 
757 	printk(KERN_INFO "Testing CPA: again\n");
758 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
759 #endif
760 }
761 
762 #endif
763 
764 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
765 				   int flags)
766 {
767 #ifdef CONFIG_NUMA
768 	int nid, next_nid;
769 	int ret;
770 #endif
771 	unsigned long pfn = phys >> PAGE_SHIFT;
772 
773 	if (pfn >= max_pfn) {
774 		/*
775 		 * This can happen with kdump kernels when accessing
776 		 * firmware tables:
777 		 */
778 		if (pfn < max_pfn_mapped)
779 			return -EFAULT;
780 
781 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
782 				phys, len);
783 		return -EFAULT;
784 	}
785 
786 	/* Should check here against the e820 map to avoid double free */
787 #ifdef CONFIG_NUMA
788 	nid = phys_to_nid(phys);
789 	next_nid = phys_to_nid(phys + len - 1);
790 	if (nid == next_nid)
791 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
792 	else
793 		ret = reserve_bootmem(phys, len, flags);
794 
795 	if (ret != 0)
796 		return ret;
797 
798 #else
799 	reserve_bootmem(phys, len, flags);
800 #endif
801 
802 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
803 		dma_reserve += len / PAGE_SIZE;
804 		set_dma_reserve(dma_reserve);
805 	}
806 
807 	return 0;
808 }
809 
810 int kern_addr_valid(unsigned long addr)
811 {
812 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
813 	pgd_t *pgd;
814 	pud_t *pud;
815 	pmd_t *pmd;
816 	pte_t *pte;
817 
818 	if (above != 0 && above != -1UL)
819 		return 0;
820 
821 	pgd = pgd_offset_k(addr);
822 	if (pgd_none(*pgd))
823 		return 0;
824 
825 	pud = pud_offset(pgd, addr);
826 	if (pud_none(*pud))
827 		return 0;
828 
829 	pmd = pmd_offset(pud, addr);
830 	if (pmd_none(*pmd))
831 		return 0;
832 
833 	if (pmd_large(*pmd))
834 		return pfn_valid(pmd_pfn(*pmd));
835 
836 	pte = pte_offset_kernel(pmd, addr);
837 	if (pte_none(*pte))
838 		return 0;
839 
840 	return pfn_valid(pte_pfn(*pte));
841 }
842 
843 /*
844  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
845  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
846  * not need special handling anymore:
847  */
848 static struct vm_area_struct gate_vma = {
849 	.vm_start	= VSYSCALL_START,
850 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
851 	.vm_page_prot	= PAGE_READONLY_EXEC,
852 	.vm_flags	= VM_READ | VM_EXEC
853 };
854 
855 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
856 {
857 #ifdef CONFIG_IA32_EMULATION
858 	if (test_tsk_thread_flag(tsk, TIF_IA32))
859 		return NULL;
860 #endif
861 	return &gate_vma;
862 }
863 
864 int in_gate_area(struct task_struct *task, unsigned long addr)
865 {
866 	struct vm_area_struct *vma = get_gate_vma(task);
867 
868 	if (!vma)
869 		return 0;
870 
871 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
872 }
873 
874 /*
875  * Use this when you have no reliable task/vma, typically from interrupt
876  * context. It is less reliable than using the task's vma and may give
877  * false positives:
878  */
879 int in_gate_area_no_task(unsigned long addr)
880 {
881 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
882 }
883 
884 const char *arch_vma_name(struct vm_area_struct *vma)
885 {
886 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
887 		return "[vdso]";
888 	if (vma == &gate_vma)
889 		return "[vsyscall]";
890 	return NULL;
891 }
892 
893 #ifdef CONFIG_SPARSEMEM_VMEMMAP
894 /*
895  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
896  */
897 static long __meminitdata addr_start, addr_end;
898 static void __meminitdata *p_start, *p_end;
899 static int __meminitdata node_start;
900 
901 int __meminit
902 vmemmap_populate(struct page *start_page, unsigned long size, int node)
903 {
904 	unsigned long addr = (unsigned long)start_page;
905 	unsigned long end = (unsigned long)(start_page + size);
906 	unsigned long next;
907 	pgd_t *pgd;
908 	pud_t *pud;
909 	pmd_t *pmd;
910 
911 	for (; addr < end; addr = next) {
912 		void *p = NULL;
913 
914 		pgd = vmemmap_pgd_populate(addr, node);
915 		if (!pgd)
916 			return -ENOMEM;
917 
918 		pud = vmemmap_pud_populate(pgd, addr, node);
919 		if (!pud)
920 			return -ENOMEM;
921 
922 		if (!cpu_has_pse) {
923 			next = (addr + PAGE_SIZE) & PAGE_MASK;
924 			pmd = vmemmap_pmd_populate(pud, addr, node);
925 
926 			if (!pmd)
927 				return -ENOMEM;
928 
929 			p = vmemmap_pte_populate(pmd, addr, node);
930 
931 			if (!p)
932 				return -ENOMEM;
933 
934 			addr_end = addr + PAGE_SIZE;
935 			p_end = p + PAGE_SIZE;
936 		} else {
937 			next = pmd_addr_end(addr, end);
938 
939 			pmd = pmd_offset(pud, addr);
940 			if (pmd_none(*pmd)) {
941 				pte_t entry;
942 
943 				p = vmemmap_alloc_block(PMD_SIZE, node);
944 				if (!p)
945 					return -ENOMEM;
946 
947 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
948 						PAGE_KERNEL_LARGE);
949 				set_pmd(pmd, __pmd(pte_val(entry)));
950 
951 				/* check to see if we have contiguous blocks */
952 				if (p_end != p || node_start != node) {
953 					if (p_start)
954 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
955 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
956 					addr_start = addr;
957 					node_start = node;
958 					p_start = p;
959 				}
960 
961 				addr_end = addr + PMD_SIZE;
962 				p_end = p + PMD_SIZE;
963 			} else
964 				vmemmap_verify((pte_t *)pmd, node, addr, next);
965 		}
966 
967 	}
968 	return 0;
969 }
970 
971 void __meminit vmemmap_populate_print_last(void)
972 {
973 	if (p_start) {
974 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
975 			addr_start, addr_end-1, p_start, p_end-1, node_start);
976 		p_start = NULL;
977 		p_end = NULL;
978 		node_start = 0;
979 	}
980 }
981 #endif
982