1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/memblock.h> 24 #include <linux/proc_fs.h> 25 #include <linux/pci.h> 26 #include <linux/pfn.h> 27 #include <linux/poison.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/memory.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memremap.h> 32 #include <linux/nmi.h> 33 #include <linux/gfp.h> 34 #include <linux/kcore.h> 35 36 #include <asm/processor.h> 37 #include <asm/bios_ebda.h> 38 #include <linux/uaccess.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/dma.h> 42 #include <asm/fixmap.h> 43 #include <asm/e820/api.h> 44 #include <asm/apic.h> 45 #include <asm/tlb.h> 46 #include <asm/mmu_context.h> 47 #include <asm/proto.h> 48 #include <asm/smp.h> 49 #include <asm/sections.h> 50 #include <asm/kdebug.h> 51 #include <asm/numa.h> 52 #include <asm/set_memory.h> 53 #include <asm/init.h> 54 #include <asm/uv/uv.h> 55 #include <asm/setup.h> 56 57 #include "mm_internal.h" 58 59 #include "ident_map.c" 60 61 #define DEFINE_POPULATE(fname, type1, type2, init) \ 62 static inline void fname##_init(struct mm_struct *mm, \ 63 type1##_t *arg1, type2##_t *arg2, bool init) \ 64 { \ 65 if (init) \ 66 fname##_safe(mm, arg1, arg2); \ 67 else \ 68 fname(mm, arg1, arg2); \ 69 } 70 71 DEFINE_POPULATE(p4d_populate, p4d, pud, init) 72 DEFINE_POPULATE(pgd_populate, pgd, p4d, init) 73 DEFINE_POPULATE(pud_populate, pud, pmd, init) 74 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) 75 76 #define DEFINE_ENTRY(type1, type2, init) \ 77 static inline void set_##type1##_init(type1##_t *arg1, \ 78 type2##_t arg2, bool init) \ 79 { \ 80 if (init) \ 81 set_##type1##_safe(arg1, arg2); \ 82 else \ 83 set_##type1(arg1, arg2); \ 84 } 85 86 DEFINE_ENTRY(p4d, p4d, init) 87 DEFINE_ENTRY(pud, pud, init) 88 DEFINE_ENTRY(pmd, pmd, init) 89 DEFINE_ENTRY(pte, pte, init) 90 91 92 /* 93 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 94 * physical space so we can cache the place of the first one and move 95 * around without checking the pgd every time. 96 */ 97 98 /* Bits supported by the hardware: */ 99 pteval_t __supported_pte_mask __read_mostly = ~0; 100 /* Bits allowed in normal kernel mappings: */ 101 pteval_t __default_kernel_pte_mask __read_mostly = ~0; 102 EXPORT_SYMBOL_GPL(__supported_pte_mask); 103 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ 104 EXPORT_SYMBOL(__default_kernel_pte_mask); 105 106 int force_personality32; 107 108 /* 109 * noexec32=on|off 110 * Control non executable heap for 32bit processes. 111 * To control the stack too use noexec=off 112 * 113 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 114 * off PROT_READ implies PROT_EXEC 115 */ 116 static int __init nonx32_setup(char *str) 117 { 118 if (!strcmp(str, "on")) 119 force_personality32 &= ~READ_IMPLIES_EXEC; 120 else if (!strcmp(str, "off")) 121 force_personality32 |= READ_IMPLIES_EXEC; 122 return 1; 123 } 124 __setup("noexec32=", nonx32_setup); 125 126 static void sync_global_pgds_l5(unsigned long start, unsigned long end) 127 { 128 unsigned long addr; 129 130 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 131 const pgd_t *pgd_ref = pgd_offset_k(addr); 132 struct page *page; 133 134 /* Check for overflow */ 135 if (addr < start) 136 break; 137 138 if (pgd_none(*pgd_ref)) 139 continue; 140 141 spin_lock(&pgd_lock); 142 list_for_each_entry(page, &pgd_list, lru) { 143 pgd_t *pgd; 144 spinlock_t *pgt_lock; 145 146 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 147 /* the pgt_lock only for Xen */ 148 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 149 spin_lock(pgt_lock); 150 151 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 152 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 153 154 if (pgd_none(*pgd)) 155 set_pgd(pgd, *pgd_ref); 156 157 spin_unlock(pgt_lock); 158 } 159 spin_unlock(&pgd_lock); 160 } 161 } 162 163 static void sync_global_pgds_l4(unsigned long start, unsigned long end) 164 { 165 unsigned long addr; 166 167 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 168 pgd_t *pgd_ref = pgd_offset_k(addr); 169 const p4d_t *p4d_ref; 170 struct page *page; 171 172 /* 173 * With folded p4d, pgd_none() is always false, we need to 174 * handle synchonization on p4d level. 175 */ 176 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); 177 p4d_ref = p4d_offset(pgd_ref, addr); 178 179 if (p4d_none(*p4d_ref)) 180 continue; 181 182 spin_lock(&pgd_lock); 183 list_for_each_entry(page, &pgd_list, lru) { 184 pgd_t *pgd; 185 p4d_t *p4d; 186 spinlock_t *pgt_lock; 187 188 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 189 p4d = p4d_offset(pgd, addr); 190 /* the pgt_lock only for Xen */ 191 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 192 spin_lock(pgt_lock); 193 194 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) 195 BUG_ON(p4d_page_vaddr(*p4d) 196 != p4d_page_vaddr(*p4d_ref)); 197 198 if (p4d_none(*p4d)) 199 set_p4d(p4d, *p4d_ref); 200 201 spin_unlock(pgt_lock); 202 } 203 spin_unlock(&pgd_lock); 204 } 205 } 206 207 /* 208 * When memory was added make sure all the processes MM have 209 * suitable PGD entries in the local PGD level page. 210 */ 211 void sync_global_pgds(unsigned long start, unsigned long end) 212 { 213 if (pgtable_l5_enabled()) 214 sync_global_pgds_l5(start, end); 215 else 216 sync_global_pgds_l4(start, end); 217 } 218 219 /* 220 * NOTE: This function is marked __ref because it calls __init function 221 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 222 */ 223 static __ref void *spp_getpage(void) 224 { 225 void *ptr; 226 227 if (after_bootmem) 228 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 229 else 230 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 231 232 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 233 panic("set_pte_phys: cannot allocate page data %s\n", 234 after_bootmem ? "after bootmem" : ""); 235 } 236 237 pr_debug("spp_getpage %p\n", ptr); 238 239 return ptr; 240 } 241 242 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) 243 { 244 if (pgd_none(*pgd)) { 245 p4d_t *p4d = (p4d_t *)spp_getpage(); 246 pgd_populate(&init_mm, pgd, p4d); 247 if (p4d != p4d_offset(pgd, 0)) 248 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 249 p4d, p4d_offset(pgd, 0)); 250 } 251 return p4d_offset(pgd, vaddr); 252 } 253 254 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) 255 { 256 if (p4d_none(*p4d)) { 257 pud_t *pud = (pud_t *)spp_getpage(); 258 p4d_populate(&init_mm, p4d, pud); 259 if (pud != pud_offset(p4d, 0)) 260 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 261 pud, pud_offset(p4d, 0)); 262 } 263 return pud_offset(p4d, vaddr); 264 } 265 266 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 267 { 268 if (pud_none(*pud)) { 269 pmd_t *pmd = (pmd_t *) spp_getpage(); 270 pud_populate(&init_mm, pud, pmd); 271 if (pmd != pmd_offset(pud, 0)) 272 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", 273 pmd, pmd_offset(pud, 0)); 274 } 275 return pmd_offset(pud, vaddr); 276 } 277 278 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 279 { 280 if (pmd_none(*pmd)) { 281 pte_t *pte = (pte_t *) spp_getpage(); 282 pmd_populate_kernel(&init_mm, pmd, pte); 283 if (pte != pte_offset_kernel(pmd, 0)) 284 printk(KERN_ERR "PAGETABLE BUG #03!\n"); 285 } 286 return pte_offset_kernel(pmd, vaddr); 287 } 288 289 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) 290 { 291 pmd_t *pmd = fill_pmd(pud, vaddr); 292 pte_t *pte = fill_pte(pmd, vaddr); 293 294 set_pte(pte, new_pte); 295 296 /* 297 * It's enough to flush this one mapping. 298 * (PGE mappings get flushed as well) 299 */ 300 __flush_tlb_one_kernel(vaddr); 301 } 302 303 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) 304 { 305 p4d_t *p4d = p4d_page + p4d_index(vaddr); 306 pud_t *pud = fill_pud(p4d, vaddr); 307 308 __set_pte_vaddr(pud, vaddr, new_pte); 309 } 310 311 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 312 { 313 pud_t *pud = pud_page + pud_index(vaddr); 314 315 __set_pte_vaddr(pud, vaddr, new_pte); 316 } 317 318 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 319 { 320 pgd_t *pgd; 321 p4d_t *p4d_page; 322 323 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 324 325 pgd = pgd_offset_k(vaddr); 326 if (pgd_none(*pgd)) { 327 printk(KERN_ERR 328 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 329 return; 330 } 331 332 p4d_page = p4d_offset(pgd, 0); 333 set_pte_vaddr_p4d(p4d_page, vaddr, pteval); 334 } 335 336 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 337 { 338 pgd_t *pgd; 339 p4d_t *p4d; 340 pud_t *pud; 341 342 pgd = pgd_offset_k(vaddr); 343 p4d = fill_p4d(pgd, vaddr); 344 pud = fill_pud(p4d, vaddr); 345 return fill_pmd(pud, vaddr); 346 } 347 348 pte_t * __init populate_extra_pte(unsigned long vaddr) 349 { 350 pmd_t *pmd; 351 352 pmd = populate_extra_pmd(vaddr); 353 return fill_pte(pmd, vaddr); 354 } 355 356 /* 357 * Create large page table mappings for a range of physical addresses. 358 */ 359 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 360 enum page_cache_mode cache) 361 { 362 pgd_t *pgd; 363 p4d_t *p4d; 364 pud_t *pud; 365 pmd_t *pmd; 366 pgprot_t prot; 367 368 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 369 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache))); 370 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 371 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 372 pgd = pgd_offset_k((unsigned long)__va(phys)); 373 if (pgd_none(*pgd)) { 374 p4d = (p4d_t *) spp_getpage(); 375 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | 376 _PAGE_USER)); 377 } 378 p4d = p4d_offset(pgd, (unsigned long)__va(phys)); 379 if (p4d_none(*p4d)) { 380 pud = (pud_t *) spp_getpage(); 381 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | 382 _PAGE_USER)); 383 } 384 pud = pud_offset(p4d, (unsigned long)__va(phys)); 385 if (pud_none(*pud)) { 386 pmd = (pmd_t *) spp_getpage(); 387 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 388 _PAGE_USER)); 389 } 390 pmd = pmd_offset(pud, phys); 391 BUG_ON(!pmd_none(*pmd)); 392 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 393 } 394 } 395 396 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 397 { 398 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 399 } 400 401 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 402 { 403 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 404 } 405 406 /* 407 * The head.S code sets up the kernel high mapping: 408 * 409 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 410 * 411 * phys_base holds the negative offset to the kernel, which is added 412 * to the compile time generated pmds. This results in invalid pmds up 413 * to the point where we hit the physaddr 0 mapping. 414 * 415 * We limit the mappings to the region from _text to _brk_end. _brk_end 416 * is rounded up to the 2MB boundary. This catches the invalid pmds as 417 * well, as they are located before _text: 418 */ 419 void __init cleanup_highmap(void) 420 { 421 unsigned long vaddr = __START_KERNEL_map; 422 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 423 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 424 pmd_t *pmd = level2_kernel_pgt; 425 426 /* 427 * Native path, max_pfn_mapped is not set yet. 428 * Xen has valid max_pfn_mapped set in 429 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 430 */ 431 if (max_pfn_mapped) 432 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 433 434 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 435 if (pmd_none(*pmd)) 436 continue; 437 if (vaddr < (unsigned long) _text || vaddr > end) 438 set_pmd(pmd, __pmd(0)); 439 } 440 } 441 442 /* 443 * Create PTE level page table mapping for physical addresses. 444 * It returns the last physical address mapped. 445 */ 446 static unsigned long __meminit 447 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, 448 pgprot_t prot, bool init) 449 { 450 unsigned long pages = 0, paddr_next; 451 unsigned long paddr_last = paddr_end; 452 pte_t *pte; 453 int i; 454 455 pte = pte_page + pte_index(paddr); 456 i = pte_index(paddr); 457 458 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { 459 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; 460 if (paddr >= paddr_end) { 461 if (!after_bootmem && 462 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 463 E820_TYPE_RAM) && 464 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 465 E820_TYPE_RESERVED_KERN)) 466 set_pte_init(pte, __pte(0), init); 467 continue; 468 } 469 470 /* 471 * We will re-use the existing mapping. 472 * Xen for example has some special requirements, like mapping 473 * pagetable pages as RO. So assume someone who pre-setup 474 * these mappings are more intelligent. 475 */ 476 if (!pte_none(*pte)) { 477 if (!after_bootmem) 478 pages++; 479 continue; 480 } 481 482 if (0) 483 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, 484 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); 485 pages++; 486 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); 487 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; 488 } 489 490 update_page_count(PG_LEVEL_4K, pages); 491 492 return paddr_last; 493 } 494 495 /* 496 * Create PMD level page table mapping for physical addresses. The virtual 497 * and physical address have to be aligned at this level. 498 * It returns the last physical address mapped. 499 */ 500 static unsigned long __meminit 501 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, 502 unsigned long page_size_mask, pgprot_t prot, bool init) 503 { 504 unsigned long pages = 0, paddr_next; 505 unsigned long paddr_last = paddr_end; 506 507 int i = pmd_index(paddr); 508 509 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { 510 pmd_t *pmd = pmd_page + pmd_index(paddr); 511 pte_t *pte; 512 pgprot_t new_prot = prot; 513 514 paddr_next = (paddr & PMD_MASK) + PMD_SIZE; 515 if (paddr >= paddr_end) { 516 if (!after_bootmem && 517 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 518 E820_TYPE_RAM) && 519 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 520 E820_TYPE_RESERVED_KERN)) 521 set_pmd_init(pmd, __pmd(0), init); 522 continue; 523 } 524 525 if (!pmd_none(*pmd)) { 526 if (!pmd_large(*pmd)) { 527 spin_lock(&init_mm.page_table_lock); 528 pte = (pte_t *)pmd_page_vaddr(*pmd); 529 paddr_last = phys_pte_init(pte, paddr, 530 paddr_end, prot, 531 init); 532 spin_unlock(&init_mm.page_table_lock); 533 continue; 534 } 535 /* 536 * If we are ok with PG_LEVEL_2M mapping, then we will 537 * use the existing mapping, 538 * 539 * Otherwise, we will split the large page mapping but 540 * use the same existing protection bits except for 541 * large page, so that we don't violate Intel's TLB 542 * Application note (317080) which says, while changing 543 * the page sizes, new and old translations should 544 * not differ with respect to page frame and 545 * attributes. 546 */ 547 if (page_size_mask & (1 << PG_LEVEL_2M)) { 548 if (!after_bootmem) 549 pages++; 550 paddr_last = paddr_next; 551 continue; 552 } 553 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 554 } 555 556 if (page_size_mask & (1<<PG_LEVEL_2M)) { 557 pages++; 558 spin_lock(&init_mm.page_table_lock); 559 set_pte_init((pte_t *)pmd, 560 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, 561 __pgprot(pgprot_val(prot) | _PAGE_PSE)), 562 init); 563 spin_unlock(&init_mm.page_table_lock); 564 paddr_last = paddr_next; 565 continue; 566 } 567 568 pte = alloc_low_page(); 569 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); 570 571 spin_lock(&init_mm.page_table_lock); 572 pmd_populate_kernel_init(&init_mm, pmd, pte, init); 573 spin_unlock(&init_mm.page_table_lock); 574 } 575 update_page_count(PG_LEVEL_2M, pages); 576 return paddr_last; 577 } 578 579 /* 580 * Create PUD level page table mapping for physical addresses. The virtual 581 * and physical address do not have to be aligned at this level. KASLR can 582 * randomize virtual addresses up to this level. 583 * It returns the last physical address mapped. 584 */ 585 static unsigned long __meminit 586 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, 587 unsigned long page_size_mask, bool init) 588 { 589 unsigned long pages = 0, paddr_next; 590 unsigned long paddr_last = paddr_end; 591 unsigned long vaddr = (unsigned long)__va(paddr); 592 int i = pud_index(vaddr); 593 594 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { 595 pud_t *pud; 596 pmd_t *pmd; 597 pgprot_t prot = PAGE_KERNEL; 598 599 vaddr = (unsigned long)__va(paddr); 600 pud = pud_page + pud_index(vaddr); 601 paddr_next = (paddr & PUD_MASK) + PUD_SIZE; 602 603 if (paddr >= paddr_end) { 604 if (!after_bootmem && 605 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 606 E820_TYPE_RAM) && 607 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 608 E820_TYPE_RESERVED_KERN)) 609 set_pud_init(pud, __pud(0), init); 610 continue; 611 } 612 613 if (!pud_none(*pud)) { 614 if (!pud_large(*pud)) { 615 pmd = pmd_offset(pud, 0); 616 paddr_last = phys_pmd_init(pmd, paddr, 617 paddr_end, 618 page_size_mask, 619 prot, init); 620 continue; 621 } 622 /* 623 * If we are ok with PG_LEVEL_1G mapping, then we will 624 * use the existing mapping. 625 * 626 * Otherwise, we will split the gbpage mapping but use 627 * the same existing protection bits except for large 628 * page, so that we don't violate Intel's TLB 629 * Application note (317080) which says, while changing 630 * the page sizes, new and old translations should 631 * not differ with respect to page frame and 632 * attributes. 633 */ 634 if (page_size_mask & (1 << PG_LEVEL_1G)) { 635 if (!after_bootmem) 636 pages++; 637 paddr_last = paddr_next; 638 continue; 639 } 640 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 641 } 642 643 if (page_size_mask & (1<<PG_LEVEL_1G)) { 644 pages++; 645 spin_lock(&init_mm.page_table_lock); 646 set_pte_init((pte_t *)pud, 647 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, 648 PAGE_KERNEL_LARGE), 649 init); 650 spin_unlock(&init_mm.page_table_lock); 651 paddr_last = paddr_next; 652 continue; 653 } 654 655 pmd = alloc_low_page(); 656 paddr_last = phys_pmd_init(pmd, paddr, paddr_end, 657 page_size_mask, prot, init); 658 659 spin_lock(&init_mm.page_table_lock); 660 pud_populate_init(&init_mm, pud, pmd, init); 661 spin_unlock(&init_mm.page_table_lock); 662 } 663 664 update_page_count(PG_LEVEL_1G, pages); 665 666 return paddr_last; 667 } 668 669 static unsigned long __meminit 670 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, 671 unsigned long page_size_mask, bool init) 672 { 673 unsigned long paddr_next, paddr_last = paddr_end; 674 unsigned long vaddr = (unsigned long)__va(paddr); 675 int i = p4d_index(vaddr); 676 677 if (!pgtable_l5_enabled()) 678 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, 679 page_size_mask, init); 680 681 for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) { 682 p4d_t *p4d; 683 pud_t *pud; 684 685 vaddr = (unsigned long)__va(paddr); 686 p4d = p4d_page + p4d_index(vaddr); 687 paddr_next = (paddr & P4D_MASK) + P4D_SIZE; 688 689 if (paddr >= paddr_end) { 690 if (!after_bootmem && 691 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 692 E820_TYPE_RAM) && 693 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 694 E820_TYPE_RESERVED_KERN)) 695 set_p4d_init(p4d, __p4d(0), init); 696 continue; 697 } 698 699 if (!p4d_none(*p4d)) { 700 pud = pud_offset(p4d, 0); 701 paddr_last = phys_pud_init(pud, paddr, paddr_end, 702 page_size_mask, init); 703 continue; 704 } 705 706 pud = alloc_low_page(); 707 paddr_last = phys_pud_init(pud, paddr, paddr_end, 708 page_size_mask, init); 709 710 spin_lock(&init_mm.page_table_lock); 711 p4d_populate_init(&init_mm, p4d, pud, init); 712 spin_unlock(&init_mm.page_table_lock); 713 } 714 715 return paddr_last; 716 } 717 718 static unsigned long __meminit 719 __kernel_physical_mapping_init(unsigned long paddr_start, 720 unsigned long paddr_end, 721 unsigned long page_size_mask, 722 bool init) 723 { 724 bool pgd_changed = false; 725 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; 726 727 paddr_last = paddr_end; 728 vaddr = (unsigned long)__va(paddr_start); 729 vaddr_end = (unsigned long)__va(paddr_end); 730 vaddr_start = vaddr; 731 732 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 733 pgd_t *pgd = pgd_offset_k(vaddr); 734 p4d_t *p4d; 735 736 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; 737 738 if (pgd_val(*pgd)) { 739 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 740 paddr_last = phys_p4d_init(p4d, __pa(vaddr), 741 __pa(vaddr_end), 742 page_size_mask, 743 init); 744 continue; 745 } 746 747 p4d = alloc_low_page(); 748 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), 749 page_size_mask, init); 750 751 spin_lock(&init_mm.page_table_lock); 752 if (pgtable_l5_enabled()) 753 pgd_populate_init(&init_mm, pgd, p4d, init); 754 else 755 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), 756 (pud_t *) p4d, init); 757 758 spin_unlock(&init_mm.page_table_lock); 759 pgd_changed = true; 760 } 761 762 if (pgd_changed) 763 sync_global_pgds(vaddr_start, vaddr_end - 1); 764 765 return paddr_last; 766 } 767 768 769 /* 770 * Create page table mapping for the physical memory for specific physical 771 * addresses. Note that it can only be used to populate non-present entries. 772 * The virtual and physical addresses have to be aligned on PMD level 773 * down. It returns the last physical address mapped. 774 */ 775 unsigned long __meminit 776 kernel_physical_mapping_init(unsigned long paddr_start, 777 unsigned long paddr_end, 778 unsigned long page_size_mask) 779 { 780 return __kernel_physical_mapping_init(paddr_start, paddr_end, 781 page_size_mask, true); 782 } 783 784 /* 785 * This function is similar to kernel_physical_mapping_init() above with the 786 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() 787 * when updating the mapping. The caller is responsible to flush the TLBs after 788 * the function returns. 789 */ 790 unsigned long __meminit 791 kernel_physical_mapping_change(unsigned long paddr_start, 792 unsigned long paddr_end, 793 unsigned long page_size_mask) 794 { 795 return __kernel_physical_mapping_init(paddr_start, paddr_end, 796 page_size_mask, false); 797 } 798 799 #ifndef CONFIG_NUMA 800 void __init initmem_init(void) 801 { 802 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 803 } 804 #endif 805 806 void __init paging_init(void) 807 { 808 sparse_memory_present_with_active_regions(MAX_NUMNODES); 809 sparse_init(); 810 811 /* 812 * clear the default setting with node 0 813 * note: don't use nodes_clear here, that is really clearing when 814 * numa support is not compiled in, and later node_set_state 815 * will not set it back. 816 */ 817 node_clear_state(0, N_MEMORY); 818 if (N_MEMORY != N_NORMAL_MEMORY) 819 node_clear_state(0, N_NORMAL_MEMORY); 820 821 zone_sizes_init(); 822 } 823 824 /* 825 * Memory hotplug specific functions 826 */ 827 #ifdef CONFIG_MEMORY_HOTPLUG 828 /* 829 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 830 * updating. 831 */ 832 static void update_end_of_memory_vars(u64 start, u64 size) 833 { 834 unsigned long end_pfn = PFN_UP(start + size); 835 836 if (end_pfn > max_pfn) { 837 max_pfn = end_pfn; 838 max_low_pfn = end_pfn; 839 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 840 } 841 } 842 843 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, 844 struct mhp_restrictions *restrictions) 845 { 846 int ret; 847 848 ret = __add_pages(nid, start_pfn, nr_pages, restrictions); 849 WARN_ON_ONCE(ret); 850 851 /* update max_pfn, max_low_pfn and high_memory */ 852 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, 853 nr_pages << PAGE_SHIFT); 854 855 return ret; 856 } 857 858 int arch_add_memory(int nid, u64 start, u64 size, 859 struct mhp_restrictions *restrictions) 860 { 861 unsigned long start_pfn = start >> PAGE_SHIFT; 862 unsigned long nr_pages = size >> PAGE_SHIFT; 863 864 init_memory_mapping(start, start + size); 865 866 return add_pages(nid, start_pfn, nr_pages, restrictions); 867 } 868 869 #define PAGE_INUSE 0xFD 870 871 static void __meminit free_pagetable(struct page *page, int order) 872 { 873 unsigned long magic; 874 unsigned int nr_pages = 1 << order; 875 876 /* bootmem page has reserved flag */ 877 if (PageReserved(page)) { 878 __ClearPageReserved(page); 879 880 magic = (unsigned long)page->freelist; 881 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 882 while (nr_pages--) 883 put_page_bootmem(page++); 884 } else 885 while (nr_pages--) 886 free_reserved_page(page++); 887 } else 888 free_pages((unsigned long)page_address(page), order); 889 } 890 891 static void __meminit free_hugepage_table(struct page *page, 892 struct vmem_altmap *altmap) 893 { 894 if (altmap) 895 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); 896 else 897 free_pagetable(page, get_order(PMD_SIZE)); 898 } 899 900 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 901 { 902 pte_t *pte; 903 int i; 904 905 for (i = 0; i < PTRS_PER_PTE; i++) { 906 pte = pte_start + i; 907 if (!pte_none(*pte)) 908 return; 909 } 910 911 /* free a pte talbe */ 912 free_pagetable(pmd_page(*pmd), 0); 913 spin_lock(&init_mm.page_table_lock); 914 pmd_clear(pmd); 915 spin_unlock(&init_mm.page_table_lock); 916 } 917 918 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 919 { 920 pmd_t *pmd; 921 int i; 922 923 for (i = 0; i < PTRS_PER_PMD; i++) { 924 pmd = pmd_start + i; 925 if (!pmd_none(*pmd)) 926 return; 927 } 928 929 /* free a pmd talbe */ 930 free_pagetable(pud_page(*pud), 0); 931 spin_lock(&init_mm.page_table_lock); 932 pud_clear(pud); 933 spin_unlock(&init_mm.page_table_lock); 934 } 935 936 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 937 { 938 pud_t *pud; 939 int i; 940 941 for (i = 0; i < PTRS_PER_PUD; i++) { 942 pud = pud_start + i; 943 if (!pud_none(*pud)) 944 return; 945 } 946 947 /* free a pud talbe */ 948 free_pagetable(p4d_page(*p4d), 0); 949 spin_lock(&init_mm.page_table_lock); 950 p4d_clear(p4d); 951 spin_unlock(&init_mm.page_table_lock); 952 } 953 954 static void __meminit 955 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 956 bool direct) 957 { 958 unsigned long next, pages = 0; 959 pte_t *pte; 960 void *page_addr; 961 phys_addr_t phys_addr; 962 963 pte = pte_start + pte_index(addr); 964 for (; addr < end; addr = next, pte++) { 965 next = (addr + PAGE_SIZE) & PAGE_MASK; 966 if (next > end) 967 next = end; 968 969 if (!pte_present(*pte)) 970 continue; 971 972 /* 973 * We mapped [0,1G) memory as identity mapping when 974 * initializing, in arch/x86/kernel/head_64.S. These 975 * pagetables cannot be removed. 976 */ 977 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 978 if (phys_addr < (phys_addr_t)0x40000000) 979 return; 980 981 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 982 /* 983 * Do not free direct mapping pages since they were 984 * freed when offlining, or simplely not in use. 985 */ 986 if (!direct) 987 free_pagetable(pte_page(*pte), 0); 988 989 spin_lock(&init_mm.page_table_lock); 990 pte_clear(&init_mm, addr, pte); 991 spin_unlock(&init_mm.page_table_lock); 992 993 /* For non-direct mapping, pages means nothing. */ 994 pages++; 995 } else { 996 /* 997 * If we are here, we are freeing vmemmap pages since 998 * direct mapped memory ranges to be freed are aligned. 999 * 1000 * If we are not removing the whole page, it means 1001 * other page structs in this page are being used and 1002 * we canot remove them. So fill the unused page_structs 1003 * with 0xFD, and remove the page when it is wholly 1004 * filled with 0xFD. 1005 */ 1006 memset((void *)addr, PAGE_INUSE, next - addr); 1007 1008 page_addr = page_address(pte_page(*pte)); 1009 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 1010 free_pagetable(pte_page(*pte), 0); 1011 1012 spin_lock(&init_mm.page_table_lock); 1013 pte_clear(&init_mm, addr, pte); 1014 spin_unlock(&init_mm.page_table_lock); 1015 } 1016 } 1017 } 1018 1019 /* Call free_pte_table() in remove_pmd_table(). */ 1020 flush_tlb_all(); 1021 if (direct) 1022 update_page_count(PG_LEVEL_4K, -pages); 1023 } 1024 1025 static void __meminit 1026 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 1027 bool direct, struct vmem_altmap *altmap) 1028 { 1029 unsigned long next, pages = 0; 1030 pte_t *pte_base; 1031 pmd_t *pmd; 1032 void *page_addr; 1033 1034 pmd = pmd_start + pmd_index(addr); 1035 for (; addr < end; addr = next, pmd++) { 1036 next = pmd_addr_end(addr, end); 1037 1038 if (!pmd_present(*pmd)) 1039 continue; 1040 1041 if (pmd_large(*pmd)) { 1042 if (IS_ALIGNED(addr, PMD_SIZE) && 1043 IS_ALIGNED(next, PMD_SIZE)) { 1044 if (!direct) 1045 free_hugepage_table(pmd_page(*pmd), 1046 altmap); 1047 1048 spin_lock(&init_mm.page_table_lock); 1049 pmd_clear(pmd); 1050 spin_unlock(&init_mm.page_table_lock); 1051 pages++; 1052 } else { 1053 /* If here, we are freeing vmemmap pages. */ 1054 memset((void *)addr, PAGE_INUSE, next - addr); 1055 1056 page_addr = page_address(pmd_page(*pmd)); 1057 if (!memchr_inv(page_addr, PAGE_INUSE, 1058 PMD_SIZE)) { 1059 free_hugepage_table(pmd_page(*pmd), 1060 altmap); 1061 1062 spin_lock(&init_mm.page_table_lock); 1063 pmd_clear(pmd); 1064 spin_unlock(&init_mm.page_table_lock); 1065 } 1066 } 1067 1068 continue; 1069 } 1070 1071 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 1072 remove_pte_table(pte_base, addr, next, direct); 1073 free_pte_table(pte_base, pmd); 1074 } 1075 1076 /* Call free_pmd_table() in remove_pud_table(). */ 1077 if (direct) 1078 update_page_count(PG_LEVEL_2M, -pages); 1079 } 1080 1081 static void __meminit 1082 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 1083 struct vmem_altmap *altmap, bool direct) 1084 { 1085 unsigned long next, pages = 0; 1086 pmd_t *pmd_base; 1087 pud_t *pud; 1088 void *page_addr; 1089 1090 pud = pud_start + pud_index(addr); 1091 for (; addr < end; addr = next, pud++) { 1092 next = pud_addr_end(addr, end); 1093 1094 if (!pud_present(*pud)) 1095 continue; 1096 1097 if (pud_large(*pud)) { 1098 if (IS_ALIGNED(addr, PUD_SIZE) && 1099 IS_ALIGNED(next, PUD_SIZE)) { 1100 if (!direct) 1101 free_pagetable(pud_page(*pud), 1102 get_order(PUD_SIZE)); 1103 1104 spin_lock(&init_mm.page_table_lock); 1105 pud_clear(pud); 1106 spin_unlock(&init_mm.page_table_lock); 1107 pages++; 1108 } else { 1109 /* If here, we are freeing vmemmap pages. */ 1110 memset((void *)addr, PAGE_INUSE, next - addr); 1111 1112 page_addr = page_address(pud_page(*pud)); 1113 if (!memchr_inv(page_addr, PAGE_INUSE, 1114 PUD_SIZE)) { 1115 free_pagetable(pud_page(*pud), 1116 get_order(PUD_SIZE)); 1117 1118 spin_lock(&init_mm.page_table_lock); 1119 pud_clear(pud); 1120 spin_unlock(&init_mm.page_table_lock); 1121 } 1122 } 1123 1124 continue; 1125 } 1126 1127 pmd_base = pmd_offset(pud, 0); 1128 remove_pmd_table(pmd_base, addr, next, direct, altmap); 1129 free_pmd_table(pmd_base, pud); 1130 } 1131 1132 if (direct) 1133 update_page_count(PG_LEVEL_1G, -pages); 1134 } 1135 1136 static void __meminit 1137 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, 1138 struct vmem_altmap *altmap, bool direct) 1139 { 1140 unsigned long next, pages = 0; 1141 pud_t *pud_base; 1142 p4d_t *p4d; 1143 1144 p4d = p4d_start + p4d_index(addr); 1145 for (; addr < end; addr = next, p4d++) { 1146 next = p4d_addr_end(addr, end); 1147 1148 if (!p4d_present(*p4d)) 1149 continue; 1150 1151 BUILD_BUG_ON(p4d_large(*p4d)); 1152 1153 pud_base = pud_offset(p4d, 0); 1154 remove_pud_table(pud_base, addr, next, altmap, direct); 1155 /* 1156 * For 4-level page tables we do not want to free PUDs, but in the 1157 * 5-level case we should free them. This code will have to change 1158 * to adapt for boot-time switching between 4 and 5 level page tables. 1159 */ 1160 if (pgtable_l5_enabled()) 1161 free_pud_table(pud_base, p4d); 1162 } 1163 1164 if (direct) 1165 update_page_count(PG_LEVEL_512G, -pages); 1166 } 1167 1168 /* start and end are both virtual address. */ 1169 static void __meminit 1170 remove_pagetable(unsigned long start, unsigned long end, bool direct, 1171 struct vmem_altmap *altmap) 1172 { 1173 unsigned long next; 1174 unsigned long addr; 1175 pgd_t *pgd; 1176 p4d_t *p4d; 1177 1178 for (addr = start; addr < end; addr = next) { 1179 next = pgd_addr_end(addr, end); 1180 1181 pgd = pgd_offset_k(addr); 1182 if (!pgd_present(*pgd)) 1183 continue; 1184 1185 p4d = p4d_offset(pgd, 0); 1186 remove_p4d_table(p4d, addr, next, altmap, direct); 1187 } 1188 1189 flush_tlb_all(); 1190 } 1191 1192 void __ref vmemmap_free(unsigned long start, unsigned long end, 1193 struct vmem_altmap *altmap) 1194 { 1195 remove_pagetable(start, end, false, altmap); 1196 } 1197 1198 #ifdef CONFIG_MEMORY_HOTREMOVE 1199 static void __meminit 1200 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1201 { 1202 start = (unsigned long)__va(start); 1203 end = (unsigned long)__va(end); 1204 1205 remove_pagetable(start, end, true, NULL); 1206 } 1207 1208 void __ref arch_remove_memory(int nid, u64 start, u64 size, 1209 struct vmem_altmap *altmap) 1210 { 1211 unsigned long start_pfn = start >> PAGE_SHIFT; 1212 unsigned long nr_pages = size >> PAGE_SHIFT; 1213 struct page *page = pfn_to_page(start_pfn); 1214 struct zone *zone; 1215 1216 /* With altmap the first mapped page is offset from @start */ 1217 if (altmap) 1218 page += vmem_altmap_offset(altmap); 1219 zone = page_zone(page); 1220 __remove_pages(zone, start_pfn, nr_pages, altmap); 1221 kernel_physical_mapping_remove(start, start + size); 1222 } 1223 #endif 1224 #endif /* CONFIG_MEMORY_HOTPLUG */ 1225 1226 static struct kcore_list kcore_vsyscall; 1227 1228 static void __init register_page_bootmem_info(void) 1229 { 1230 #ifdef CONFIG_NUMA 1231 int i; 1232 1233 for_each_online_node(i) 1234 register_page_bootmem_info_node(NODE_DATA(i)); 1235 #endif 1236 } 1237 1238 void __init mem_init(void) 1239 { 1240 pci_iommu_alloc(); 1241 1242 /* clear_bss() already clear the empty_zero_page */ 1243 1244 /* this will put all memory onto the freelists */ 1245 memblock_free_all(); 1246 after_bootmem = 1; 1247 x86_init.hyper.init_after_bootmem(); 1248 1249 /* 1250 * Must be done after boot memory is put on freelist, because here we 1251 * might set fields in deferred struct pages that have not yet been 1252 * initialized, and memblock_free_all() initializes all the reserved 1253 * deferred pages for us. 1254 */ 1255 register_page_bootmem_info(); 1256 1257 /* Register memory areas for /proc/kcore */ 1258 if (get_gate_vma(&init_mm)) 1259 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); 1260 1261 mem_init_print_info(NULL); 1262 } 1263 1264 int kernel_set_to_readonly; 1265 1266 void set_kernel_text_rw(void) 1267 { 1268 unsigned long start = PFN_ALIGN(_text); 1269 unsigned long end = PFN_ALIGN(__stop___ex_table); 1270 1271 if (!kernel_set_to_readonly) 1272 return; 1273 1274 pr_debug("Set kernel text: %lx - %lx for read write\n", 1275 start, end); 1276 1277 /* 1278 * Make the kernel identity mapping for text RW. Kernel text 1279 * mapping will always be RO. Refer to the comment in 1280 * static_protections() in pageattr.c 1281 */ 1282 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1283 } 1284 1285 void set_kernel_text_ro(void) 1286 { 1287 unsigned long start = PFN_ALIGN(_text); 1288 unsigned long end = PFN_ALIGN(__stop___ex_table); 1289 1290 if (!kernel_set_to_readonly) 1291 return; 1292 1293 pr_debug("Set kernel text: %lx - %lx for read only\n", 1294 start, end); 1295 1296 /* 1297 * Set the kernel identity mapping for text RO. 1298 */ 1299 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1300 } 1301 1302 void mark_rodata_ro(void) 1303 { 1304 unsigned long start = PFN_ALIGN(_text); 1305 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1306 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1307 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1308 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1309 unsigned long all_end; 1310 1311 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1312 (end - start) >> 10); 1313 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1314 1315 kernel_set_to_readonly = 1; 1316 1317 /* 1318 * The rodata/data/bss/brk section (but not the kernel text!) 1319 * should also be not-executable. 1320 * 1321 * We align all_end to PMD_SIZE because the existing mapping 1322 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1323 * split the PMD and the reminder between _brk_end and the end 1324 * of the PMD will remain mapped executable. 1325 * 1326 * Any PMD which was setup after the one which covers _brk_end 1327 * has been zapped already via cleanup_highmem(). 1328 */ 1329 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1330 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1331 1332 #ifdef CONFIG_CPA_DEBUG 1333 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1334 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1335 1336 printk(KERN_INFO "Testing CPA: again\n"); 1337 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1338 #endif 1339 1340 free_kernel_image_pages((void *)text_end, (void *)rodata_start); 1341 free_kernel_image_pages((void *)rodata_end, (void *)_sdata); 1342 1343 debug_checkwx(); 1344 } 1345 1346 int kern_addr_valid(unsigned long addr) 1347 { 1348 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1349 pgd_t *pgd; 1350 p4d_t *p4d; 1351 pud_t *pud; 1352 pmd_t *pmd; 1353 pte_t *pte; 1354 1355 if (above != 0 && above != -1UL) 1356 return 0; 1357 1358 pgd = pgd_offset_k(addr); 1359 if (pgd_none(*pgd)) 1360 return 0; 1361 1362 p4d = p4d_offset(pgd, addr); 1363 if (p4d_none(*p4d)) 1364 return 0; 1365 1366 pud = pud_offset(p4d, addr); 1367 if (pud_none(*pud)) 1368 return 0; 1369 1370 if (pud_large(*pud)) 1371 return pfn_valid(pud_pfn(*pud)); 1372 1373 pmd = pmd_offset(pud, addr); 1374 if (pmd_none(*pmd)) 1375 return 0; 1376 1377 if (pmd_large(*pmd)) 1378 return pfn_valid(pmd_pfn(*pmd)); 1379 1380 pte = pte_offset_kernel(pmd, addr); 1381 if (pte_none(*pte)) 1382 return 0; 1383 1384 return pfn_valid(pte_pfn(*pte)); 1385 } 1386 1387 /* 1388 * Block size is the minimum amount of memory which can be hotplugged or 1389 * hotremoved. It must be power of two and must be equal or larger than 1390 * MIN_MEMORY_BLOCK_SIZE. 1391 */ 1392 #define MAX_BLOCK_SIZE (2UL << 30) 1393 1394 /* Amount of ram needed to start using large blocks */ 1395 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) 1396 1397 /* Adjustable memory block size */ 1398 static unsigned long set_memory_block_size; 1399 int __init set_memory_block_size_order(unsigned int order) 1400 { 1401 unsigned long size = 1UL << order; 1402 1403 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) 1404 return -EINVAL; 1405 1406 set_memory_block_size = size; 1407 return 0; 1408 } 1409 1410 static unsigned long probe_memory_block_size(void) 1411 { 1412 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; 1413 unsigned long bz; 1414 1415 /* If memory block size has been set, then use it */ 1416 bz = set_memory_block_size; 1417 if (bz) 1418 goto done; 1419 1420 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ 1421 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { 1422 bz = MIN_MEMORY_BLOCK_SIZE; 1423 goto done; 1424 } 1425 1426 /* Find the largest allowed block size that aligns to memory end */ 1427 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { 1428 if (IS_ALIGNED(boot_mem_end, bz)) 1429 break; 1430 } 1431 done: 1432 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); 1433 1434 return bz; 1435 } 1436 1437 static unsigned long memory_block_size_probed; 1438 unsigned long memory_block_size_bytes(void) 1439 { 1440 if (!memory_block_size_probed) 1441 memory_block_size_probed = probe_memory_block_size(); 1442 1443 return memory_block_size_probed; 1444 } 1445 1446 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1447 /* 1448 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1449 */ 1450 static long __meminitdata addr_start, addr_end; 1451 static void __meminitdata *p_start, *p_end; 1452 static int __meminitdata node_start; 1453 1454 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1455 unsigned long end, int node, struct vmem_altmap *altmap) 1456 { 1457 unsigned long addr; 1458 unsigned long next; 1459 pgd_t *pgd; 1460 p4d_t *p4d; 1461 pud_t *pud; 1462 pmd_t *pmd; 1463 1464 for (addr = start; addr < end; addr = next) { 1465 next = pmd_addr_end(addr, end); 1466 1467 pgd = vmemmap_pgd_populate(addr, node); 1468 if (!pgd) 1469 return -ENOMEM; 1470 1471 p4d = vmemmap_p4d_populate(pgd, addr, node); 1472 if (!p4d) 1473 return -ENOMEM; 1474 1475 pud = vmemmap_pud_populate(p4d, addr, node); 1476 if (!pud) 1477 return -ENOMEM; 1478 1479 pmd = pmd_offset(pud, addr); 1480 if (pmd_none(*pmd)) { 1481 void *p; 1482 1483 if (altmap) 1484 p = altmap_alloc_block_buf(PMD_SIZE, altmap); 1485 else 1486 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1487 if (p) { 1488 pte_t entry; 1489 1490 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1491 PAGE_KERNEL_LARGE); 1492 set_pmd(pmd, __pmd(pte_val(entry))); 1493 1494 /* check to see if we have contiguous blocks */ 1495 if (p_end != p || node_start != node) { 1496 if (p_start) 1497 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1498 addr_start, addr_end-1, p_start, p_end-1, node_start); 1499 addr_start = addr; 1500 node_start = node; 1501 p_start = p; 1502 } 1503 1504 addr_end = addr + PMD_SIZE; 1505 p_end = p + PMD_SIZE; 1506 continue; 1507 } else if (altmap) 1508 return -ENOMEM; /* no fallback */ 1509 } else if (pmd_large(*pmd)) { 1510 vmemmap_verify((pte_t *)pmd, node, addr, next); 1511 continue; 1512 } 1513 if (vmemmap_populate_basepages(addr, next, node)) 1514 return -ENOMEM; 1515 } 1516 return 0; 1517 } 1518 1519 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1520 struct vmem_altmap *altmap) 1521 { 1522 int err; 1523 1524 if (boot_cpu_has(X86_FEATURE_PSE)) 1525 err = vmemmap_populate_hugepages(start, end, node, altmap); 1526 else if (altmap) { 1527 pr_err_once("%s: no cpu support for altmap allocations\n", 1528 __func__); 1529 err = -ENOMEM; 1530 } else 1531 err = vmemmap_populate_basepages(start, end, node); 1532 if (!err) 1533 sync_global_pgds(start, end - 1); 1534 return err; 1535 } 1536 1537 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1538 void register_page_bootmem_memmap(unsigned long section_nr, 1539 struct page *start_page, unsigned long nr_pages) 1540 { 1541 unsigned long addr = (unsigned long)start_page; 1542 unsigned long end = (unsigned long)(start_page + nr_pages); 1543 unsigned long next; 1544 pgd_t *pgd; 1545 p4d_t *p4d; 1546 pud_t *pud; 1547 pmd_t *pmd; 1548 unsigned int nr_pmd_pages; 1549 struct page *page; 1550 1551 for (; addr < end; addr = next) { 1552 pte_t *pte = NULL; 1553 1554 pgd = pgd_offset_k(addr); 1555 if (pgd_none(*pgd)) { 1556 next = (addr + PAGE_SIZE) & PAGE_MASK; 1557 continue; 1558 } 1559 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1560 1561 p4d = p4d_offset(pgd, addr); 1562 if (p4d_none(*p4d)) { 1563 next = (addr + PAGE_SIZE) & PAGE_MASK; 1564 continue; 1565 } 1566 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); 1567 1568 pud = pud_offset(p4d, addr); 1569 if (pud_none(*pud)) { 1570 next = (addr + PAGE_SIZE) & PAGE_MASK; 1571 continue; 1572 } 1573 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1574 1575 if (!boot_cpu_has(X86_FEATURE_PSE)) { 1576 next = (addr + PAGE_SIZE) & PAGE_MASK; 1577 pmd = pmd_offset(pud, addr); 1578 if (pmd_none(*pmd)) 1579 continue; 1580 get_page_bootmem(section_nr, pmd_page(*pmd), 1581 MIX_SECTION_INFO); 1582 1583 pte = pte_offset_kernel(pmd, addr); 1584 if (pte_none(*pte)) 1585 continue; 1586 get_page_bootmem(section_nr, pte_page(*pte), 1587 SECTION_INFO); 1588 } else { 1589 next = pmd_addr_end(addr, end); 1590 1591 pmd = pmd_offset(pud, addr); 1592 if (pmd_none(*pmd)) 1593 continue; 1594 1595 nr_pmd_pages = 1 << get_order(PMD_SIZE); 1596 page = pmd_page(*pmd); 1597 while (nr_pmd_pages--) 1598 get_page_bootmem(section_nr, page++, 1599 SECTION_INFO); 1600 } 1601 } 1602 } 1603 #endif 1604 1605 void __meminit vmemmap_populate_print_last(void) 1606 { 1607 if (p_start) { 1608 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1609 addr_start, addr_end-1, p_start, p_end-1, node_start); 1610 p_start = NULL; 1611 p_end = NULL; 1612 node_start = 0; 1613 } 1614 } 1615 #endif 1616