xref: /openbmc/linux/arch/x86/mm/init_64.c (revision c819e2cf)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56 
57 #include "mm_internal.h"
58 
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60 			   unsigned long addr, unsigned long end)
61 {
62 	addr &= PMD_MASK;
63 	for (; addr < end; addr += PMD_SIZE) {
64 		pmd_t *pmd = pmd_page + pmd_index(addr);
65 
66 		if (!pmd_present(*pmd))
67 			set_pmd(pmd, __pmd(addr | pmd_flag));
68 	}
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71 			  unsigned long addr, unsigned long end)
72 {
73 	unsigned long next;
74 
75 	for (; addr < end; addr = next) {
76 		pud_t *pud = pud_page + pud_index(addr);
77 		pmd_t *pmd;
78 
79 		next = (addr & PUD_MASK) + PUD_SIZE;
80 		if (next > end)
81 			next = end;
82 
83 		if (pud_present(*pud)) {
84 			pmd = pmd_offset(pud, 0);
85 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
86 			continue;
87 		}
88 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89 		if (!pmd)
90 			return -ENOMEM;
91 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
92 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93 	}
94 
95 	return 0;
96 }
97 
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99 			      unsigned long addr, unsigned long end)
100 {
101 	unsigned long next;
102 	int result;
103 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104 
105 	for (; addr < end; addr = next) {
106 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107 		pud_t *pud;
108 
109 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110 		if (next > end)
111 			next = end;
112 
113 		if (pgd_present(*pgd)) {
114 			pud = pud_offset(pgd, 0);
115 			result = ident_pud_init(info, pud, addr, next);
116 			if (result)
117 				return result;
118 			continue;
119 		}
120 
121 		pud = (pud_t *)info->alloc_pgt_page(info->context);
122 		if (!pud)
123 			return -ENOMEM;
124 		result = ident_pud_init(info, pud, addr, next);
125 		if (result)
126 			return result;
127 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128 	}
129 
130 	return 0;
131 }
132 
133 static int __init parse_direct_gbpages_off(char *arg)
134 {
135 	direct_gbpages = 0;
136 	return 0;
137 }
138 early_param("nogbpages", parse_direct_gbpages_off);
139 
140 static int __init parse_direct_gbpages_on(char *arg)
141 {
142 	direct_gbpages = 1;
143 	return 0;
144 }
145 early_param("gbpages", parse_direct_gbpages_on);
146 
147 /*
148  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
149  * physical space so we can cache the place of the first one and move
150  * around without checking the pgd every time.
151  */
152 
153 pteval_t __supported_pte_mask __read_mostly = ~0;
154 EXPORT_SYMBOL_GPL(__supported_pte_mask);
155 
156 int force_personality32;
157 
158 /*
159  * noexec32=on|off
160  * Control non executable heap for 32bit processes.
161  * To control the stack too use noexec=off
162  *
163  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
164  * off	PROT_READ implies PROT_EXEC
165  */
166 static int __init nonx32_setup(char *str)
167 {
168 	if (!strcmp(str, "on"))
169 		force_personality32 &= ~READ_IMPLIES_EXEC;
170 	else if (!strcmp(str, "off"))
171 		force_personality32 |= READ_IMPLIES_EXEC;
172 	return 1;
173 }
174 __setup("noexec32=", nonx32_setup);
175 
176 /*
177  * When memory was added/removed make sure all the processes MM have
178  * suitable PGD entries in the local PGD level page.
179  */
180 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
181 {
182 	unsigned long address;
183 
184 	for (address = start; address <= end; address += PGDIR_SIZE) {
185 		const pgd_t *pgd_ref = pgd_offset_k(address);
186 		struct page *page;
187 
188 		/*
189 		 * When it is called after memory hot remove, pgd_none()
190 		 * returns true. In this case (removed == 1), we must clear
191 		 * the PGD entries in the local PGD level page.
192 		 */
193 		if (pgd_none(*pgd_ref) && !removed)
194 			continue;
195 
196 		spin_lock(&pgd_lock);
197 		list_for_each_entry(page, &pgd_list, lru) {
198 			pgd_t *pgd;
199 			spinlock_t *pgt_lock;
200 
201 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
202 			/* the pgt_lock only for Xen */
203 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
204 			spin_lock(pgt_lock);
205 
206 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
207 				BUG_ON(pgd_page_vaddr(*pgd)
208 				       != pgd_page_vaddr(*pgd_ref));
209 
210 			if (removed) {
211 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
212 					pgd_clear(pgd);
213 			} else {
214 				if (pgd_none(*pgd))
215 					set_pgd(pgd, *pgd_ref);
216 			}
217 
218 			spin_unlock(pgt_lock);
219 		}
220 		spin_unlock(&pgd_lock);
221 	}
222 }
223 
224 /*
225  * NOTE: This function is marked __ref because it calls __init function
226  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
227  */
228 static __ref void *spp_getpage(void)
229 {
230 	void *ptr;
231 
232 	if (after_bootmem)
233 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
234 	else
235 		ptr = alloc_bootmem_pages(PAGE_SIZE);
236 
237 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
238 		panic("set_pte_phys: cannot allocate page data %s\n",
239 			after_bootmem ? "after bootmem" : "");
240 	}
241 
242 	pr_debug("spp_getpage %p\n", ptr);
243 
244 	return ptr;
245 }
246 
247 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
248 {
249 	if (pgd_none(*pgd)) {
250 		pud_t *pud = (pud_t *)spp_getpage();
251 		pgd_populate(&init_mm, pgd, pud);
252 		if (pud != pud_offset(pgd, 0))
253 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
254 			       pud, pud_offset(pgd, 0));
255 	}
256 	return pud_offset(pgd, vaddr);
257 }
258 
259 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
260 {
261 	if (pud_none(*pud)) {
262 		pmd_t *pmd = (pmd_t *) spp_getpage();
263 		pud_populate(&init_mm, pud, pmd);
264 		if (pmd != pmd_offset(pud, 0))
265 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
266 			       pmd, pmd_offset(pud, 0));
267 	}
268 	return pmd_offset(pud, vaddr);
269 }
270 
271 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
272 {
273 	if (pmd_none(*pmd)) {
274 		pte_t *pte = (pte_t *) spp_getpage();
275 		pmd_populate_kernel(&init_mm, pmd, pte);
276 		if (pte != pte_offset_kernel(pmd, 0))
277 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
278 	}
279 	return pte_offset_kernel(pmd, vaddr);
280 }
281 
282 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
283 {
284 	pud_t *pud;
285 	pmd_t *pmd;
286 	pte_t *pte;
287 
288 	pud = pud_page + pud_index(vaddr);
289 	pmd = fill_pmd(pud, vaddr);
290 	pte = fill_pte(pmd, vaddr);
291 
292 	set_pte(pte, new_pte);
293 
294 	/*
295 	 * It's enough to flush this one mapping.
296 	 * (PGE mappings get flushed as well)
297 	 */
298 	__flush_tlb_one(vaddr);
299 }
300 
301 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
302 {
303 	pgd_t *pgd;
304 	pud_t *pud_page;
305 
306 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
307 
308 	pgd = pgd_offset_k(vaddr);
309 	if (pgd_none(*pgd)) {
310 		printk(KERN_ERR
311 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
312 		return;
313 	}
314 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
315 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
316 }
317 
318 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
319 {
320 	pgd_t *pgd;
321 	pud_t *pud;
322 
323 	pgd = pgd_offset_k(vaddr);
324 	pud = fill_pud(pgd, vaddr);
325 	return fill_pmd(pud, vaddr);
326 }
327 
328 pte_t * __init populate_extra_pte(unsigned long vaddr)
329 {
330 	pmd_t *pmd;
331 
332 	pmd = populate_extra_pmd(vaddr);
333 	return fill_pte(pmd, vaddr);
334 }
335 
336 /*
337  * Create large page table mappings for a range of physical addresses.
338  */
339 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
340 					enum page_cache_mode cache)
341 {
342 	pgd_t *pgd;
343 	pud_t *pud;
344 	pmd_t *pmd;
345 	pgprot_t prot;
346 
347 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
348 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
349 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
350 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
351 		pgd = pgd_offset_k((unsigned long)__va(phys));
352 		if (pgd_none(*pgd)) {
353 			pud = (pud_t *) spp_getpage();
354 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
355 						_PAGE_USER));
356 		}
357 		pud = pud_offset(pgd, (unsigned long)__va(phys));
358 		if (pud_none(*pud)) {
359 			pmd = (pmd_t *) spp_getpage();
360 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
361 						_PAGE_USER));
362 		}
363 		pmd = pmd_offset(pud, phys);
364 		BUG_ON(!pmd_none(*pmd));
365 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
366 	}
367 }
368 
369 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
370 {
371 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
372 }
373 
374 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
375 {
376 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
377 }
378 
379 /*
380  * The head.S code sets up the kernel high mapping:
381  *
382  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
383  *
384  * phys_base holds the negative offset to the kernel, which is added
385  * to the compile time generated pmds. This results in invalid pmds up
386  * to the point where we hit the physaddr 0 mapping.
387  *
388  * We limit the mappings to the region from _text to _brk_end.  _brk_end
389  * is rounded up to the 2MB boundary. This catches the invalid pmds as
390  * well, as they are located before _text:
391  */
392 void __init cleanup_highmap(void)
393 {
394 	unsigned long vaddr = __START_KERNEL_map;
395 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
396 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
397 	pmd_t *pmd = level2_kernel_pgt;
398 
399 	/*
400 	 * Native path, max_pfn_mapped is not set yet.
401 	 * Xen has valid max_pfn_mapped set in
402 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
403 	 */
404 	if (max_pfn_mapped)
405 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
406 
407 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
408 		if (pmd_none(*pmd))
409 			continue;
410 		if (vaddr < (unsigned long) _text || vaddr > end)
411 			set_pmd(pmd, __pmd(0));
412 	}
413 }
414 
415 static unsigned long __meminit
416 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
417 	      pgprot_t prot)
418 {
419 	unsigned long pages = 0, next;
420 	unsigned long last_map_addr = end;
421 	int i;
422 
423 	pte_t *pte = pte_page + pte_index(addr);
424 
425 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
426 		next = (addr & PAGE_MASK) + PAGE_SIZE;
427 		if (addr >= end) {
428 			if (!after_bootmem &&
429 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
430 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
431 				set_pte(pte, __pte(0));
432 			continue;
433 		}
434 
435 		/*
436 		 * We will re-use the existing mapping.
437 		 * Xen for example has some special requirements, like mapping
438 		 * pagetable pages as RO. So assume someone who pre-setup
439 		 * these mappings are more intelligent.
440 		 */
441 		if (pte_val(*pte)) {
442 			if (!after_bootmem)
443 				pages++;
444 			continue;
445 		}
446 
447 		if (0)
448 			printk("   pte=%p addr=%lx pte=%016lx\n",
449 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
450 		pages++;
451 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
452 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
453 	}
454 
455 	update_page_count(PG_LEVEL_4K, pages);
456 
457 	return last_map_addr;
458 }
459 
460 static unsigned long __meminit
461 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
462 	      unsigned long page_size_mask, pgprot_t prot)
463 {
464 	unsigned long pages = 0, next;
465 	unsigned long last_map_addr = end;
466 
467 	int i = pmd_index(address);
468 
469 	for (; i < PTRS_PER_PMD; i++, address = next) {
470 		pmd_t *pmd = pmd_page + pmd_index(address);
471 		pte_t *pte;
472 		pgprot_t new_prot = prot;
473 
474 		next = (address & PMD_MASK) + PMD_SIZE;
475 		if (address >= end) {
476 			if (!after_bootmem &&
477 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
478 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
479 				set_pmd(pmd, __pmd(0));
480 			continue;
481 		}
482 
483 		if (pmd_val(*pmd)) {
484 			if (!pmd_large(*pmd)) {
485 				spin_lock(&init_mm.page_table_lock);
486 				pte = (pte_t *)pmd_page_vaddr(*pmd);
487 				last_map_addr = phys_pte_init(pte, address,
488 								end, prot);
489 				spin_unlock(&init_mm.page_table_lock);
490 				continue;
491 			}
492 			/*
493 			 * If we are ok with PG_LEVEL_2M mapping, then we will
494 			 * use the existing mapping,
495 			 *
496 			 * Otherwise, we will split the large page mapping but
497 			 * use the same existing protection bits except for
498 			 * large page, so that we don't violate Intel's TLB
499 			 * Application note (317080) which says, while changing
500 			 * the page sizes, new and old translations should
501 			 * not differ with respect to page frame and
502 			 * attributes.
503 			 */
504 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
505 				if (!after_bootmem)
506 					pages++;
507 				last_map_addr = next;
508 				continue;
509 			}
510 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
511 		}
512 
513 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
514 			pages++;
515 			spin_lock(&init_mm.page_table_lock);
516 			set_pte((pte_t *)pmd,
517 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
518 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
519 			spin_unlock(&init_mm.page_table_lock);
520 			last_map_addr = next;
521 			continue;
522 		}
523 
524 		pte = alloc_low_page();
525 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
526 
527 		spin_lock(&init_mm.page_table_lock);
528 		pmd_populate_kernel(&init_mm, pmd, pte);
529 		spin_unlock(&init_mm.page_table_lock);
530 	}
531 	update_page_count(PG_LEVEL_2M, pages);
532 	return last_map_addr;
533 }
534 
535 static unsigned long __meminit
536 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
537 			 unsigned long page_size_mask)
538 {
539 	unsigned long pages = 0, next;
540 	unsigned long last_map_addr = end;
541 	int i = pud_index(addr);
542 
543 	for (; i < PTRS_PER_PUD; i++, addr = next) {
544 		pud_t *pud = pud_page + pud_index(addr);
545 		pmd_t *pmd;
546 		pgprot_t prot = PAGE_KERNEL;
547 
548 		next = (addr & PUD_MASK) + PUD_SIZE;
549 		if (addr >= end) {
550 			if (!after_bootmem &&
551 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
552 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
553 				set_pud(pud, __pud(0));
554 			continue;
555 		}
556 
557 		if (pud_val(*pud)) {
558 			if (!pud_large(*pud)) {
559 				pmd = pmd_offset(pud, 0);
560 				last_map_addr = phys_pmd_init(pmd, addr, end,
561 							 page_size_mask, prot);
562 				__flush_tlb_all();
563 				continue;
564 			}
565 			/*
566 			 * If we are ok with PG_LEVEL_1G mapping, then we will
567 			 * use the existing mapping.
568 			 *
569 			 * Otherwise, we will split the gbpage mapping but use
570 			 * the same existing protection  bits except for large
571 			 * page, so that we don't violate Intel's TLB
572 			 * Application note (317080) which says, while changing
573 			 * the page sizes, new and old translations should
574 			 * not differ with respect to page frame and
575 			 * attributes.
576 			 */
577 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
578 				if (!after_bootmem)
579 					pages++;
580 				last_map_addr = next;
581 				continue;
582 			}
583 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
584 		}
585 
586 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
587 			pages++;
588 			spin_lock(&init_mm.page_table_lock);
589 			set_pte((pte_t *)pud,
590 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
591 					PAGE_KERNEL_LARGE));
592 			spin_unlock(&init_mm.page_table_lock);
593 			last_map_addr = next;
594 			continue;
595 		}
596 
597 		pmd = alloc_low_page();
598 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
599 					      prot);
600 
601 		spin_lock(&init_mm.page_table_lock);
602 		pud_populate(&init_mm, pud, pmd);
603 		spin_unlock(&init_mm.page_table_lock);
604 	}
605 	__flush_tlb_all();
606 
607 	update_page_count(PG_LEVEL_1G, pages);
608 
609 	return last_map_addr;
610 }
611 
612 unsigned long __meminit
613 kernel_physical_mapping_init(unsigned long start,
614 			     unsigned long end,
615 			     unsigned long page_size_mask)
616 {
617 	bool pgd_changed = false;
618 	unsigned long next, last_map_addr = end;
619 	unsigned long addr;
620 
621 	start = (unsigned long)__va(start);
622 	end = (unsigned long)__va(end);
623 	addr = start;
624 
625 	for (; start < end; start = next) {
626 		pgd_t *pgd = pgd_offset_k(start);
627 		pud_t *pud;
628 
629 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
630 
631 		if (pgd_val(*pgd)) {
632 			pud = (pud_t *)pgd_page_vaddr(*pgd);
633 			last_map_addr = phys_pud_init(pud, __pa(start),
634 						 __pa(end), page_size_mask);
635 			continue;
636 		}
637 
638 		pud = alloc_low_page();
639 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
640 						 page_size_mask);
641 
642 		spin_lock(&init_mm.page_table_lock);
643 		pgd_populate(&init_mm, pgd, pud);
644 		spin_unlock(&init_mm.page_table_lock);
645 		pgd_changed = true;
646 	}
647 
648 	if (pgd_changed)
649 		sync_global_pgds(addr, end - 1, 0);
650 
651 	__flush_tlb_all();
652 
653 	return last_map_addr;
654 }
655 
656 #ifndef CONFIG_NUMA
657 void __init initmem_init(void)
658 {
659 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
660 }
661 #endif
662 
663 void __init paging_init(void)
664 {
665 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
666 	sparse_init();
667 
668 	/*
669 	 * clear the default setting with node 0
670 	 * note: don't use nodes_clear here, that is really clearing when
671 	 *	 numa support is not compiled in, and later node_set_state
672 	 *	 will not set it back.
673 	 */
674 	node_clear_state(0, N_MEMORY);
675 	if (N_MEMORY != N_NORMAL_MEMORY)
676 		node_clear_state(0, N_NORMAL_MEMORY);
677 
678 	zone_sizes_init();
679 }
680 
681 /*
682  * Memory hotplug specific functions
683  */
684 #ifdef CONFIG_MEMORY_HOTPLUG
685 /*
686  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
687  * updating.
688  */
689 static void  update_end_of_memory_vars(u64 start, u64 size)
690 {
691 	unsigned long end_pfn = PFN_UP(start + size);
692 
693 	if (end_pfn > max_pfn) {
694 		max_pfn = end_pfn;
695 		max_low_pfn = end_pfn;
696 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
697 	}
698 }
699 
700 /*
701  * Memory is added always to NORMAL zone. This means you will never get
702  * additional DMA/DMA32 memory.
703  */
704 int arch_add_memory(int nid, u64 start, u64 size)
705 {
706 	struct pglist_data *pgdat = NODE_DATA(nid);
707 	struct zone *zone = pgdat->node_zones +
708 		zone_for_memory(nid, start, size, ZONE_NORMAL);
709 	unsigned long start_pfn = start >> PAGE_SHIFT;
710 	unsigned long nr_pages = size >> PAGE_SHIFT;
711 	int ret;
712 
713 	init_memory_mapping(start, start + size);
714 
715 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
716 	WARN_ON_ONCE(ret);
717 
718 	/* update max_pfn, max_low_pfn and high_memory */
719 	update_end_of_memory_vars(start, size);
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(arch_add_memory);
724 
725 #define PAGE_INUSE 0xFD
726 
727 static void __meminit free_pagetable(struct page *page, int order)
728 {
729 	unsigned long magic;
730 	unsigned int nr_pages = 1 << order;
731 
732 	/* bootmem page has reserved flag */
733 	if (PageReserved(page)) {
734 		__ClearPageReserved(page);
735 
736 		magic = (unsigned long)page->lru.next;
737 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
738 			while (nr_pages--)
739 				put_page_bootmem(page++);
740 		} else
741 			while (nr_pages--)
742 				free_reserved_page(page++);
743 	} else
744 		free_pages((unsigned long)page_address(page), order);
745 }
746 
747 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
748 {
749 	pte_t *pte;
750 	int i;
751 
752 	for (i = 0; i < PTRS_PER_PTE; i++) {
753 		pte = pte_start + i;
754 		if (pte_val(*pte))
755 			return;
756 	}
757 
758 	/* free a pte talbe */
759 	free_pagetable(pmd_page(*pmd), 0);
760 	spin_lock(&init_mm.page_table_lock);
761 	pmd_clear(pmd);
762 	spin_unlock(&init_mm.page_table_lock);
763 }
764 
765 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
766 {
767 	pmd_t *pmd;
768 	int i;
769 
770 	for (i = 0; i < PTRS_PER_PMD; i++) {
771 		pmd = pmd_start + i;
772 		if (pmd_val(*pmd))
773 			return;
774 	}
775 
776 	/* free a pmd talbe */
777 	free_pagetable(pud_page(*pud), 0);
778 	spin_lock(&init_mm.page_table_lock);
779 	pud_clear(pud);
780 	spin_unlock(&init_mm.page_table_lock);
781 }
782 
783 /* Return true if pgd is changed, otherwise return false. */
784 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
785 {
786 	pud_t *pud;
787 	int i;
788 
789 	for (i = 0; i < PTRS_PER_PUD; i++) {
790 		pud = pud_start + i;
791 		if (pud_val(*pud))
792 			return false;
793 	}
794 
795 	/* free a pud table */
796 	free_pagetable(pgd_page(*pgd), 0);
797 	spin_lock(&init_mm.page_table_lock);
798 	pgd_clear(pgd);
799 	spin_unlock(&init_mm.page_table_lock);
800 
801 	return true;
802 }
803 
804 static void __meminit
805 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
806 		 bool direct)
807 {
808 	unsigned long next, pages = 0;
809 	pte_t *pte;
810 	void *page_addr;
811 	phys_addr_t phys_addr;
812 
813 	pte = pte_start + pte_index(addr);
814 	for (; addr < end; addr = next, pte++) {
815 		next = (addr + PAGE_SIZE) & PAGE_MASK;
816 		if (next > end)
817 			next = end;
818 
819 		if (!pte_present(*pte))
820 			continue;
821 
822 		/*
823 		 * We mapped [0,1G) memory as identity mapping when
824 		 * initializing, in arch/x86/kernel/head_64.S. These
825 		 * pagetables cannot be removed.
826 		 */
827 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
828 		if (phys_addr < (phys_addr_t)0x40000000)
829 			return;
830 
831 		if (IS_ALIGNED(addr, PAGE_SIZE) &&
832 		    IS_ALIGNED(next, PAGE_SIZE)) {
833 			/*
834 			 * Do not free direct mapping pages since they were
835 			 * freed when offlining, or simplely not in use.
836 			 */
837 			if (!direct)
838 				free_pagetable(pte_page(*pte), 0);
839 
840 			spin_lock(&init_mm.page_table_lock);
841 			pte_clear(&init_mm, addr, pte);
842 			spin_unlock(&init_mm.page_table_lock);
843 
844 			/* For non-direct mapping, pages means nothing. */
845 			pages++;
846 		} else {
847 			/*
848 			 * If we are here, we are freeing vmemmap pages since
849 			 * direct mapped memory ranges to be freed are aligned.
850 			 *
851 			 * If we are not removing the whole page, it means
852 			 * other page structs in this page are being used and
853 			 * we canot remove them. So fill the unused page_structs
854 			 * with 0xFD, and remove the page when it is wholly
855 			 * filled with 0xFD.
856 			 */
857 			memset((void *)addr, PAGE_INUSE, next - addr);
858 
859 			page_addr = page_address(pte_page(*pte));
860 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
861 				free_pagetable(pte_page(*pte), 0);
862 
863 				spin_lock(&init_mm.page_table_lock);
864 				pte_clear(&init_mm, addr, pte);
865 				spin_unlock(&init_mm.page_table_lock);
866 			}
867 		}
868 	}
869 
870 	/* Call free_pte_table() in remove_pmd_table(). */
871 	flush_tlb_all();
872 	if (direct)
873 		update_page_count(PG_LEVEL_4K, -pages);
874 }
875 
876 static void __meminit
877 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
878 		 bool direct)
879 {
880 	unsigned long next, pages = 0;
881 	pte_t *pte_base;
882 	pmd_t *pmd;
883 	void *page_addr;
884 
885 	pmd = pmd_start + pmd_index(addr);
886 	for (; addr < end; addr = next, pmd++) {
887 		next = pmd_addr_end(addr, end);
888 
889 		if (!pmd_present(*pmd))
890 			continue;
891 
892 		if (pmd_large(*pmd)) {
893 			if (IS_ALIGNED(addr, PMD_SIZE) &&
894 			    IS_ALIGNED(next, PMD_SIZE)) {
895 				if (!direct)
896 					free_pagetable(pmd_page(*pmd),
897 						       get_order(PMD_SIZE));
898 
899 				spin_lock(&init_mm.page_table_lock);
900 				pmd_clear(pmd);
901 				spin_unlock(&init_mm.page_table_lock);
902 				pages++;
903 			} else {
904 				/* If here, we are freeing vmemmap pages. */
905 				memset((void *)addr, PAGE_INUSE, next - addr);
906 
907 				page_addr = page_address(pmd_page(*pmd));
908 				if (!memchr_inv(page_addr, PAGE_INUSE,
909 						PMD_SIZE)) {
910 					free_pagetable(pmd_page(*pmd),
911 						       get_order(PMD_SIZE));
912 
913 					spin_lock(&init_mm.page_table_lock);
914 					pmd_clear(pmd);
915 					spin_unlock(&init_mm.page_table_lock);
916 				}
917 			}
918 
919 			continue;
920 		}
921 
922 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
923 		remove_pte_table(pte_base, addr, next, direct);
924 		free_pte_table(pte_base, pmd);
925 	}
926 
927 	/* Call free_pmd_table() in remove_pud_table(). */
928 	if (direct)
929 		update_page_count(PG_LEVEL_2M, -pages);
930 }
931 
932 static void __meminit
933 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
934 		 bool direct)
935 {
936 	unsigned long next, pages = 0;
937 	pmd_t *pmd_base;
938 	pud_t *pud;
939 	void *page_addr;
940 
941 	pud = pud_start + pud_index(addr);
942 	for (; addr < end; addr = next, pud++) {
943 		next = pud_addr_end(addr, end);
944 
945 		if (!pud_present(*pud))
946 			continue;
947 
948 		if (pud_large(*pud)) {
949 			if (IS_ALIGNED(addr, PUD_SIZE) &&
950 			    IS_ALIGNED(next, PUD_SIZE)) {
951 				if (!direct)
952 					free_pagetable(pud_page(*pud),
953 						       get_order(PUD_SIZE));
954 
955 				spin_lock(&init_mm.page_table_lock);
956 				pud_clear(pud);
957 				spin_unlock(&init_mm.page_table_lock);
958 				pages++;
959 			} else {
960 				/* If here, we are freeing vmemmap pages. */
961 				memset((void *)addr, PAGE_INUSE, next - addr);
962 
963 				page_addr = page_address(pud_page(*pud));
964 				if (!memchr_inv(page_addr, PAGE_INUSE,
965 						PUD_SIZE)) {
966 					free_pagetable(pud_page(*pud),
967 						       get_order(PUD_SIZE));
968 
969 					spin_lock(&init_mm.page_table_lock);
970 					pud_clear(pud);
971 					spin_unlock(&init_mm.page_table_lock);
972 				}
973 			}
974 
975 			continue;
976 		}
977 
978 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
979 		remove_pmd_table(pmd_base, addr, next, direct);
980 		free_pmd_table(pmd_base, pud);
981 	}
982 
983 	if (direct)
984 		update_page_count(PG_LEVEL_1G, -pages);
985 }
986 
987 /* start and end are both virtual address. */
988 static void __meminit
989 remove_pagetable(unsigned long start, unsigned long end, bool direct)
990 {
991 	unsigned long next;
992 	unsigned long addr;
993 	pgd_t *pgd;
994 	pud_t *pud;
995 	bool pgd_changed = false;
996 
997 	for (addr = start; addr < end; addr = next) {
998 		next = pgd_addr_end(addr, end);
999 
1000 		pgd = pgd_offset_k(addr);
1001 		if (!pgd_present(*pgd))
1002 			continue;
1003 
1004 		pud = (pud_t *)pgd_page_vaddr(*pgd);
1005 		remove_pud_table(pud, addr, next, direct);
1006 		if (free_pud_table(pud, pgd))
1007 			pgd_changed = true;
1008 	}
1009 
1010 	if (pgd_changed)
1011 		sync_global_pgds(start, end - 1, 1);
1012 
1013 	flush_tlb_all();
1014 }
1015 
1016 void __ref vmemmap_free(unsigned long start, unsigned long end)
1017 {
1018 	remove_pagetable(start, end, false);
1019 }
1020 
1021 #ifdef CONFIG_MEMORY_HOTREMOVE
1022 static void __meminit
1023 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1024 {
1025 	start = (unsigned long)__va(start);
1026 	end = (unsigned long)__va(end);
1027 
1028 	remove_pagetable(start, end, true);
1029 }
1030 
1031 int __ref arch_remove_memory(u64 start, u64 size)
1032 {
1033 	unsigned long start_pfn = start >> PAGE_SHIFT;
1034 	unsigned long nr_pages = size >> PAGE_SHIFT;
1035 	struct zone *zone;
1036 	int ret;
1037 
1038 	zone = page_zone(pfn_to_page(start_pfn));
1039 	kernel_physical_mapping_remove(start, start + size);
1040 	ret = __remove_pages(zone, start_pfn, nr_pages);
1041 	WARN_ON_ONCE(ret);
1042 
1043 	return ret;
1044 }
1045 #endif
1046 #endif /* CONFIG_MEMORY_HOTPLUG */
1047 
1048 static struct kcore_list kcore_vsyscall;
1049 
1050 static void __init register_page_bootmem_info(void)
1051 {
1052 #ifdef CONFIG_NUMA
1053 	int i;
1054 
1055 	for_each_online_node(i)
1056 		register_page_bootmem_info_node(NODE_DATA(i));
1057 #endif
1058 }
1059 
1060 void __init mem_init(void)
1061 {
1062 	pci_iommu_alloc();
1063 
1064 	/* clear_bss() already clear the empty_zero_page */
1065 
1066 	register_page_bootmem_info();
1067 
1068 	/* this will put all memory onto the freelists */
1069 	free_all_bootmem();
1070 	after_bootmem = 1;
1071 
1072 	/* Register memory areas for /proc/kcore */
1073 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1074 			 PAGE_SIZE, KCORE_OTHER);
1075 
1076 	mem_init_print_info(NULL);
1077 }
1078 
1079 #ifdef CONFIG_DEBUG_RODATA
1080 const int rodata_test_data = 0xC3;
1081 EXPORT_SYMBOL_GPL(rodata_test_data);
1082 
1083 int kernel_set_to_readonly;
1084 
1085 void set_kernel_text_rw(void)
1086 {
1087 	unsigned long start = PFN_ALIGN(_text);
1088 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1089 
1090 	if (!kernel_set_to_readonly)
1091 		return;
1092 
1093 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1094 		 start, end);
1095 
1096 	/*
1097 	 * Make the kernel identity mapping for text RW. Kernel text
1098 	 * mapping will always be RO. Refer to the comment in
1099 	 * static_protections() in pageattr.c
1100 	 */
1101 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1102 }
1103 
1104 void set_kernel_text_ro(void)
1105 {
1106 	unsigned long start = PFN_ALIGN(_text);
1107 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1108 
1109 	if (!kernel_set_to_readonly)
1110 		return;
1111 
1112 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1113 		 start, end);
1114 
1115 	/*
1116 	 * Set the kernel identity mapping for text RO.
1117 	 */
1118 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119 }
1120 
1121 void mark_rodata_ro(void)
1122 {
1123 	unsigned long start = PFN_ALIGN(_text);
1124 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1125 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1126 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1127 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1128 	unsigned long all_end;
1129 
1130 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1131 	       (end - start) >> 10);
1132 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1133 
1134 	kernel_set_to_readonly = 1;
1135 
1136 	/*
1137 	 * The rodata/data/bss/brk section (but not the kernel text!)
1138 	 * should also be not-executable.
1139 	 *
1140 	 * We align all_end to PMD_SIZE because the existing mapping
1141 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1142 	 * split the PMD and the reminder between _brk_end and the end
1143 	 * of the PMD will remain mapped executable.
1144 	 *
1145 	 * Any PMD which was setup after the one which covers _brk_end
1146 	 * has been zapped already via cleanup_highmem().
1147 	 */
1148 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1149 	set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1150 
1151 	rodata_test();
1152 
1153 #ifdef CONFIG_CPA_DEBUG
1154 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1155 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1156 
1157 	printk(KERN_INFO "Testing CPA: again\n");
1158 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1159 #endif
1160 
1161 	free_init_pages("unused kernel",
1162 			(unsigned long) __va(__pa_symbol(text_end)),
1163 			(unsigned long) __va(__pa_symbol(rodata_start)));
1164 	free_init_pages("unused kernel",
1165 			(unsigned long) __va(__pa_symbol(rodata_end)),
1166 			(unsigned long) __va(__pa_symbol(_sdata)));
1167 }
1168 
1169 #endif
1170 
1171 int kern_addr_valid(unsigned long addr)
1172 {
1173 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1174 	pgd_t *pgd;
1175 	pud_t *pud;
1176 	pmd_t *pmd;
1177 	pte_t *pte;
1178 
1179 	if (above != 0 && above != -1UL)
1180 		return 0;
1181 
1182 	pgd = pgd_offset_k(addr);
1183 	if (pgd_none(*pgd))
1184 		return 0;
1185 
1186 	pud = pud_offset(pgd, addr);
1187 	if (pud_none(*pud))
1188 		return 0;
1189 
1190 	if (pud_large(*pud))
1191 		return pfn_valid(pud_pfn(*pud));
1192 
1193 	pmd = pmd_offset(pud, addr);
1194 	if (pmd_none(*pmd))
1195 		return 0;
1196 
1197 	if (pmd_large(*pmd))
1198 		return pfn_valid(pmd_pfn(*pmd));
1199 
1200 	pte = pte_offset_kernel(pmd, addr);
1201 	if (pte_none(*pte))
1202 		return 0;
1203 
1204 	return pfn_valid(pte_pfn(*pte));
1205 }
1206 
1207 static unsigned long probe_memory_block_size(void)
1208 {
1209 	/* start from 2g */
1210 	unsigned long bz = 1UL<<31;
1211 
1212 	if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1213 		pr_info("Using 2GB memory block size for large-memory system\n");
1214 		return 2UL * 1024 * 1024 * 1024;
1215 	}
1216 
1217 	/* less than 64g installed */
1218 	if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1219 		return MIN_MEMORY_BLOCK_SIZE;
1220 
1221 	/* get the tail size */
1222 	while (bz > MIN_MEMORY_BLOCK_SIZE) {
1223 		if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1224 			break;
1225 		bz >>= 1;
1226 	}
1227 
1228 	printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1229 
1230 	return bz;
1231 }
1232 
1233 static unsigned long memory_block_size_probed;
1234 unsigned long memory_block_size_bytes(void)
1235 {
1236 	if (!memory_block_size_probed)
1237 		memory_block_size_probed = probe_memory_block_size();
1238 
1239 	return memory_block_size_probed;
1240 }
1241 
1242 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1243 /*
1244  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1245  */
1246 static long __meminitdata addr_start, addr_end;
1247 static void __meminitdata *p_start, *p_end;
1248 static int __meminitdata node_start;
1249 
1250 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1251 						unsigned long end, int node)
1252 {
1253 	unsigned long addr;
1254 	unsigned long next;
1255 	pgd_t *pgd;
1256 	pud_t *pud;
1257 	pmd_t *pmd;
1258 
1259 	for (addr = start; addr < end; addr = next) {
1260 		next = pmd_addr_end(addr, end);
1261 
1262 		pgd = vmemmap_pgd_populate(addr, node);
1263 		if (!pgd)
1264 			return -ENOMEM;
1265 
1266 		pud = vmemmap_pud_populate(pgd, addr, node);
1267 		if (!pud)
1268 			return -ENOMEM;
1269 
1270 		pmd = pmd_offset(pud, addr);
1271 		if (pmd_none(*pmd)) {
1272 			void *p;
1273 
1274 			p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1275 			if (p) {
1276 				pte_t entry;
1277 
1278 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1279 						PAGE_KERNEL_LARGE);
1280 				set_pmd(pmd, __pmd(pte_val(entry)));
1281 
1282 				/* check to see if we have contiguous blocks */
1283 				if (p_end != p || node_start != node) {
1284 					if (p_start)
1285 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1286 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1287 					addr_start = addr;
1288 					node_start = node;
1289 					p_start = p;
1290 				}
1291 
1292 				addr_end = addr + PMD_SIZE;
1293 				p_end = p + PMD_SIZE;
1294 				continue;
1295 			}
1296 		} else if (pmd_large(*pmd)) {
1297 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1298 			continue;
1299 		}
1300 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1301 		if (vmemmap_populate_basepages(addr, next, node))
1302 			return -ENOMEM;
1303 	}
1304 	return 0;
1305 }
1306 
1307 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1308 {
1309 	int err;
1310 
1311 	if (cpu_has_pse)
1312 		err = vmemmap_populate_hugepages(start, end, node);
1313 	else
1314 		err = vmemmap_populate_basepages(start, end, node);
1315 	if (!err)
1316 		sync_global_pgds(start, end - 1, 0);
1317 	return err;
1318 }
1319 
1320 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1321 void register_page_bootmem_memmap(unsigned long section_nr,
1322 				  struct page *start_page, unsigned long size)
1323 {
1324 	unsigned long addr = (unsigned long)start_page;
1325 	unsigned long end = (unsigned long)(start_page + size);
1326 	unsigned long next;
1327 	pgd_t *pgd;
1328 	pud_t *pud;
1329 	pmd_t *pmd;
1330 	unsigned int nr_pages;
1331 	struct page *page;
1332 
1333 	for (; addr < end; addr = next) {
1334 		pte_t *pte = NULL;
1335 
1336 		pgd = pgd_offset_k(addr);
1337 		if (pgd_none(*pgd)) {
1338 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1339 			continue;
1340 		}
1341 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1342 
1343 		pud = pud_offset(pgd, addr);
1344 		if (pud_none(*pud)) {
1345 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1346 			continue;
1347 		}
1348 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1349 
1350 		if (!cpu_has_pse) {
1351 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1352 			pmd = pmd_offset(pud, addr);
1353 			if (pmd_none(*pmd))
1354 				continue;
1355 			get_page_bootmem(section_nr, pmd_page(*pmd),
1356 					 MIX_SECTION_INFO);
1357 
1358 			pte = pte_offset_kernel(pmd, addr);
1359 			if (pte_none(*pte))
1360 				continue;
1361 			get_page_bootmem(section_nr, pte_page(*pte),
1362 					 SECTION_INFO);
1363 		} else {
1364 			next = pmd_addr_end(addr, end);
1365 
1366 			pmd = pmd_offset(pud, addr);
1367 			if (pmd_none(*pmd))
1368 				continue;
1369 
1370 			nr_pages = 1 << (get_order(PMD_SIZE));
1371 			page = pmd_page(*pmd);
1372 			while (nr_pages--)
1373 				get_page_bootmem(section_nr, page++,
1374 						 SECTION_INFO);
1375 		}
1376 	}
1377 }
1378 #endif
1379 
1380 void __meminit vmemmap_populate_print_last(void)
1381 {
1382 	if (p_start) {
1383 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1384 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1385 		p_start = NULL;
1386 		p_end = NULL;
1387 		node_start = 0;
1388 	}
1389 }
1390 #endif
1391