xref: /openbmc/linux/arch/x86/mm/init_64.c (revision a8da474e)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56 
57 #include "mm_internal.h"
58 
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60 			   unsigned long addr, unsigned long end)
61 {
62 	addr &= PMD_MASK;
63 	for (; addr < end; addr += PMD_SIZE) {
64 		pmd_t *pmd = pmd_page + pmd_index(addr);
65 
66 		if (!pmd_present(*pmd))
67 			set_pmd(pmd, __pmd(addr | pmd_flag));
68 	}
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71 			  unsigned long addr, unsigned long end)
72 {
73 	unsigned long next;
74 
75 	for (; addr < end; addr = next) {
76 		pud_t *pud = pud_page + pud_index(addr);
77 		pmd_t *pmd;
78 
79 		next = (addr & PUD_MASK) + PUD_SIZE;
80 		if (next > end)
81 			next = end;
82 
83 		if (pud_present(*pud)) {
84 			pmd = pmd_offset(pud, 0);
85 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
86 			continue;
87 		}
88 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89 		if (!pmd)
90 			return -ENOMEM;
91 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
92 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93 	}
94 
95 	return 0;
96 }
97 
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99 			      unsigned long addr, unsigned long end)
100 {
101 	unsigned long next;
102 	int result;
103 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104 
105 	for (; addr < end; addr = next) {
106 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107 		pud_t *pud;
108 
109 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110 		if (next > end)
111 			next = end;
112 
113 		if (pgd_present(*pgd)) {
114 			pud = pud_offset(pgd, 0);
115 			result = ident_pud_init(info, pud, addr, next);
116 			if (result)
117 				return result;
118 			continue;
119 		}
120 
121 		pud = (pud_t *)info->alloc_pgt_page(info->context);
122 		if (!pud)
123 			return -ENOMEM;
124 		result = ident_pud_init(info, pud, addr, next);
125 		if (result)
126 			return result;
127 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128 	}
129 
130 	return 0;
131 }
132 
133 /*
134  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
135  * physical space so we can cache the place of the first one and move
136  * around without checking the pgd every time.
137  */
138 
139 pteval_t __supported_pte_mask __read_mostly = ~0;
140 EXPORT_SYMBOL_GPL(__supported_pte_mask);
141 
142 int force_personality32;
143 
144 /*
145  * noexec32=on|off
146  * Control non executable heap for 32bit processes.
147  * To control the stack too use noexec=off
148  *
149  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
150  * off	PROT_READ implies PROT_EXEC
151  */
152 static int __init nonx32_setup(char *str)
153 {
154 	if (!strcmp(str, "on"))
155 		force_personality32 &= ~READ_IMPLIES_EXEC;
156 	else if (!strcmp(str, "off"))
157 		force_personality32 |= READ_IMPLIES_EXEC;
158 	return 1;
159 }
160 __setup("noexec32=", nonx32_setup);
161 
162 /*
163  * When memory was added/removed make sure all the processes MM have
164  * suitable PGD entries in the local PGD level page.
165  */
166 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
167 {
168 	unsigned long address;
169 
170 	for (address = start; address <= end; address += PGDIR_SIZE) {
171 		const pgd_t *pgd_ref = pgd_offset_k(address);
172 		struct page *page;
173 
174 		/*
175 		 * When it is called after memory hot remove, pgd_none()
176 		 * returns true. In this case (removed == 1), we must clear
177 		 * the PGD entries in the local PGD level page.
178 		 */
179 		if (pgd_none(*pgd_ref) && !removed)
180 			continue;
181 
182 		spin_lock(&pgd_lock);
183 		list_for_each_entry(page, &pgd_list, lru) {
184 			pgd_t *pgd;
185 			spinlock_t *pgt_lock;
186 
187 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
188 			/* the pgt_lock only for Xen */
189 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
190 			spin_lock(pgt_lock);
191 
192 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
193 				BUG_ON(pgd_page_vaddr(*pgd)
194 				       != pgd_page_vaddr(*pgd_ref));
195 
196 			if (removed) {
197 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
198 					pgd_clear(pgd);
199 			} else {
200 				if (pgd_none(*pgd))
201 					set_pgd(pgd, *pgd_ref);
202 			}
203 
204 			spin_unlock(pgt_lock);
205 		}
206 		spin_unlock(&pgd_lock);
207 	}
208 }
209 
210 /*
211  * NOTE: This function is marked __ref because it calls __init function
212  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
213  */
214 static __ref void *spp_getpage(void)
215 {
216 	void *ptr;
217 
218 	if (after_bootmem)
219 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
220 	else
221 		ptr = alloc_bootmem_pages(PAGE_SIZE);
222 
223 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
224 		panic("set_pte_phys: cannot allocate page data %s\n",
225 			after_bootmem ? "after bootmem" : "");
226 	}
227 
228 	pr_debug("spp_getpage %p\n", ptr);
229 
230 	return ptr;
231 }
232 
233 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
234 {
235 	if (pgd_none(*pgd)) {
236 		pud_t *pud = (pud_t *)spp_getpage();
237 		pgd_populate(&init_mm, pgd, pud);
238 		if (pud != pud_offset(pgd, 0))
239 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
240 			       pud, pud_offset(pgd, 0));
241 	}
242 	return pud_offset(pgd, vaddr);
243 }
244 
245 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
246 {
247 	if (pud_none(*pud)) {
248 		pmd_t *pmd = (pmd_t *) spp_getpage();
249 		pud_populate(&init_mm, pud, pmd);
250 		if (pmd != pmd_offset(pud, 0))
251 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
252 			       pmd, pmd_offset(pud, 0));
253 	}
254 	return pmd_offset(pud, vaddr);
255 }
256 
257 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
258 {
259 	if (pmd_none(*pmd)) {
260 		pte_t *pte = (pte_t *) spp_getpage();
261 		pmd_populate_kernel(&init_mm, pmd, pte);
262 		if (pte != pte_offset_kernel(pmd, 0))
263 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
264 	}
265 	return pte_offset_kernel(pmd, vaddr);
266 }
267 
268 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
269 {
270 	pud_t *pud;
271 	pmd_t *pmd;
272 	pte_t *pte;
273 
274 	pud = pud_page + pud_index(vaddr);
275 	pmd = fill_pmd(pud, vaddr);
276 	pte = fill_pte(pmd, vaddr);
277 
278 	set_pte(pte, new_pte);
279 
280 	/*
281 	 * It's enough to flush this one mapping.
282 	 * (PGE mappings get flushed as well)
283 	 */
284 	__flush_tlb_one(vaddr);
285 }
286 
287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
288 {
289 	pgd_t *pgd;
290 	pud_t *pud_page;
291 
292 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
293 
294 	pgd = pgd_offset_k(vaddr);
295 	if (pgd_none(*pgd)) {
296 		printk(KERN_ERR
297 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
298 		return;
299 	}
300 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
301 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
302 }
303 
304 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
305 {
306 	pgd_t *pgd;
307 	pud_t *pud;
308 
309 	pgd = pgd_offset_k(vaddr);
310 	pud = fill_pud(pgd, vaddr);
311 	return fill_pmd(pud, vaddr);
312 }
313 
314 pte_t * __init populate_extra_pte(unsigned long vaddr)
315 {
316 	pmd_t *pmd;
317 
318 	pmd = populate_extra_pmd(vaddr);
319 	return fill_pte(pmd, vaddr);
320 }
321 
322 /*
323  * Create large page table mappings for a range of physical addresses.
324  */
325 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
326 					enum page_cache_mode cache)
327 {
328 	pgd_t *pgd;
329 	pud_t *pud;
330 	pmd_t *pmd;
331 	pgprot_t prot;
332 
333 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
334 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
335 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337 		pgd = pgd_offset_k((unsigned long)__va(phys));
338 		if (pgd_none(*pgd)) {
339 			pud = (pud_t *) spp_getpage();
340 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341 						_PAGE_USER));
342 		}
343 		pud = pud_offset(pgd, (unsigned long)__va(phys));
344 		if (pud_none(*pud)) {
345 			pmd = (pmd_t *) spp_getpage();
346 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347 						_PAGE_USER));
348 		}
349 		pmd = pmd_offset(pud, phys);
350 		BUG_ON(!pmd_none(*pmd));
351 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352 	}
353 }
354 
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
358 }
359 
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
363 }
364 
365 /*
366  * The head.S code sets up the kernel high mapping:
367  *
368  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369  *
370  * phys_base holds the negative offset to the kernel, which is added
371  * to the compile time generated pmds. This results in invalid pmds up
372  * to the point where we hit the physaddr 0 mapping.
373  *
374  * We limit the mappings to the region from _text to _brk_end.  _brk_end
375  * is rounded up to the 2MB boundary. This catches the invalid pmds as
376  * well, as they are located before _text:
377  */
378 void __init cleanup_highmap(void)
379 {
380 	unsigned long vaddr = __START_KERNEL_map;
381 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383 	pmd_t *pmd = level2_kernel_pgt;
384 
385 	/*
386 	 * Native path, max_pfn_mapped is not set yet.
387 	 * Xen has valid max_pfn_mapped set in
388 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389 	 */
390 	if (max_pfn_mapped)
391 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392 
393 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394 		if (pmd_none(*pmd))
395 			continue;
396 		if (vaddr < (unsigned long) _text || vaddr > end)
397 			set_pmd(pmd, __pmd(0));
398 	}
399 }
400 
401 static unsigned long __meminit
402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
403 	      pgprot_t prot)
404 {
405 	unsigned long pages = 0, next;
406 	unsigned long last_map_addr = end;
407 	int i;
408 
409 	pte_t *pte = pte_page + pte_index(addr);
410 
411 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
412 		next = (addr & PAGE_MASK) + PAGE_SIZE;
413 		if (addr >= end) {
414 			if (!after_bootmem &&
415 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
416 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
417 				set_pte(pte, __pte(0));
418 			continue;
419 		}
420 
421 		/*
422 		 * We will re-use the existing mapping.
423 		 * Xen for example has some special requirements, like mapping
424 		 * pagetable pages as RO. So assume someone who pre-setup
425 		 * these mappings are more intelligent.
426 		 */
427 		if (pte_val(*pte)) {
428 			if (!after_bootmem)
429 				pages++;
430 			continue;
431 		}
432 
433 		if (0)
434 			printk("   pte=%p addr=%lx pte=%016lx\n",
435 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
436 		pages++;
437 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
438 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
439 	}
440 
441 	update_page_count(PG_LEVEL_4K, pages);
442 
443 	return last_map_addr;
444 }
445 
446 static unsigned long __meminit
447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
448 	      unsigned long page_size_mask, pgprot_t prot)
449 {
450 	unsigned long pages = 0, next;
451 	unsigned long last_map_addr = end;
452 
453 	int i = pmd_index(address);
454 
455 	for (; i < PTRS_PER_PMD; i++, address = next) {
456 		pmd_t *pmd = pmd_page + pmd_index(address);
457 		pte_t *pte;
458 		pgprot_t new_prot = prot;
459 
460 		next = (address & PMD_MASK) + PMD_SIZE;
461 		if (address >= end) {
462 			if (!after_bootmem &&
463 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
464 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
465 				set_pmd(pmd, __pmd(0));
466 			continue;
467 		}
468 
469 		if (pmd_val(*pmd)) {
470 			if (!pmd_large(*pmd)) {
471 				spin_lock(&init_mm.page_table_lock);
472 				pte = (pte_t *)pmd_page_vaddr(*pmd);
473 				last_map_addr = phys_pte_init(pte, address,
474 								end, prot);
475 				spin_unlock(&init_mm.page_table_lock);
476 				continue;
477 			}
478 			/*
479 			 * If we are ok with PG_LEVEL_2M mapping, then we will
480 			 * use the existing mapping,
481 			 *
482 			 * Otherwise, we will split the large page mapping but
483 			 * use the same existing protection bits except for
484 			 * large page, so that we don't violate Intel's TLB
485 			 * Application note (317080) which says, while changing
486 			 * the page sizes, new and old translations should
487 			 * not differ with respect to page frame and
488 			 * attributes.
489 			 */
490 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
491 				if (!after_bootmem)
492 					pages++;
493 				last_map_addr = next;
494 				continue;
495 			}
496 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
497 		}
498 
499 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
500 			pages++;
501 			spin_lock(&init_mm.page_table_lock);
502 			set_pte((pte_t *)pmd,
503 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
504 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
505 			spin_unlock(&init_mm.page_table_lock);
506 			last_map_addr = next;
507 			continue;
508 		}
509 
510 		pte = alloc_low_page();
511 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
512 
513 		spin_lock(&init_mm.page_table_lock);
514 		pmd_populate_kernel(&init_mm, pmd, pte);
515 		spin_unlock(&init_mm.page_table_lock);
516 	}
517 	update_page_count(PG_LEVEL_2M, pages);
518 	return last_map_addr;
519 }
520 
521 static unsigned long __meminit
522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
523 			 unsigned long page_size_mask)
524 {
525 	unsigned long pages = 0, next;
526 	unsigned long last_map_addr = end;
527 	int i = pud_index(addr);
528 
529 	for (; i < PTRS_PER_PUD; i++, addr = next) {
530 		pud_t *pud = pud_page + pud_index(addr);
531 		pmd_t *pmd;
532 		pgprot_t prot = PAGE_KERNEL;
533 
534 		next = (addr & PUD_MASK) + PUD_SIZE;
535 		if (addr >= end) {
536 			if (!after_bootmem &&
537 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
538 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
539 				set_pud(pud, __pud(0));
540 			continue;
541 		}
542 
543 		if (pud_val(*pud)) {
544 			if (!pud_large(*pud)) {
545 				pmd = pmd_offset(pud, 0);
546 				last_map_addr = phys_pmd_init(pmd, addr, end,
547 							 page_size_mask, prot);
548 				__flush_tlb_all();
549 				continue;
550 			}
551 			/*
552 			 * If we are ok with PG_LEVEL_1G mapping, then we will
553 			 * use the existing mapping.
554 			 *
555 			 * Otherwise, we will split the gbpage mapping but use
556 			 * the same existing protection  bits except for large
557 			 * page, so that we don't violate Intel's TLB
558 			 * Application note (317080) which says, while changing
559 			 * the page sizes, new and old translations should
560 			 * not differ with respect to page frame and
561 			 * attributes.
562 			 */
563 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
564 				if (!after_bootmem)
565 					pages++;
566 				last_map_addr = next;
567 				continue;
568 			}
569 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
570 		}
571 
572 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
573 			pages++;
574 			spin_lock(&init_mm.page_table_lock);
575 			set_pte((pte_t *)pud,
576 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
577 					PAGE_KERNEL_LARGE));
578 			spin_unlock(&init_mm.page_table_lock);
579 			last_map_addr = next;
580 			continue;
581 		}
582 
583 		pmd = alloc_low_page();
584 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
585 					      prot);
586 
587 		spin_lock(&init_mm.page_table_lock);
588 		pud_populate(&init_mm, pud, pmd);
589 		spin_unlock(&init_mm.page_table_lock);
590 	}
591 	__flush_tlb_all();
592 
593 	update_page_count(PG_LEVEL_1G, pages);
594 
595 	return last_map_addr;
596 }
597 
598 unsigned long __meminit
599 kernel_physical_mapping_init(unsigned long start,
600 			     unsigned long end,
601 			     unsigned long page_size_mask)
602 {
603 	bool pgd_changed = false;
604 	unsigned long next, last_map_addr = end;
605 	unsigned long addr;
606 
607 	start = (unsigned long)__va(start);
608 	end = (unsigned long)__va(end);
609 	addr = start;
610 
611 	for (; start < end; start = next) {
612 		pgd_t *pgd = pgd_offset_k(start);
613 		pud_t *pud;
614 
615 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
616 
617 		if (pgd_val(*pgd)) {
618 			pud = (pud_t *)pgd_page_vaddr(*pgd);
619 			last_map_addr = phys_pud_init(pud, __pa(start),
620 						 __pa(end), page_size_mask);
621 			continue;
622 		}
623 
624 		pud = alloc_low_page();
625 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
626 						 page_size_mask);
627 
628 		spin_lock(&init_mm.page_table_lock);
629 		pgd_populate(&init_mm, pgd, pud);
630 		spin_unlock(&init_mm.page_table_lock);
631 		pgd_changed = true;
632 	}
633 
634 	if (pgd_changed)
635 		sync_global_pgds(addr, end - 1, 0);
636 
637 	__flush_tlb_all();
638 
639 	return last_map_addr;
640 }
641 
642 #ifndef CONFIG_NUMA
643 void __init initmem_init(void)
644 {
645 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
646 }
647 #endif
648 
649 void __init paging_init(void)
650 {
651 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
652 	sparse_init();
653 
654 	/*
655 	 * clear the default setting with node 0
656 	 * note: don't use nodes_clear here, that is really clearing when
657 	 *	 numa support is not compiled in, and later node_set_state
658 	 *	 will not set it back.
659 	 */
660 	node_clear_state(0, N_MEMORY);
661 	if (N_MEMORY != N_NORMAL_MEMORY)
662 		node_clear_state(0, N_NORMAL_MEMORY);
663 
664 	zone_sizes_init();
665 }
666 
667 /*
668  * Memory hotplug specific functions
669  */
670 #ifdef CONFIG_MEMORY_HOTPLUG
671 /*
672  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
673  * updating.
674  */
675 static void  update_end_of_memory_vars(u64 start, u64 size)
676 {
677 	unsigned long end_pfn = PFN_UP(start + size);
678 
679 	if (end_pfn > max_pfn) {
680 		max_pfn = end_pfn;
681 		max_low_pfn = end_pfn;
682 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
683 	}
684 }
685 
686 /*
687  * Memory is added always to NORMAL zone. This means you will never get
688  * additional DMA/DMA32 memory.
689  */
690 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
691 {
692 	struct pglist_data *pgdat = NODE_DATA(nid);
693 	struct zone *zone = pgdat->node_zones +
694 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
695 	unsigned long start_pfn = start >> PAGE_SHIFT;
696 	unsigned long nr_pages = size >> PAGE_SHIFT;
697 	int ret;
698 
699 	init_memory_mapping(start, start + size);
700 
701 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
702 	WARN_ON_ONCE(ret);
703 
704 	/* update max_pfn, max_low_pfn and high_memory */
705 	update_end_of_memory_vars(start, size);
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(arch_add_memory);
710 
711 #define PAGE_INUSE 0xFD
712 
713 static void __meminit free_pagetable(struct page *page, int order)
714 {
715 	unsigned long magic;
716 	unsigned int nr_pages = 1 << order;
717 
718 	/* bootmem page has reserved flag */
719 	if (PageReserved(page)) {
720 		__ClearPageReserved(page);
721 
722 		magic = (unsigned long)page->lru.next;
723 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
724 			while (nr_pages--)
725 				put_page_bootmem(page++);
726 		} else
727 			while (nr_pages--)
728 				free_reserved_page(page++);
729 	} else
730 		free_pages((unsigned long)page_address(page), order);
731 }
732 
733 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
734 {
735 	pte_t *pte;
736 	int i;
737 
738 	for (i = 0; i < PTRS_PER_PTE; i++) {
739 		pte = pte_start + i;
740 		if (pte_val(*pte))
741 			return;
742 	}
743 
744 	/* free a pte talbe */
745 	free_pagetable(pmd_page(*pmd), 0);
746 	spin_lock(&init_mm.page_table_lock);
747 	pmd_clear(pmd);
748 	spin_unlock(&init_mm.page_table_lock);
749 }
750 
751 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
752 {
753 	pmd_t *pmd;
754 	int i;
755 
756 	for (i = 0; i < PTRS_PER_PMD; i++) {
757 		pmd = pmd_start + i;
758 		if (pmd_val(*pmd))
759 			return;
760 	}
761 
762 	/* free a pmd talbe */
763 	free_pagetable(pud_page(*pud), 0);
764 	spin_lock(&init_mm.page_table_lock);
765 	pud_clear(pud);
766 	spin_unlock(&init_mm.page_table_lock);
767 }
768 
769 /* Return true if pgd is changed, otherwise return false. */
770 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
771 {
772 	pud_t *pud;
773 	int i;
774 
775 	for (i = 0; i < PTRS_PER_PUD; i++) {
776 		pud = pud_start + i;
777 		if (pud_val(*pud))
778 			return false;
779 	}
780 
781 	/* free a pud table */
782 	free_pagetable(pgd_page(*pgd), 0);
783 	spin_lock(&init_mm.page_table_lock);
784 	pgd_clear(pgd);
785 	spin_unlock(&init_mm.page_table_lock);
786 
787 	return true;
788 }
789 
790 static void __meminit
791 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
792 		 bool direct)
793 {
794 	unsigned long next, pages = 0;
795 	pte_t *pte;
796 	void *page_addr;
797 	phys_addr_t phys_addr;
798 
799 	pte = pte_start + pte_index(addr);
800 	for (; addr < end; addr = next, pte++) {
801 		next = (addr + PAGE_SIZE) & PAGE_MASK;
802 		if (next > end)
803 			next = end;
804 
805 		if (!pte_present(*pte))
806 			continue;
807 
808 		/*
809 		 * We mapped [0,1G) memory as identity mapping when
810 		 * initializing, in arch/x86/kernel/head_64.S. These
811 		 * pagetables cannot be removed.
812 		 */
813 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
814 		if (phys_addr < (phys_addr_t)0x40000000)
815 			return;
816 
817 		if (IS_ALIGNED(addr, PAGE_SIZE) &&
818 		    IS_ALIGNED(next, PAGE_SIZE)) {
819 			/*
820 			 * Do not free direct mapping pages since they were
821 			 * freed when offlining, or simplely not in use.
822 			 */
823 			if (!direct)
824 				free_pagetable(pte_page(*pte), 0);
825 
826 			spin_lock(&init_mm.page_table_lock);
827 			pte_clear(&init_mm, addr, pte);
828 			spin_unlock(&init_mm.page_table_lock);
829 
830 			/* For non-direct mapping, pages means nothing. */
831 			pages++;
832 		} else {
833 			/*
834 			 * If we are here, we are freeing vmemmap pages since
835 			 * direct mapped memory ranges to be freed are aligned.
836 			 *
837 			 * If we are not removing the whole page, it means
838 			 * other page structs in this page are being used and
839 			 * we canot remove them. So fill the unused page_structs
840 			 * with 0xFD, and remove the page when it is wholly
841 			 * filled with 0xFD.
842 			 */
843 			memset((void *)addr, PAGE_INUSE, next - addr);
844 
845 			page_addr = page_address(pte_page(*pte));
846 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
847 				free_pagetable(pte_page(*pte), 0);
848 
849 				spin_lock(&init_mm.page_table_lock);
850 				pte_clear(&init_mm, addr, pte);
851 				spin_unlock(&init_mm.page_table_lock);
852 			}
853 		}
854 	}
855 
856 	/* Call free_pte_table() in remove_pmd_table(). */
857 	flush_tlb_all();
858 	if (direct)
859 		update_page_count(PG_LEVEL_4K, -pages);
860 }
861 
862 static void __meminit
863 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
864 		 bool direct)
865 {
866 	unsigned long next, pages = 0;
867 	pte_t *pte_base;
868 	pmd_t *pmd;
869 	void *page_addr;
870 
871 	pmd = pmd_start + pmd_index(addr);
872 	for (; addr < end; addr = next, pmd++) {
873 		next = pmd_addr_end(addr, end);
874 
875 		if (!pmd_present(*pmd))
876 			continue;
877 
878 		if (pmd_large(*pmd)) {
879 			if (IS_ALIGNED(addr, PMD_SIZE) &&
880 			    IS_ALIGNED(next, PMD_SIZE)) {
881 				if (!direct)
882 					free_pagetable(pmd_page(*pmd),
883 						       get_order(PMD_SIZE));
884 
885 				spin_lock(&init_mm.page_table_lock);
886 				pmd_clear(pmd);
887 				spin_unlock(&init_mm.page_table_lock);
888 				pages++;
889 			} else {
890 				/* If here, we are freeing vmemmap pages. */
891 				memset((void *)addr, PAGE_INUSE, next - addr);
892 
893 				page_addr = page_address(pmd_page(*pmd));
894 				if (!memchr_inv(page_addr, PAGE_INUSE,
895 						PMD_SIZE)) {
896 					free_pagetable(pmd_page(*pmd),
897 						       get_order(PMD_SIZE));
898 
899 					spin_lock(&init_mm.page_table_lock);
900 					pmd_clear(pmd);
901 					spin_unlock(&init_mm.page_table_lock);
902 				}
903 			}
904 
905 			continue;
906 		}
907 
908 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
909 		remove_pte_table(pte_base, addr, next, direct);
910 		free_pte_table(pte_base, pmd);
911 	}
912 
913 	/* Call free_pmd_table() in remove_pud_table(). */
914 	if (direct)
915 		update_page_count(PG_LEVEL_2M, -pages);
916 }
917 
918 static void __meminit
919 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
920 		 bool direct)
921 {
922 	unsigned long next, pages = 0;
923 	pmd_t *pmd_base;
924 	pud_t *pud;
925 	void *page_addr;
926 
927 	pud = pud_start + pud_index(addr);
928 	for (; addr < end; addr = next, pud++) {
929 		next = pud_addr_end(addr, end);
930 
931 		if (!pud_present(*pud))
932 			continue;
933 
934 		if (pud_large(*pud)) {
935 			if (IS_ALIGNED(addr, PUD_SIZE) &&
936 			    IS_ALIGNED(next, PUD_SIZE)) {
937 				if (!direct)
938 					free_pagetable(pud_page(*pud),
939 						       get_order(PUD_SIZE));
940 
941 				spin_lock(&init_mm.page_table_lock);
942 				pud_clear(pud);
943 				spin_unlock(&init_mm.page_table_lock);
944 				pages++;
945 			} else {
946 				/* If here, we are freeing vmemmap pages. */
947 				memset((void *)addr, PAGE_INUSE, next - addr);
948 
949 				page_addr = page_address(pud_page(*pud));
950 				if (!memchr_inv(page_addr, PAGE_INUSE,
951 						PUD_SIZE)) {
952 					free_pagetable(pud_page(*pud),
953 						       get_order(PUD_SIZE));
954 
955 					spin_lock(&init_mm.page_table_lock);
956 					pud_clear(pud);
957 					spin_unlock(&init_mm.page_table_lock);
958 				}
959 			}
960 
961 			continue;
962 		}
963 
964 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
965 		remove_pmd_table(pmd_base, addr, next, direct);
966 		free_pmd_table(pmd_base, pud);
967 	}
968 
969 	if (direct)
970 		update_page_count(PG_LEVEL_1G, -pages);
971 }
972 
973 /* start and end are both virtual address. */
974 static void __meminit
975 remove_pagetable(unsigned long start, unsigned long end, bool direct)
976 {
977 	unsigned long next;
978 	unsigned long addr;
979 	pgd_t *pgd;
980 	pud_t *pud;
981 	bool pgd_changed = false;
982 
983 	for (addr = start; addr < end; addr = next) {
984 		next = pgd_addr_end(addr, end);
985 
986 		pgd = pgd_offset_k(addr);
987 		if (!pgd_present(*pgd))
988 			continue;
989 
990 		pud = (pud_t *)pgd_page_vaddr(*pgd);
991 		remove_pud_table(pud, addr, next, direct);
992 		if (free_pud_table(pud, pgd))
993 			pgd_changed = true;
994 	}
995 
996 	if (pgd_changed)
997 		sync_global_pgds(start, end - 1, 1);
998 
999 	flush_tlb_all();
1000 }
1001 
1002 void __ref vmemmap_free(unsigned long start, unsigned long end)
1003 {
1004 	remove_pagetable(start, end, false);
1005 }
1006 
1007 #ifdef CONFIG_MEMORY_HOTREMOVE
1008 static void __meminit
1009 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1010 {
1011 	start = (unsigned long)__va(start);
1012 	end = (unsigned long)__va(end);
1013 
1014 	remove_pagetable(start, end, true);
1015 }
1016 
1017 int __ref arch_remove_memory(u64 start, u64 size)
1018 {
1019 	unsigned long start_pfn = start >> PAGE_SHIFT;
1020 	unsigned long nr_pages = size >> PAGE_SHIFT;
1021 	struct zone *zone;
1022 	int ret;
1023 
1024 	zone = page_zone(pfn_to_page(start_pfn));
1025 	kernel_physical_mapping_remove(start, start + size);
1026 	ret = __remove_pages(zone, start_pfn, nr_pages);
1027 	WARN_ON_ONCE(ret);
1028 
1029 	return ret;
1030 }
1031 #endif
1032 #endif /* CONFIG_MEMORY_HOTPLUG */
1033 
1034 static struct kcore_list kcore_vsyscall;
1035 
1036 static void __init register_page_bootmem_info(void)
1037 {
1038 #ifdef CONFIG_NUMA
1039 	int i;
1040 
1041 	for_each_online_node(i)
1042 		register_page_bootmem_info_node(NODE_DATA(i));
1043 #endif
1044 }
1045 
1046 void __init mem_init(void)
1047 {
1048 	pci_iommu_alloc();
1049 
1050 	/* clear_bss() already clear the empty_zero_page */
1051 
1052 	register_page_bootmem_info();
1053 
1054 	/* this will put all memory onto the freelists */
1055 	free_all_bootmem();
1056 	after_bootmem = 1;
1057 
1058 	/* Register memory areas for /proc/kcore */
1059 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1060 			 PAGE_SIZE, KCORE_OTHER);
1061 
1062 	mem_init_print_info(NULL);
1063 }
1064 
1065 #ifdef CONFIG_DEBUG_RODATA
1066 const int rodata_test_data = 0xC3;
1067 EXPORT_SYMBOL_GPL(rodata_test_data);
1068 
1069 int kernel_set_to_readonly;
1070 
1071 void set_kernel_text_rw(void)
1072 {
1073 	unsigned long start = PFN_ALIGN(_text);
1074 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1075 
1076 	if (!kernel_set_to_readonly)
1077 		return;
1078 
1079 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1080 		 start, end);
1081 
1082 	/*
1083 	 * Make the kernel identity mapping for text RW. Kernel text
1084 	 * mapping will always be RO. Refer to the comment in
1085 	 * static_protections() in pageattr.c
1086 	 */
1087 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1088 }
1089 
1090 void set_kernel_text_ro(void)
1091 {
1092 	unsigned long start = PFN_ALIGN(_text);
1093 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1094 
1095 	if (!kernel_set_to_readonly)
1096 		return;
1097 
1098 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1099 		 start, end);
1100 
1101 	/*
1102 	 * Set the kernel identity mapping for text RO.
1103 	 */
1104 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1105 }
1106 
1107 void mark_rodata_ro(void)
1108 {
1109 	unsigned long start = PFN_ALIGN(_text);
1110 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1111 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1112 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1113 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1114 	unsigned long all_end;
1115 
1116 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1117 	       (end - start) >> 10);
1118 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119 
1120 	kernel_set_to_readonly = 1;
1121 
1122 	/*
1123 	 * The rodata/data/bss/brk section (but not the kernel text!)
1124 	 * should also be not-executable.
1125 	 *
1126 	 * We align all_end to PMD_SIZE because the existing mapping
1127 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1128 	 * split the PMD and the reminder between _brk_end and the end
1129 	 * of the PMD will remain mapped executable.
1130 	 *
1131 	 * Any PMD which was setup after the one which covers _brk_end
1132 	 * has been zapped already via cleanup_highmem().
1133 	 */
1134 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1135 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1136 
1137 	rodata_test();
1138 
1139 #ifdef CONFIG_CPA_DEBUG
1140 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1141 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1142 
1143 	printk(KERN_INFO "Testing CPA: again\n");
1144 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1145 #endif
1146 
1147 	free_init_pages("unused kernel",
1148 			(unsigned long) __va(__pa_symbol(text_end)),
1149 			(unsigned long) __va(__pa_symbol(rodata_start)));
1150 	free_init_pages("unused kernel",
1151 			(unsigned long) __va(__pa_symbol(rodata_end)),
1152 			(unsigned long) __va(__pa_symbol(_sdata)));
1153 
1154 	debug_checkwx();
1155 }
1156 
1157 #endif
1158 
1159 int kern_addr_valid(unsigned long addr)
1160 {
1161 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1162 	pgd_t *pgd;
1163 	pud_t *pud;
1164 	pmd_t *pmd;
1165 	pte_t *pte;
1166 
1167 	if (above != 0 && above != -1UL)
1168 		return 0;
1169 
1170 	pgd = pgd_offset_k(addr);
1171 	if (pgd_none(*pgd))
1172 		return 0;
1173 
1174 	pud = pud_offset(pgd, addr);
1175 	if (pud_none(*pud))
1176 		return 0;
1177 
1178 	if (pud_large(*pud))
1179 		return pfn_valid(pud_pfn(*pud));
1180 
1181 	pmd = pmd_offset(pud, addr);
1182 	if (pmd_none(*pmd))
1183 		return 0;
1184 
1185 	if (pmd_large(*pmd))
1186 		return pfn_valid(pmd_pfn(*pmd));
1187 
1188 	pte = pte_offset_kernel(pmd, addr);
1189 	if (pte_none(*pte))
1190 		return 0;
1191 
1192 	return pfn_valid(pte_pfn(*pte));
1193 }
1194 
1195 static unsigned long probe_memory_block_size(void)
1196 {
1197 	/* start from 2g */
1198 	unsigned long bz = 1UL<<31;
1199 
1200 	if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1201 		pr_info("Using 2GB memory block size for large-memory system\n");
1202 		return 2UL * 1024 * 1024 * 1024;
1203 	}
1204 
1205 	/* less than 64g installed */
1206 	if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1207 		return MIN_MEMORY_BLOCK_SIZE;
1208 
1209 	/* get the tail size */
1210 	while (bz > MIN_MEMORY_BLOCK_SIZE) {
1211 		if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1212 			break;
1213 		bz >>= 1;
1214 	}
1215 
1216 	printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1217 
1218 	return bz;
1219 }
1220 
1221 static unsigned long memory_block_size_probed;
1222 unsigned long memory_block_size_bytes(void)
1223 {
1224 	if (!memory_block_size_probed)
1225 		memory_block_size_probed = probe_memory_block_size();
1226 
1227 	return memory_block_size_probed;
1228 }
1229 
1230 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1231 /*
1232  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1233  */
1234 static long __meminitdata addr_start, addr_end;
1235 static void __meminitdata *p_start, *p_end;
1236 static int __meminitdata node_start;
1237 
1238 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1239 						unsigned long end, int node)
1240 {
1241 	unsigned long addr;
1242 	unsigned long next;
1243 	pgd_t *pgd;
1244 	pud_t *pud;
1245 	pmd_t *pmd;
1246 
1247 	for (addr = start; addr < end; addr = next) {
1248 		next = pmd_addr_end(addr, end);
1249 
1250 		pgd = vmemmap_pgd_populate(addr, node);
1251 		if (!pgd)
1252 			return -ENOMEM;
1253 
1254 		pud = vmemmap_pud_populate(pgd, addr, node);
1255 		if (!pud)
1256 			return -ENOMEM;
1257 
1258 		pmd = pmd_offset(pud, addr);
1259 		if (pmd_none(*pmd)) {
1260 			void *p;
1261 
1262 			p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1263 			if (p) {
1264 				pte_t entry;
1265 
1266 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1267 						PAGE_KERNEL_LARGE);
1268 				set_pmd(pmd, __pmd(pte_val(entry)));
1269 
1270 				/* check to see if we have contiguous blocks */
1271 				if (p_end != p || node_start != node) {
1272 					if (p_start)
1273 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1274 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1275 					addr_start = addr;
1276 					node_start = node;
1277 					p_start = p;
1278 				}
1279 
1280 				addr_end = addr + PMD_SIZE;
1281 				p_end = p + PMD_SIZE;
1282 				continue;
1283 			}
1284 		} else if (pmd_large(*pmd)) {
1285 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1286 			continue;
1287 		}
1288 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1289 		if (vmemmap_populate_basepages(addr, next, node))
1290 			return -ENOMEM;
1291 	}
1292 	return 0;
1293 }
1294 
1295 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1296 {
1297 	int err;
1298 
1299 	if (cpu_has_pse)
1300 		err = vmemmap_populate_hugepages(start, end, node);
1301 	else
1302 		err = vmemmap_populate_basepages(start, end, node);
1303 	if (!err)
1304 		sync_global_pgds(start, end - 1, 0);
1305 	return err;
1306 }
1307 
1308 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1309 void register_page_bootmem_memmap(unsigned long section_nr,
1310 				  struct page *start_page, unsigned long size)
1311 {
1312 	unsigned long addr = (unsigned long)start_page;
1313 	unsigned long end = (unsigned long)(start_page + size);
1314 	unsigned long next;
1315 	pgd_t *pgd;
1316 	pud_t *pud;
1317 	pmd_t *pmd;
1318 	unsigned int nr_pages;
1319 	struct page *page;
1320 
1321 	for (; addr < end; addr = next) {
1322 		pte_t *pte = NULL;
1323 
1324 		pgd = pgd_offset_k(addr);
1325 		if (pgd_none(*pgd)) {
1326 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1327 			continue;
1328 		}
1329 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1330 
1331 		pud = pud_offset(pgd, addr);
1332 		if (pud_none(*pud)) {
1333 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1334 			continue;
1335 		}
1336 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1337 
1338 		if (!cpu_has_pse) {
1339 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1340 			pmd = pmd_offset(pud, addr);
1341 			if (pmd_none(*pmd))
1342 				continue;
1343 			get_page_bootmem(section_nr, pmd_page(*pmd),
1344 					 MIX_SECTION_INFO);
1345 
1346 			pte = pte_offset_kernel(pmd, addr);
1347 			if (pte_none(*pte))
1348 				continue;
1349 			get_page_bootmem(section_nr, pte_page(*pte),
1350 					 SECTION_INFO);
1351 		} else {
1352 			next = pmd_addr_end(addr, end);
1353 
1354 			pmd = pmd_offset(pud, addr);
1355 			if (pmd_none(*pmd))
1356 				continue;
1357 
1358 			nr_pages = 1 << (get_order(PMD_SIZE));
1359 			page = pmd_page(*pmd);
1360 			while (nr_pages--)
1361 				get_page_bootmem(section_nr, page++,
1362 						 SECTION_INFO);
1363 		}
1364 	}
1365 }
1366 #endif
1367 
1368 void __meminit vmemmap_populate_print_last(void)
1369 {
1370 	if (p_start) {
1371 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1372 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1373 		p_start = NULL;
1374 		p_end = NULL;
1375 		node_start = 0;
1376 	}
1377 }
1378 #endif
1379