xref: /openbmc/linux/arch/x86/mm/init_64.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 
58 #include "mm_internal.h"
59 
60 #include "ident_map.c"
61 
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67 
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70 
71 int force_personality32;
72 
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off	PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83 	if (!strcmp(str, "on"))
84 		force_personality32 &= ~READ_IMPLIES_EXEC;
85 	else if (!strcmp(str, "off"))
86 		force_personality32 |= READ_IMPLIES_EXEC;
87 	return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90 
91 /*
92  * When memory was added make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end)
96 {
97 	unsigned long addr;
98 
99 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
100 		pgd_t *pgd_ref = pgd_offset_k(addr);
101 		const p4d_t *p4d_ref;
102 		struct page *page;
103 
104 		/*
105 		 * With folded p4d, pgd_none() is always false, we need to
106 		 * handle synchonization on p4d level.
107 		 */
108 		BUILD_BUG_ON(pgd_none(*pgd_ref));
109 		p4d_ref = p4d_offset(pgd_ref, addr);
110 
111 		if (p4d_none(*p4d_ref))
112 			continue;
113 
114 		spin_lock(&pgd_lock);
115 		list_for_each_entry(page, &pgd_list, lru) {
116 			pgd_t *pgd;
117 			p4d_t *p4d;
118 			spinlock_t *pgt_lock;
119 
120 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
121 			p4d = p4d_offset(pgd, addr);
122 			/* the pgt_lock only for Xen */
123 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124 			spin_lock(pgt_lock);
125 
126 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
127 				BUG_ON(p4d_page_vaddr(*p4d)
128 				       != p4d_page_vaddr(*p4d_ref));
129 
130 			if (p4d_none(*p4d))
131 				set_p4d(p4d, *p4d_ref);
132 
133 			spin_unlock(pgt_lock);
134 		}
135 		spin_unlock(&pgd_lock);
136 	}
137 }
138 
139 /*
140  * NOTE: This function is marked __ref because it calls __init function
141  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142  */
143 static __ref void *spp_getpage(void)
144 {
145 	void *ptr;
146 
147 	if (after_bootmem)
148 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
149 	else
150 		ptr = alloc_bootmem_pages(PAGE_SIZE);
151 
152 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
153 		panic("set_pte_phys: cannot allocate page data %s\n",
154 			after_bootmem ? "after bootmem" : "");
155 	}
156 
157 	pr_debug("spp_getpage %p\n", ptr);
158 
159 	return ptr;
160 }
161 
162 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
163 {
164 	if (pgd_none(*pgd)) {
165 		p4d_t *p4d = (p4d_t *)spp_getpage();
166 		pgd_populate(&init_mm, pgd, p4d);
167 		if (p4d != p4d_offset(pgd, 0))
168 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
169 			       p4d, p4d_offset(pgd, 0));
170 	}
171 	return p4d_offset(pgd, vaddr);
172 }
173 
174 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
175 {
176 	if (p4d_none(*p4d)) {
177 		pud_t *pud = (pud_t *)spp_getpage();
178 		p4d_populate(&init_mm, p4d, pud);
179 		if (pud != pud_offset(p4d, 0))
180 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
181 			       pud, pud_offset(p4d, 0));
182 	}
183 	return pud_offset(p4d, vaddr);
184 }
185 
186 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
187 {
188 	if (pud_none(*pud)) {
189 		pmd_t *pmd = (pmd_t *) spp_getpage();
190 		pud_populate(&init_mm, pud, pmd);
191 		if (pmd != pmd_offset(pud, 0))
192 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
193 			       pmd, pmd_offset(pud, 0));
194 	}
195 	return pmd_offset(pud, vaddr);
196 }
197 
198 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
199 {
200 	if (pmd_none(*pmd)) {
201 		pte_t *pte = (pte_t *) spp_getpage();
202 		pmd_populate_kernel(&init_mm, pmd, pte);
203 		if (pte != pte_offset_kernel(pmd, 0))
204 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
205 	}
206 	return pte_offset_kernel(pmd, vaddr);
207 }
208 
209 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
210 {
211 	pmd_t *pmd = fill_pmd(pud, vaddr);
212 	pte_t *pte = fill_pte(pmd, vaddr);
213 
214 	set_pte(pte, new_pte);
215 
216 	/*
217 	 * It's enough to flush this one mapping.
218 	 * (PGE mappings get flushed as well)
219 	 */
220 	__flush_tlb_one(vaddr);
221 }
222 
223 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
224 {
225 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
226 	pud_t *pud = fill_pud(p4d, vaddr);
227 
228 	__set_pte_vaddr(pud, vaddr, new_pte);
229 }
230 
231 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
232 {
233 	pud_t *pud = pud_page + pud_index(vaddr);
234 
235 	__set_pte_vaddr(pud, vaddr, new_pte);
236 }
237 
238 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
239 {
240 	pgd_t *pgd;
241 	p4d_t *p4d_page;
242 
243 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
244 
245 	pgd = pgd_offset_k(vaddr);
246 	if (pgd_none(*pgd)) {
247 		printk(KERN_ERR
248 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
249 		return;
250 	}
251 
252 	p4d_page = p4d_offset(pgd, 0);
253 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
254 }
255 
256 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
257 {
258 	pgd_t *pgd;
259 	p4d_t *p4d;
260 	pud_t *pud;
261 
262 	pgd = pgd_offset_k(vaddr);
263 	p4d = fill_p4d(pgd, vaddr);
264 	pud = fill_pud(p4d, vaddr);
265 	return fill_pmd(pud, vaddr);
266 }
267 
268 pte_t * __init populate_extra_pte(unsigned long vaddr)
269 {
270 	pmd_t *pmd;
271 
272 	pmd = populate_extra_pmd(vaddr);
273 	return fill_pte(pmd, vaddr);
274 }
275 
276 /*
277  * Create large page table mappings for a range of physical addresses.
278  */
279 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
280 					enum page_cache_mode cache)
281 {
282 	pgd_t *pgd;
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd;
286 	pgprot_t prot;
287 
288 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
289 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
290 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
291 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
292 		pgd = pgd_offset_k((unsigned long)__va(phys));
293 		if (pgd_none(*pgd)) {
294 			p4d = (p4d_t *) spp_getpage();
295 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
296 						_PAGE_USER));
297 		}
298 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
299 		if (p4d_none(*p4d)) {
300 			pud = (pud_t *) spp_getpage();
301 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
302 						_PAGE_USER));
303 		}
304 		pud = pud_offset(p4d, (unsigned long)__va(phys));
305 		if (pud_none(*pud)) {
306 			pmd = (pmd_t *) spp_getpage();
307 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
308 						_PAGE_USER));
309 		}
310 		pmd = pmd_offset(pud, phys);
311 		BUG_ON(!pmd_none(*pmd));
312 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
313 	}
314 }
315 
316 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
317 {
318 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
319 }
320 
321 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
322 {
323 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
324 }
325 
326 /*
327  * The head.S code sets up the kernel high mapping:
328  *
329  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
330  *
331  * phys_base holds the negative offset to the kernel, which is added
332  * to the compile time generated pmds. This results in invalid pmds up
333  * to the point where we hit the physaddr 0 mapping.
334  *
335  * We limit the mappings to the region from _text to _brk_end.  _brk_end
336  * is rounded up to the 2MB boundary. This catches the invalid pmds as
337  * well, as they are located before _text:
338  */
339 void __init cleanup_highmap(void)
340 {
341 	unsigned long vaddr = __START_KERNEL_map;
342 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
343 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
344 	pmd_t *pmd = level2_kernel_pgt;
345 
346 	/*
347 	 * Native path, max_pfn_mapped is not set yet.
348 	 * Xen has valid max_pfn_mapped set in
349 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
350 	 */
351 	if (max_pfn_mapped)
352 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
353 
354 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
355 		if (pmd_none(*pmd))
356 			continue;
357 		if (vaddr < (unsigned long) _text || vaddr > end)
358 			set_pmd(pmd, __pmd(0));
359 	}
360 }
361 
362 /*
363  * Create PTE level page table mapping for physical addresses.
364  * It returns the last physical address mapped.
365  */
366 static unsigned long __meminit
367 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
368 	      pgprot_t prot)
369 {
370 	unsigned long pages = 0, paddr_next;
371 	unsigned long paddr_last = paddr_end;
372 	pte_t *pte;
373 	int i;
374 
375 	pte = pte_page + pte_index(paddr);
376 	i = pte_index(paddr);
377 
378 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
379 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
380 		if (paddr >= paddr_end) {
381 			if (!after_bootmem &&
382 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
383 					     E820_TYPE_RAM) &&
384 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
385 					     E820_TYPE_RESERVED_KERN))
386 				set_pte(pte, __pte(0));
387 			continue;
388 		}
389 
390 		/*
391 		 * We will re-use the existing mapping.
392 		 * Xen for example has some special requirements, like mapping
393 		 * pagetable pages as RO. So assume someone who pre-setup
394 		 * these mappings are more intelligent.
395 		 */
396 		if (!pte_none(*pte)) {
397 			if (!after_bootmem)
398 				pages++;
399 			continue;
400 		}
401 
402 		if (0)
403 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
404 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
405 		pages++;
406 		set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
407 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
408 	}
409 
410 	update_page_count(PG_LEVEL_4K, pages);
411 
412 	return paddr_last;
413 }
414 
415 /*
416  * Create PMD level page table mapping for physical addresses. The virtual
417  * and physical address have to be aligned at this level.
418  * It returns the last physical address mapped.
419  */
420 static unsigned long __meminit
421 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
422 	      unsigned long page_size_mask, pgprot_t prot)
423 {
424 	unsigned long pages = 0, paddr_next;
425 	unsigned long paddr_last = paddr_end;
426 
427 	int i = pmd_index(paddr);
428 
429 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
430 		pmd_t *pmd = pmd_page + pmd_index(paddr);
431 		pte_t *pte;
432 		pgprot_t new_prot = prot;
433 
434 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
435 		if (paddr >= paddr_end) {
436 			if (!after_bootmem &&
437 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
438 					     E820_TYPE_RAM) &&
439 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
440 					     E820_TYPE_RESERVED_KERN))
441 				set_pmd(pmd, __pmd(0));
442 			continue;
443 		}
444 
445 		if (!pmd_none(*pmd)) {
446 			if (!pmd_large(*pmd)) {
447 				spin_lock(&init_mm.page_table_lock);
448 				pte = (pte_t *)pmd_page_vaddr(*pmd);
449 				paddr_last = phys_pte_init(pte, paddr,
450 							   paddr_end, prot);
451 				spin_unlock(&init_mm.page_table_lock);
452 				continue;
453 			}
454 			/*
455 			 * If we are ok with PG_LEVEL_2M mapping, then we will
456 			 * use the existing mapping,
457 			 *
458 			 * Otherwise, we will split the large page mapping but
459 			 * use the same existing protection bits except for
460 			 * large page, so that we don't violate Intel's TLB
461 			 * Application note (317080) which says, while changing
462 			 * the page sizes, new and old translations should
463 			 * not differ with respect to page frame and
464 			 * attributes.
465 			 */
466 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
467 				if (!after_bootmem)
468 					pages++;
469 				paddr_last = paddr_next;
470 				continue;
471 			}
472 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
473 		}
474 
475 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
476 			pages++;
477 			spin_lock(&init_mm.page_table_lock);
478 			set_pte((pte_t *)pmd,
479 				pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
480 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
481 			spin_unlock(&init_mm.page_table_lock);
482 			paddr_last = paddr_next;
483 			continue;
484 		}
485 
486 		pte = alloc_low_page();
487 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
488 
489 		spin_lock(&init_mm.page_table_lock);
490 		pmd_populate_kernel(&init_mm, pmd, pte);
491 		spin_unlock(&init_mm.page_table_lock);
492 	}
493 	update_page_count(PG_LEVEL_2M, pages);
494 	return paddr_last;
495 }
496 
497 /*
498  * Create PUD level page table mapping for physical addresses. The virtual
499  * and physical address do not have to be aligned at this level. KASLR can
500  * randomize virtual addresses up to this level.
501  * It returns the last physical address mapped.
502  */
503 static unsigned long __meminit
504 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
505 	      unsigned long page_size_mask)
506 {
507 	unsigned long pages = 0, paddr_next;
508 	unsigned long paddr_last = paddr_end;
509 	unsigned long vaddr = (unsigned long)__va(paddr);
510 	int i = pud_index(vaddr);
511 
512 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
513 		pud_t *pud;
514 		pmd_t *pmd;
515 		pgprot_t prot = PAGE_KERNEL;
516 
517 		vaddr = (unsigned long)__va(paddr);
518 		pud = pud_page + pud_index(vaddr);
519 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
520 
521 		if (paddr >= paddr_end) {
522 			if (!after_bootmem &&
523 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
524 					     E820_TYPE_RAM) &&
525 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
526 					     E820_TYPE_RESERVED_KERN))
527 				set_pud(pud, __pud(0));
528 			continue;
529 		}
530 
531 		if (!pud_none(*pud)) {
532 			if (!pud_large(*pud)) {
533 				pmd = pmd_offset(pud, 0);
534 				paddr_last = phys_pmd_init(pmd, paddr,
535 							   paddr_end,
536 							   page_size_mask,
537 							   prot);
538 				__flush_tlb_all();
539 				continue;
540 			}
541 			/*
542 			 * If we are ok with PG_LEVEL_1G mapping, then we will
543 			 * use the existing mapping.
544 			 *
545 			 * Otherwise, we will split the gbpage mapping but use
546 			 * the same existing protection  bits except for large
547 			 * page, so that we don't violate Intel's TLB
548 			 * Application note (317080) which says, while changing
549 			 * the page sizes, new and old translations should
550 			 * not differ with respect to page frame and
551 			 * attributes.
552 			 */
553 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
554 				if (!after_bootmem)
555 					pages++;
556 				paddr_last = paddr_next;
557 				continue;
558 			}
559 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
560 		}
561 
562 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
563 			pages++;
564 			spin_lock(&init_mm.page_table_lock);
565 			set_pte((pte_t *)pud,
566 				pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
567 					PAGE_KERNEL_LARGE));
568 			spin_unlock(&init_mm.page_table_lock);
569 			paddr_last = paddr_next;
570 			continue;
571 		}
572 
573 		pmd = alloc_low_page();
574 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
575 					   page_size_mask, prot);
576 
577 		spin_lock(&init_mm.page_table_lock);
578 		pud_populate(&init_mm, pud, pmd);
579 		spin_unlock(&init_mm.page_table_lock);
580 	}
581 	__flush_tlb_all();
582 
583 	update_page_count(PG_LEVEL_1G, pages);
584 
585 	return paddr_last;
586 }
587 
588 /*
589  * Create page table mapping for the physical memory for specific physical
590  * addresses. The virtual and physical addresses have to be aligned on PMD level
591  * down. It returns the last physical address mapped.
592  */
593 unsigned long __meminit
594 kernel_physical_mapping_init(unsigned long paddr_start,
595 			     unsigned long paddr_end,
596 			     unsigned long page_size_mask)
597 {
598 	bool pgd_changed = false;
599 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
600 
601 	paddr_last = paddr_end;
602 	vaddr = (unsigned long)__va(paddr_start);
603 	vaddr_end = (unsigned long)__va(paddr_end);
604 	vaddr_start = vaddr;
605 
606 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
607 		pgd_t *pgd = pgd_offset_k(vaddr);
608 		p4d_t *p4d;
609 		pud_t *pud;
610 
611 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
612 
613 		BUILD_BUG_ON(pgd_none(*pgd));
614 		p4d = p4d_offset(pgd, vaddr);
615 		if (p4d_val(*p4d)) {
616 			pud = (pud_t *)p4d_page_vaddr(*p4d);
617 			paddr_last = phys_pud_init(pud, __pa(vaddr),
618 						   __pa(vaddr_end),
619 						   page_size_mask);
620 			continue;
621 		}
622 
623 		pud = alloc_low_page();
624 		paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
625 					   page_size_mask);
626 
627 		spin_lock(&init_mm.page_table_lock);
628 		p4d_populate(&init_mm, p4d, pud);
629 		spin_unlock(&init_mm.page_table_lock);
630 		pgd_changed = true;
631 	}
632 
633 	if (pgd_changed)
634 		sync_global_pgds(vaddr_start, vaddr_end - 1);
635 
636 	__flush_tlb_all();
637 
638 	return paddr_last;
639 }
640 
641 #ifndef CONFIG_NUMA
642 void __init initmem_init(void)
643 {
644 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
645 }
646 #endif
647 
648 void __init paging_init(void)
649 {
650 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
651 	sparse_init();
652 
653 	/*
654 	 * clear the default setting with node 0
655 	 * note: don't use nodes_clear here, that is really clearing when
656 	 *	 numa support is not compiled in, and later node_set_state
657 	 *	 will not set it back.
658 	 */
659 	node_clear_state(0, N_MEMORY);
660 	if (N_MEMORY != N_NORMAL_MEMORY)
661 		node_clear_state(0, N_NORMAL_MEMORY);
662 
663 	zone_sizes_init();
664 }
665 
666 /*
667  * Memory hotplug specific functions
668  */
669 #ifdef CONFIG_MEMORY_HOTPLUG
670 /*
671  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
672  * updating.
673  */
674 static void  update_end_of_memory_vars(u64 start, u64 size)
675 {
676 	unsigned long end_pfn = PFN_UP(start + size);
677 
678 	if (end_pfn > max_pfn) {
679 		max_pfn = end_pfn;
680 		max_low_pfn = end_pfn;
681 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
682 	}
683 }
684 
685 /*
686  * Memory is added always to NORMAL zone. This means you will never get
687  * additional DMA/DMA32 memory.
688  */
689 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
690 {
691 	struct pglist_data *pgdat = NODE_DATA(nid);
692 	struct zone *zone = pgdat->node_zones +
693 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
694 	unsigned long start_pfn = start >> PAGE_SHIFT;
695 	unsigned long nr_pages = size >> PAGE_SHIFT;
696 	int ret;
697 
698 	init_memory_mapping(start, start + size);
699 
700 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
701 	WARN_ON_ONCE(ret);
702 
703 	/* update max_pfn, max_low_pfn and high_memory */
704 	update_end_of_memory_vars(start, size);
705 
706 	return ret;
707 }
708 EXPORT_SYMBOL_GPL(arch_add_memory);
709 
710 #define PAGE_INUSE 0xFD
711 
712 static void __meminit free_pagetable(struct page *page, int order)
713 {
714 	unsigned long magic;
715 	unsigned int nr_pages = 1 << order;
716 	struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
717 
718 	if (altmap) {
719 		vmem_altmap_free(altmap, nr_pages);
720 		return;
721 	}
722 
723 	/* bootmem page has reserved flag */
724 	if (PageReserved(page)) {
725 		__ClearPageReserved(page);
726 
727 		magic = (unsigned long)page->freelist;
728 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
729 			while (nr_pages--)
730 				put_page_bootmem(page++);
731 		} else
732 			while (nr_pages--)
733 				free_reserved_page(page++);
734 	} else
735 		free_pages((unsigned long)page_address(page), order);
736 }
737 
738 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
739 {
740 	pte_t *pte;
741 	int i;
742 
743 	for (i = 0; i < PTRS_PER_PTE; i++) {
744 		pte = pte_start + i;
745 		if (!pte_none(*pte))
746 			return;
747 	}
748 
749 	/* free a pte talbe */
750 	free_pagetable(pmd_page(*pmd), 0);
751 	spin_lock(&init_mm.page_table_lock);
752 	pmd_clear(pmd);
753 	spin_unlock(&init_mm.page_table_lock);
754 }
755 
756 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
757 {
758 	pmd_t *pmd;
759 	int i;
760 
761 	for (i = 0; i < PTRS_PER_PMD; i++) {
762 		pmd = pmd_start + i;
763 		if (!pmd_none(*pmd))
764 			return;
765 	}
766 
767 	/* free a pmd talbe */
768 	free_pagetable(pud_page(*pud), 0);
769 	spin_lock(&init_mm.page_table_lock);
770 	pud_clear(pud);
771 	spin_unlock(&init_mm.page_table_lock);
772 }
773 
774 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
775 {
776 	pud_t *pud;
777 	int i;
778 
779 	for (i = 0; i < PTRS_PER_PUD; i++) {
780 		pud = pud_start + i;
781 		if (!pud_none(*pud))
782 			return;
783 	}
784 
785 	/* free a pud talbe */
786 	free_pagetable(p4d_page(*p4d), 0);
787 	spin_lock(&init_mm.page_table_lock);
788 	p4d_clear(p4d);
789 	spin_unlock(&init_mm.page_table_lock);
790 }
791 
792 static void __meminit
793 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
794 		 bool direct)
795 {
796 	unsigned long next, pages = 0;
797 	pte_t *pte;
798 	void *page_addr;
799 	phys_addr_t phys_addr;
800 
801 	pte = pte_start + pte_index(addr);
802 	for (; addr < end; addr = next, pte++) {
803 		next = (addr + PAGE_SIZE) & PAGE_MASK;
804 		if (next > end)
805 			next = end;
806 
807 		if (!pte_present(*pte))
808 			continue;
809 
810 		/*
811 		 * We mapped [0,1G) memory as identity mapping when
812 		 * initializing, in arch/x86/kernel/head_64.S. These
813 		 * pagetables cannot be removed.
814 		 */
815 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
816 		if (phys_addr < (phys_addr_t)0x40000000)
817 			return;
818 
819 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
820 			/*
821 			 * Do not free direct mapping pages since they were
822 			 * freed when offlining, or simplely not in use.
823 			 */
824 			if (!direct)
825 				free_pagetable(pte_page(*pte), 0);
826 
827 			spin_lock(&init_mm.page_table_lock);
828 			pte_clear(&init_mm, addr, pte);
829 			spin_unlock(&init_mm.page_table_lock);
830 
831 			/* For non-direct mapping, pages means nothing. */
832 			pages++;
833 		} else {
834 			/*
835 			 * If we are here, we are freeing vmemmap pages since
836 			 * direct mapped memory ranges to be freed are aligned.
837 			 *
838 			 * If we are not removing the whole page, it means
839 			 * other page structs in this page are being used and
840 			 * we canot remove them. So fill the unused page_structs
841 			 * with 0xFD, and remove the page when it is wholly
842 			 * filled with 0xFD.
843 			 */
844 			memset((void *)addr, PAGE_INUSE, next - addr);
845 
846 			page_addr = page_address(pte_page(*pte));
847 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
848 				free_pagetable(pte_page(*pte), 0);
849 
850 				spin_lock(&init_mm.page_table_lock);
851 				pte_clear(&init_mm, addr, pte);
852 				spin_unlock(&init_mm.page_table_lock);
853 			}
854 		}
855 	}
856 
857 	/* Call free_pte_table() in remove_pmd_table(). */
858 	flush_tlb_all();
859 	if (direct)
860 		update_page_count(PG_LEVEL_4K, -pages);
861 }
862 
863 static void __meminit
864 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
865 		 bool direct)
866 {
867 	unsigned long next, pages = 0;
868 	pte_t *pte_base;
869 	pmd_t *pmd;
870 	void *page_addr;
871 
872 	pmd = pmd_start + pmd_index(addr);
873 	for (; addr < end; addr = next, pmd++) {
874 		next = pmd_addr_end(addr, end);
875 
876 		if (!pmd_present(*pmd))
877 			continue;
878 
879 		if (pmd_large(*pmd)) {
880 			if (IS_ALIGNED(addr, PMD_SIZE) &&
881 			    IS_ALIGNED(next, PMD_SIZE)) {
882 				if (!direct)
883 					free_pagetable(pmd_page(*pmd),
884 						       get_order(PMD_SIZE));
885 
886 				spin_lock(&init_mm.page_table_lock);
887 				pmd_clear(pmd);
888 				spin_unlock(&init_mm.page_table_lock);
889 				pages++;
890 			} else {
891 				/* If here, we are freeing vmemmap pages. */
892 				memset((void *)addr, PAGE_INUSE, next - addr);
893 
894 				page_addr = page_address(pmd_page(*pmd));
895 				if (!memchr_inv(page_addr, PAGE_INUSE,
896 						PMD_SIZE)) {
897 					free_pagetable(pmd_page(*pmd),
898 						       get_order(PMD_SIZE));
899 
900 					spin_lock(&init_mm.page_table_lock);
901 					pmd_clear(pmd);
902 					spin_unlock(&init_mm.page_table_lock);
903 				}
904 			}
905 
906 			continue;
907 		}
908 
909 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
910 		remove_pte_table(pte_base, addr, next, direct);
911 		free_pte_table(pte_base, pmd);
912 	}
913 
914 	/* Call free_pmd_table() in remove_pud_table(). */
915 	if (direct)
916 		update_page_count(PG_LEVEL_2M, -pages);
917 }
918 
919 static void __meminit
920 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
921 		 bool direct)
922 {
923 	unsigned long next, pages = 0;
924 	pmd_t *pmd_base;
925 	pud_t *pud;
926 	void *page_addr;
927 
928 	pud = pud_start + pud_index(addr);
929 	for (; addr < end; addr = next, pud++) {
930 		next = pud_addr_end(addr, end);
931 
932 		if (!pud_present(*pud))
933 			continue;
934 
935 		if (pud_large(*pud)) {
936 			if (IS_ALIGNED(addr, PUD_SIZE) &&
937 			    IS_ALIGNED(next, PUD_SIZE)) {
938 				if (!direct)
939 					free_pagetable(pud_page(*pud),
940 						       get_order(PUD_SIZE));
941 
942 				spin_lock(&init_mm.page_table_lock);
943 				pud_clear(pud);
944 				spin_unlock(&init_mm.page_table_lock);
945 				pages++;
946 			} else {
947 				/* If here, we are freeing vmemmap pages. */
948 				memset((void *)addr, PAGE_INUSE, next - addr);
949 
950 				page_addr = page_address(pud_page(*pud));
951 				if (!memchr_inv(page_addr, PAGE_INUSE,
952 						PUD_SIZE)) {
953 					free_pagetable(pud_page(*pud),
954 						       get_order(PUD_SIZE));
955 
956 					spin_lock(&init_mm.page_table_lock);
957 					pud_clear(pud);
958 					spin_unlock(&init_mm.page_table_lock);
959 				}
960 			}
961 
962 			continue;
963 		}
964 
965 		pmd_base = pmd_offset(pud, 0);
966 		remove_pmd_table(pmd_base, addr, next, direct);
967 		free_pmd_table(pmd_base, pud);
968 	}
969 
970 	if (direct)
971 		update_page_count(PG_LEVEL_1G, -pages);
972 }
973 
974 static void __meminit
975 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
976 		 bool direct)
977 {
978 	unsigned long next, pages = 0;
979 	pud_t *pud_base;
980 	p4d_t *p4d;
981 
982 	p4d = p4d_start + p4d_index(addr);
983 	for (; addr < end; addr = next, p4d++) {
984 		next = p4d_addr_end(addr, end);
985 
986 		if (!p4d_present(*p4d))
987 			continue;
988 
989 		BUILD_BUG_ON(p4d_large(*p4d));
990 
991 		pud_base = pud_offset(p4d, 0);
992 		remove_pud_table(pud_base, addr, next, direct);
993 		free_pud_table(pud_base, p4d);
994 	}
995 
996 	if (direct)
997 		update_page_count(PG_LEVEL_512G, -pages);
998 }
999 
1000 /* start and end are both virtual address. */
1001 static void __meminit
1002 remove_pagetable(unsigned long start, unsigned long end, bool direct)
1003 {
1004 	unsigned long next;
1005 	unsigned long addr;
1006 	pgd_t *pgd;
1007 	p4d_t *p4d;
1008 
1009 	for (addr = start; addr < end; addr = next) {
1010 		next = pgd_addr_end(addr, end);
1011 
1012 		pgd = pgd_offset_k(addr);
1013 		if (!pgd_present(*pgd))
1014 			continue;
1015 
1016 		p4d = p4d_offset(pgd, 0);
1017 		remove_p4d_table(p4d, addr, next, direct);
1018 	}
1019 
1020 	flush_tlb_all();
1021 }
1022 
1023 void __ref vmemmap_free(unsigned long start, unsigned long end)
1024 {
1025 	remove_pagetable(start, end, false);
1026 }
1027 
1028 #ifdef CONFIG_MEMORY_HOTREMOVE
1029 static void __meminit
1030 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1031 {
1032 	start = (unsigned long)__va(start);
1033 	end = (unsigned long)__va(end);
1034 
1035 	remove_pagetable(start, end, true);
1036 }
1037 
1038 int __ref arch_remove_memory(u64 start, u64 size)
1039 {
1040 	unsigned long start_pfn = start >> PAGE_SHIFT;
1041 	unsigned long nr_pages = size >> PAGE_SHIFT;
1042 	struct page *page = pfn_to_page(start_pfn);
1043 	struct vmem_altmap *altmap;
1044 	struct zone *zone;
1045 	int ret;
1046 
1047 	/* With altmap the first mapped page is offset from @start */
1048 	altmap = to_vmem_altmap((unsigned long) page);
1049 	if (altmap)
1050 		page += vmem_altmap_offset(altmap);
1051 	zone = page_zone(page);
1052 	ret = __remove_pages(zone, start_pfn, nr_pages);
1053 	WARN_ON_ONCE(ret);
1054 	kernel_physical_mapping_remove(start, start + size);
1055 
1056 	return ret;
1057 }
1058 #endif
1059 #endif /* CONFIG_MEMORY_HOTPLUG */
1060 
1061 static struct kcore_list kcore_vsyscall;
1062 
1063 static void __init register_page_bootmem_info(void)
1064 {
1065 #ifdef CONFIG_NUMA
1066 	int i;
1067 
1068 	for_each_online_node(i)
1069 		register_page_bootmem_info_node(NODE_DATA(i));
1070 #endif
1071 }
1072 
1073 void __init mem_init(void)
1074 {
1075 	pci_iommu_alloc();
1076 
1077 	/* clear_bss() already clear the empty_zero_page */
1078 
1079 	register_page_bootmem_info();
1080 
1081 	/* this will put all memory onto the freelists */
1082 	free_all_bootmem();
1083 	after_bootmem = 1;
1084 
1085 	/* Register memory areas for /proc/kcore */
1086 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1087 			 PAGE_SIZE, KCORE_OTHER);
1088 
1089 	mem_init_print_info(NULL);
1090 }
1091 
1092 int kernel_set_to_readonly;
1093 
1094 void set_kernel_text_rw(void)
1095 {
1096 	unsigned long start = PFN_ALIGN(_text);
1097 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1098 
1099 	if (!kernel_set_to_readonly)
1100 		return;
1101 
1102 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1103 		 start, end);
1104 
1105 	/*
1106 	 * Make the kernel identity mapping for text RW. Kernel text
1107 	 * mapping will always be RO. Refer to the comment in
1108 	 * static_protections() in pageattr.c
1109 	 */
1110 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1111 }
1112 
1113 void set_kernel_text_ro(void)
1114 {
1115 	unsigned long start = PFN_ALIGN(_text);
1116 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1117 
1118 	if (!kernel_set_to_readonly)
1119 		return;
1120 
1121 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1122 		 start, end);
1123 
1124 	/*
1125 	 * Set the kernel identity mapping for text RO.
1126 	 */
1127 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1128 }
1129 
1130 void mark_rodata_ro(void)
1131 {
1132 	unsigned long start = PFN_ALIGN(_text);
1133 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1134 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1135 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1136 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1137 	unsigned long all_end;
1138 
1139 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1140 	       (end - start) >> 10);
1141 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1142 
1143 	kernel_set_to_readonly = 1;
1144 
1145 	/*
1146 	 * The rodata/data/bss/brk section (but not the kernel text!)
1147 	 * should also be not-executable.
1148 	 *
1149 	 * We align all_end to PMD_SIZE because the existing mapping
1150 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1151 	 * split the PMD and the reminder between _brk_end and the end
1152 	 * of the PMD will remain mapped executable.
1153 	 *
1154 	 * Any PMD which was setup after the one which covers _brk_end
1155 	 * has been zapped already via cleanup_highmem().
1156 	 */
1157 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1158 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1159 
1160 #ifdef CONFIG_CPA_DEBUG
1161 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1162 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1163 
1164 	printk(KERN_INFO "Testing CPA: again\n");
1165 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1166 #endif
1167 
1168 	free_init_pages("unused kernel",
1169 			(unsigned long) __va(__pa_symbol(text_end)),
1170 			(unsigned long) __va(__pa_symbol(rodata_start)));
1171 	free_init_pages("unused kernel",
1172 			(unsigned long) __va(__pa_symbol(rodata_end)),
1173 			(unsigned long) __va(__pa_symbol(_sdata)));
1174 
1175 	debug_checkwx();
1176 }
1177 
1178 int kern_addr_valid(unsigned long addr)
1179 {
1180 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1181 	pgd_t *pgd;
1182 	p4d_t *p4d;
1183 	pud_t *pud;
1184 	pmd_t *pmd;
1185 	pte_t *pte;
1186 
1187 	if (above != 0 && above != -1UL)
1188 		return 0;
1189 
1190 	pgd = pgd_offset_k(addr);
1191 	if (pgd_none(*pgd))
1192 		return 0;
1193 
1194 	p4d = p4d_offset(pgd, addr);
1195 	if (p4d_none(*p4d))
1196 		return 0;
1197 
1198 	pud = pud_offset(p4d, addr);
1199 	if (pud_none(*pud))
1200 		return 0;
1201 
1202 	if (pud_large(*pud))
1203 		return pfn_valid(pud_pfn(*pud));
1204 
1205 	pmd = pmd_offset(pud, addr);
1206 	if (pmd_none(*pmd))
1207 		return 0;
1208 
1209 	if (pmd_large(*pmd))
1210 		return pfn_valid(pmd_pfn(*pmd));
1211 
1212 	pte = pte_offset_kernel(pmd, addr);
1213 	if (pte_none(*pte))
1214 		return 0;
1215 
1216 	return pfn_valid(pte_pfn(*pte));
1217 }
1218 
1219 static unsigned long probe_memory_block_size(void)
1220 {
1221 	unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1222 
1223 	/* if system is UV or has 64GB of RAM or more, use large blocks */
1224 	if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1225 		bz = 2UL << 30; /* 2GB */
1226 
1227 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1228 
1229 	return bz;
1230 }
1231 
1232 static unsigned long memory_block_size_probed;
1233 unsigned long memory_block_size_bytes(void)
1234 {
1235 	if (!memory_block_size_probed)
1236 		memory_block_size_probed = probe_memory_block_size();
1237 
1238 	return memory_block_size_probed;
1239 }
1240 
1241 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1242 /*
1243  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1244  */
1245 static long __meminitdata addr_start, addr_end;
1246 static void __meminitdata *p_start, *p_end;
1247 static int __meminitdata node_start;
1248 
1249 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1250 		unsigned long end, int node, struct vmem_altmap *altmap)
1251 {
1252 	unsigned long addr;
1253 	unsigned long next;
1254 	pgd_t *pgd;
1255 	p4d_t *p4d;
1256 	pud_t *pud;
1257 	pmd_t *pmd;
1258 
1259 	for (addr = start; addr < end; addr = next) {
1260 		next = pmd_addr_end(addr, end);
1261 
1262 		pgd = vmemmap_pgd_populate(addr, node);
1263 		if (!pgd)
1264 			return -ENOMEM;
1265 
1266 		p4d = vmemmap_p4d_populate(pgd, addr, node);
1267 		if (!p4d)
1268 			return -ENOMEM;
1269 
1270 		pud = vmemmap_pud_populate(p4d, addr, node);
1271 		if (!pud)
1272 			return -ENOMEM;
1273 
1274 		pmd = pmd_offset(pud, addr);
1275 		if (pmd_none(*pmd)) {
1276 			void *p;
1277 
1278 			p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1279 			if (p) {
1280 				pte_t entry;
1281 
1282 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1283 						PAGE_KERNEL_LARGE);
1284 				set_pmd(pmd, __pmd(pte_val(entry)));
1285 
1286 				/* check to see if we have contiguous blocks */
1287 				if (p_end != p || node_start != node) {
1288 					if (p_start)
1289 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1290 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1291 					addr_start = addr;
1292 					node_start = node;
1293 					p_start = p;
1294 				}
1295 
1296 				addr_end = addr + PMD_SIZE;
1297 				p_end = p + PMD_SIZE;
1298 				continue;
1299 			} else if (altmap)
1300 				return -ENOMEM; /* no fallback */
1301 		} else if (pmd_large(*pmd)) {
1302 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1303 			continue;
1304 		}
1305 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1306 		if (vmemmap_populate_basepages(addr, next, node))
1307 			return -ENOMEM;
1308 	}
1309 	return 0;
1310 }
1311 
1312 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1313 {
1314 	struct vmem_altmap *altmap = to_vmem_altmap(start);
1315 	int err;
1316 
1317 	if (boot_cpu_has(X86_FEATURE_PSE))
1318 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1319 	else if (altmap) {
1320 		pr_err_once("%s: no cpu support for altmap allocations\n",
1321 				__func__);
1322 		err = -ENOMEM;
1323 	} else
1324 		err = vmemmap_populate_basepages(start, end, node);
1325 	if (!err)
1326 		sync_global_pgds(start, end - 1);
1327 	return err;
1328 }
1329 
1330 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1331 void register_page_bootmem_memmap(unsigned long section_nr,
1332 				  struct page *start_page, unsigned long size)
1333 {
1334 	unsigned long addr = (unsigned long)start_page;
1335 	unsigned long end = (unsigned long)(start_page + size);
1336 	unsigned long next;
1337 	pgd_t *pgd;
1338 	p4d_t *p4d;
1339 	pud_t *pud;
1340 	pmd_t *pmd;
1341 	unsigned int nr_pages;
1342 	struct page *page;
1343 
1344 	for (; addr < end; addr = next) {
1345 		pte_t *pte = NULL;
1346 
1347 		pgd = pgd_offset_k(addr);
1348 		if (pgd_none(*pgd)) {
1349 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1350 			continue;
1351 		}
1352 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1353 
1354 		p4d = p4d_offset(pgd, addr);
1355 		if (p4d_none(*p4d)) {
1356 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1357 			continue;
1358 		}
1359 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1360 
1361 		pud = pud_offset(p4d, addr);
1362 		if (pud_none(*pud)) {
1363 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1364 			continue;
1365 		}
1366 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1367 
1368 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1369 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1370 			pmd = pmd_offset(pud, addr);
1371 			if (pmd_none(*pmd))
1372 				continue;
1373 			get_page_bootmem(section_nr, pmd_page(*pmd),
1374 					 MIX_SECTION_INFO);
1375 
1376 			pte = pte_offset_kernel(pmd, addr);
1377 			if (pte_none(*pte))
1378 				continue;
1379 			get_page_bootmem(section_nr, pte_page(*pte),
1380 					 SECTION_INFO);
1381 		} else {
1382 			next = pmd_addr_end(addr, end);
1383 
1384 			pmd = pmd_offset(pud, addr);
1385 			if (pmd_none(*pmd))
1386 				continue;
1387 
1388 			nr_pages = 1 << (get_order(PMD_SIZE));
1389 			page = pmd_page(*pmd);
1390 			while (nr_pages--)
1391 				get_page_bootmem(section_nr, page++,
1392 						 SECTION_INFO);
1393 		}
1394 	}
1395 }
1396 #endif
1397 
1398 void __meminit vmemmap_populate_print_last(void)
1399 {
1400 	if (p_start) {
1401 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1402 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1403 		p_start = NULL;
1404 		p_end = NULL;
1405 		node_start = 0;
1406 	}
1407 }
1408 #endif
1409