xref: /openbmc/linux/arch/x86/mm/init_64.c (revision a1e58bbd)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31 
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49 
50 const struct dma_mapping_ops *dma_ops;
51 EXPORT_SYMBOL(dma_ops);
52 
53 static unsigned long dma_reserve __initdata;
54 
55 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
56 
57 /*
58  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
59  * physical space so we can cache the place of the first one and move
60  * around without checking the pgd every time.
61  */
62 
63 void show_mem(void)
64 {
65 	long i, total = 0, reserved = 0;
66 	long shared = 0, cached = 0;
67 	struct page *page;
68 	pg_data_t *pgdat;
69 
70 	printk(KERN_INFO "Mem-info:\n");
71 	show_free_areas();
72 	printk(KERN_INFO "Free swap:       %6ldkB\n",
73 		nr_swap_pages << (PAGE_SHIFT-10));
74 
75 	for_each_online_pgdat(pgdat) {
76 		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
77 			/*
78 			 * This loop can take a while with 256 GB and
79 			 * 4k pages so defer the NMI watchdog:
80 			 */
81 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
82 				touch_nmi_watchdog();
83 
84 			if (!pfn_valid(pgdat->node_start_pfn + i))
85 				continue;
86 
87 			page = pfn_to_page(pgdat->node_start_pfn + i);
88 			total++;
89 			if (PageReserved(page))
90 				reserved++;
91 			else if (PageSwapCache(page))
92 				cached++;
93 			else if (page_count(page))
94 				shared += page_count(page) - 1;
95 		}
96 	}
97 	printk(KERN_INFO "%lu pages of RAM\n",		total);
98 	printk(KERN_INFO "%lu reserved pages\n",	reserved);
99 	printk(KERN_INFO "%lu pages shared\n",		shared);
100 	printk(KERN_INFO "%lu pages swap cached\n",	cached);
101 }
102 
103 int after_bootmem;
104 
105 static __init void *spp_getpage(void)
106 {
107 	void *ptr;
108 
109 	if (after_bootmem)
110 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
111 	else
112 		ptr = alloc_bootmem_pages(PAGE_SIZE);
113 
114 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
115 		panic("set_pte_phys: cannot allocate page data %s\n",
116 			after_bootmem ? "after bootmem" : "");
117 	}
118 
119 	pr_debug("spp_getpage %p\n", ptr);
120 
121 	return ptr;
122 }
123 
124 static __init void
125 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
126 {
127 	pgd_t *pgd;
128 	pud_t *pud;
129 	pmd_t *pmd;
130 	pte_t *pte, new_pte;
131 
132 	pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
133 
134 	pgd = pgd_offset_k(vaddr);
135 	if (pgd_none(*pgd)) {
136 		printk(KERN_ERR
137 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
138 		return;
139 	}
140 	pud = pud_offset(pgd, vaddr);
141 	if (pud_none(*pud)) {
142 		pmd = (pmd_t *) spp_getpage();
143 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
144 		if (pmd != pmd_offset(pud, 0)) {
145 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
146 				pmd, pmd_offset(pud, 0));
147 			return;
148 		}
149 	}
150 	pmd = pmd_offset(pud, vaddr);
151 	if (pmd_none(*pmd)) {
152 		pte = (pte_t *) spp_getpage();
153 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
154 		if (pte != pte_offset_kernel(pmd, 0)) {
155 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
156 			return;
157 		}
158 	}
159 	new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
160 
161 	pte = pte_offset_kernel(pmd, vaddr);
162 	if (!pte_none(*pte) &&
163 	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
164 		pte_ERROR(*pte);
165 	set_pte(pte, new_pte);
166 
167 	/*
168 	 * It's enough to flush this one mapping.
169 	 * (PGE mappings get flushed as well)
170 	 */
171 	__flush_tlb_one(vaddr);
172 }
173 
174 /*
175  * The head.S code sets up the kernel high mapping:
176  *
177  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
178  *
179  * phys_addr holds the negative offset to the kernel, which is added
180  * to the compile time generated pmds. This results in invalid pmds up
181  * to the point where we hit the physaddr 0 mapping.
182  *
183  * We limit the mappings to the region from _text to _end.  _end is
184  * rounded up to the 2MB boundary. This catches the invalid pmds as
185  * well, as they are located before _text:
186  */
187 void __init cleanup_highmap(void)
188 {
189 	unsigned long vaddr = __START_KERNEL_map;
190 	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
191 	pmd_t *pmd = level2_kernel_pgt;
192 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
193 
194 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
195 		if (!pmd_present(*pmd))
196 			continue;
197 		if (vaddr < (unsigned long) _text || vaddr > end)
198 			set_pmd(pmd, __pmd(0));
199 	}
200 }
201 
202 /* NOTE: this is meant to be run only at boot */
203 void __init
204 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
205 {
206 	unsigned long address = __fix_to_virt(idx);
207 
208 	if (idx >= __end_of_fixed_addresses) {
209 		printk(KERN_ERR "Invalid __set_fixmap\n");
210 		return;
211 	}
212 	set_pte_phys(address, phys, prot);
213 }
214 
215 static unsigned long __initdata table_start;
216 static unsigned long __meminitdata table_end;
217 
218 static __meminit void *alloc_low_page(unsigned long *phys)
219 {
220 	unsigned long pfn = table_end++;
221 	void *adr;
222 
223 	if (after_bootmem) {
224 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
225 		*phys = __pa(adr);
226 
227 		return adr;
228 	}
229 
230 	if (pfn >= end_pfn)
231 		panic("alloc_low_page: ran out of memory");
232 
233 	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
234 	memset(adr, 0, PAGE_SIZE);
235 	*phys  = pfn * PAGE_SIZE;
236 	return adr;
237 }
238 
239 static __meminit void unmap_low_page(void *adr)
240 {
241 	if (after_bootmem)
242 		return;
243 
244 	early_iounmap(adr, PAGE_SIZE);
245 }
246 
247 /* Must run before zap_low_mappings */
248 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
249 {
250 	pmd_t *pmd, *last_pmd;
251 	unsigned long vaddr;
252 	int i, pmds;
253 
254 	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
255 	vaddr = __START_KERNEL_map;
256 	pmd = level2_kernel_pgt;
257 	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
258 
259 	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
260 		for (i = 0; i < pmds; i++) {
261 			if (pmd_present(pmd[i]))
262 				goto continue_outer_loop;
263 		}
264 		vaddr += addr & ~PMD_MASK;
265 		addr &= PMD_MASK;
266 
267 		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
268 			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
269 		__flush_tlb_all();
270 
271 		return (void *)vaddr;
272 continue_outer_loop:
273 		;
274 	}
275 	printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
276 
277 	return NULL;
278 }
279 
280 /*
281  * To avoid virtual aliases later:
282  */
283 __meminit void early_iounmap(void *addr, unsigned long size)
284 {
285 	unsigned long vaddr;
286 	pmd_t *pmd;
287 	int i, pmds;
288 
289 	vaddr = (unsigned long)addr;
290 	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
291 	pmd = level2_kernel_pgt + pmd_index(vaddr);
292 
293 	for (i = 0; i < pmds; i++)
294 		pmd_clear(pmd + i);
295 
296 	__flush_tlb_all();
297 }
298 
299 static void __meminit
300 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
301 {
302 	int i = pmd_index(address);
303 
304 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
305 		pmd_t *pmd = pmd_page + pmd_index(address);
306 
307 		if (address >= end) {
308 			if (!after_bootmem) {
309 				for (; i < PTRS_PER_PMD; i++, pmd++)
310 					set_pmd(pmd, __pmd(0));
311 			}
312 			break;
313 		}
314 
315 		if (pmd_val(*pmd))
316 			continue;
317 
318 		set_pte((pte_t *)pmd,
319 			pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
320 	}
321 }
322 
323 static void __meminit
324 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
325 {
326 	pmd_t *pmd = pmd_offset(pud, 0);
327 	spin_lock(&init_mm.page_table_lock);
328 	phys_pmd_init(pmd, address, end);
329 	spin_unlock(&init_mm.page_table_lock);
330 	__flush_tlb_all();
331 }
332 
333 static void __meminit
334 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
335 {
336 	int i = pud_index(addr);
337 
338 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
339 		unsigned long pmd_phys;
340 		pud_t *pud = pud_page + pud_index(addr);
341 		pmd_t *pmd;
342 
343 		if (addr >= end)
344 			break;
345 
346 		if (!after_bootmem &&
347 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
348 			set_pud(pud, __pud(0));
349 			continue;
350 		}
351 
352 		if (pud_val(*pud)) {
353 			phys_pmd_update(pud, addr, end);
354 			continue;
355 		}
356 
357 		pmd = alloc_low_page(&pmd_phys);
358 
359 		spin_lock(&init_mm.page_table_lock);
360 		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
361 		phys_pmd_init(pmd, addr, end);
362 		spin_unlock(&init_mm.page_table_lock);
363 
364 		unmap_low_page(pmd);
365 	}
366 	__flush_tlb_all();
367 }
368 
369 static void __init find_early_table_space(unsigned long end)
370 {
371 	unsigned long puds, pmds, tables, start;
372 
373 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
374 	pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
375 	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
376 		 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
377 
378 	/*
379 	 * RED-PEN putting page tables only on node 0 could
380 	 * cause a hotspot and fill up ZONE_DMA. The page tables
381 	 * need roughly 0.5KB per GB.
382 	 */
383 	start = 0x8000;
384 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
385 	if (table_start == -1UL)
386 		panic("Cannot find space for the kernel page tables");
387 
388 	table_start >>= PAGE_SHIFT;
389 	table_end = table_start;
390 
391 	early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
392 		end, table_start << PAGE_SHIFT,
393 		(table_start << PAGE_SHIFT) + tables);
394 }
395 
396 /*
397  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
398  * This runs before bootmem is initialized and gets pages directly from
399  * the physical memory. To access them they are temporarily mapped.
400  */
401 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
402 {
403 	unsigned long next;
404 
405 	pr_debug("init_memory_mapping\n");
406 
407 	/*
408 	 * Find space for the kernel direct mapping tables.
409 	 *
410 	 * Later we should allocate these tables in the local node of the
411 	 * memory mapped. Unfortunately this is done currently before the
412 	 * nodes are discovered.
413 	 */
414 	if (!after_bootmem)
415 		find_early_table_space(end);
416 
417 	start = (unsigned long)__va(start);
418 	end = (unsigned long)__va(end);
419 
420 	for (; start < end; start = next) {
421 		pgd_t *pgd = pgd_offset_k(start);
422 		unsigned long pud_phys;
423 		pud_t *pud;
424 
425 		if (after_bootmem)
426 			pud = pud_offset(pgd, start & PGDIR_MASK);
427 		else
428 			pud = alloc_low_page(&pud_phys);
429 
430 		next = start + PGDIR_SIZE;
431 		if (next > end)
432 			next = end;
433 		phys_pud_init(pud, __pa(start), __pa(next));
434 		if (!after_bootmem)
435 			set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
436 		unmap_low_page(pud);
437 	}
438 
439 	if (!after_bootmem)
440 		mmu_cr4_features = read_cr4();
441 	__flush_tlb_all();
442 
443 	if (!after_bootmem)
444 		reserve_early(table_start << PAGE_SHIFT,
445 				 table_end << PAGE_SHIFT, "PGTABLE");
446 }
447 
448 #ifndef CONFIG_NUMA
449 void __init paging_init(void)
450 {
451 	unsigned long max_zone_pfns[MAX_NR_ZONES];
452 
453 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
454 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
455 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
456 	max_zone_pfns[ZONE_NORMAL] = end_pfn;
457 
458 	memory_present(0, 0, end_pfn);
459 	sparse_init();
460 	free_area_init_nodes(max_zone_pfns);
461 }
462 #endif
463 
464 /*
465  * Memory hotplug specific functions
466  */
467 void online_page(struct page *page)
468 {
469 	ClearPageReserved(page);
470 	init_page_count(page);
471 	__free_page(page);
472 	totalram_pages++;
473 	num_physpages++;
474 }
475 
476 #ifdef CONFIG_MEMORY_HOTPLUG
477 /*
478  * Memory is added always to NORMAL zone. This means you will never get
479  * additional DMA/DMA32 memory.
480  */
481 int arch_add_memory(int nid, u64 start, u64 size)
482 {
483 	struct pglist_data *pgdat = NODE_DATA(nid);
484 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
485 	unsigned long start_pfn = start >> PAGE_SHIFT;
486 	unsigned long nr_pages = size >> PAGE_SHIFT;
487 	int ret;
488 
489 	init_memory_mapping(start, start + size-1);
490 
491 	ret = __add_pages(zone, start_pfn, nr_pages);
492 	WARN_ON(1);
493 
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(arch_add_memory);
497 
498 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
499 int memory_add_physaddr_to_nid(u64 start)
500 {
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
504 #endif
505 
506 #endif /* CONFIG_MEMORY_HOTPLUG */
507 
508 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
509 			 kcore_modules, kcore_vsyscall;
510 
511 void __init mem_init(void)
512 {
513 	long codesize, reservedpages, datasize, initsize;
514 
515 	pci_iommu_alloc();
516 
517 	/* clear_bss() already clear the empty_zero_page */
518 
519 	reservedpages = 0;
520 
521 	/* this will put all low memory onto the freelists */
522 #ifdef CONFIG_NUMA
523 	totalram_pages = numa_free_all_bootmem();
524 #else
525 	totalram_pages = free_all_bootmem();
526 #endif
527 	reservedpages = end_pfn - totalram_pages -
528 					absent_pages_in_range(0, end_pfn);
529 	after_bootmem = 1;
530 
531 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
532 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
533 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
534 
535 	/* Register memory areas for /proc/kcore */
536 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
537 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
538 		   VMALLOC_END-VMALLOC_START);
539 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
540 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
541 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
542 				 VSYSCALL_END - VSYSCALL_START);
543 
544 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
545 				"%ldk reserved, %ldk data, %ldk init)\n",
546 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
547 		end_pfn << (PAGE_SHIFT-10),
548 		codesize >> 10,
549 		reservedpages << (PAGE_SHIFT-10),
550 		datasize >> 10,
551 		initsize >> 10);
552 
553 	cpa_init();
554 }
555 
556 void free_init_pages(char *what, unsigned long begin, unsigned long end)
557 {
558 	unsigned long addr = begin;
559 
560 	if (addr >= end)
561 		return;
562 
563 	/*
564 	 * If debugging page accesses then do not free this memory but
565 	 * mark them not present - any buggy init-section access will
566 	 * create a kernel page fault:
567 	 */
568 #ifdef CONFIG_DEBUG_PAGEALLOC
569 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
570 		begin, PAGE_ALIGN(end));
571 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
572 #else
573 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
574 
575 	for (; addr < end; addr += PAGE_SIZE) {
576 		ClearPageReserved(virt_to_page(addr));
577 		init_page_count(virt_to_page(addr));
578 		memset((void *)(addr & ~(PAGE_SIZE-1)),
579 			POISON_FREE_INITMEM, PAGE_SIZE);
580 		free_page(addr);
581 		totalram_pages++;
582 	}
583 #endif
584 }
585 
586 void free_initmem(void)
587 {
588 	free_init_pages("unused kernel memory",
589 			(unsigned long)(&__init_begin),
590 			(unsigned long)(&__init_end));
591 }
592 
593 #ifdef CONFIG_DEBUG_RODATA
594 const int rodata_test_data = 0xC3;
595 EXPORT_SYMBOL_GPL(rodata_test_data);
596 
597 void mark_rodata_ro(void)
598 {
599 	unsigned long start = (unsigned long)_stext, end;
600 
601 #ifdef CONFIG_HOTPLUG_CPU
602 	/* It must still be possible to apply SMP alternatives. */
603 	if (num_possible_cpus() > 1)
604 		start = (unsigned long)_etext;
605 #endif
606 
607 #ifdef CONFIG_KPROBES
608 	start = (unsigned long)__start_rodata;
609 #endif
610 
611 	end = (unsigned long)__end_rodata;
612 	start = (start + PAGE_SIZE - 1) & PAGE_MASK;
613 	end &= PAGE_MASK;
614 	if (end <= start)
615 		return;
616 
617 
618 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
619 	       (end - start) >> 10);
620 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
621 
622 	/*
623 	 * The rodata section (but not the kernel text!) should also be
624 	 * not-executable.
625 	 */
626 	start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
627 	set_memory_nx(start, (end - start) >> PAGE_SHIFT);
628 
629 	rodata_test();
630 
631 #ifdef CONFIG_CPA_DEBUG
632 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
633 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
634 
635 	printk(KERN_INFO "Testing CPA: again\n");
636 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
637 #endif
638 }
639 #endif
640 
641 #ifdef CONFIG_BLK_DEV_INITRD
642 void free_initrd_mem(unsigned long start, unsigned long end)
643 {
644 	free_init_pages("initrd memory", start, end);
645 }
646 #endif
647 
648 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
649 {
650 #ifdef CONFIG_NUMA
651 	int nid = phys_to_nid(phys);
652 #endif
653 	unsigned long pfn = phys >> PAGE_SHIFT;
654 
655 	if (pfn >= end_pfn) {
656 		/*
657 		 * This can happen with kdump kernels when accessing
658 		 * firmware tables:
659 		 */
660 		if (pfn < end_pfn_map)
661 			return;
662 
663 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
664 				phys, len);
665 		return;
666 	}
667 
668 	/* Should check here against the e820 map to avoid double free */
669 #ifdef CONFIG_NUMA
670 	reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
671 #else
672 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
673 #endif
674 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
675 		dma_reserve += len / PAGE_SIZE;
676 		set_dma_reserve(dma_reserve);
677 	}
678 }
679 
680 int kern_addr_valid(unsigned long addr)
681 {
682 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
683 	pgd_t *pgd;
684 	pud_t *pud;
685 	pmd_t *pmd;
686 	pte_t *pte;
687 
688 	if (above != 0 && above != -1UL)
689 		return 0;
690 
691 	pgd = pgd_offset_k(addr);
692 	if (pgd_none(*pgd))
693 		return 0;
694 
695 	pud = pud_offset(pgd, addr);
696 	if (pud_none(*pud))
697 		return 0;
698 
699 	pmd = pmd_offset(pud, addr);
700 	if (pmd_none(*pmd))
701 		return 0;
702 
703 	if (pmd_large(*pmd))
704 		return pfn_valid(pmd_pfn(*pmd));
705 
706 	pte = pte_offset_kernel(pmd, addr);
707 	if (pte_none(*pte))
708 		return 0;
709 
710 	return pfn_valid(pte_pfn(*pte));
711 }
712 
713 /*
714  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
715  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
716  * not need special handling anymore:
717  */
718 static struct vm_area_struct gate_vma = {
719 	.vm_start	= VSYSCALL_START,
720 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
721 	.vm_page_prot	= PAGE_READONLY_EXEC,
722 	.vm_flags	= VM_READ | VM_EXEC
723 };
724 
725 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
726 {
727 #ifdef CONFIG_IA32_EMULATION
728 	if (test_tsk_thread_flag(tsk, TIF_IA32))
729 		return NULL;
730 #endif
731 	return &gate_vma;
732 }
733 
734 int in_gate_area(struct task_struct *task, unsigned long addr)
735 {
736 	struct vm_area_struct *vma = get_gate_vma(task);
737 
738 	if (!vma)
739 		return 0;
740 
741 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
742 }
743 
744 /*
745  * Use this when you have no reliable task/vma, typically from interrupt
746  * context. It is less reliable than using the task's vma and may give
747  * false positives:
748  */
749 int in_gate_area_no_task(unsigned long addr)
750 {
751 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
752 }
753 
754 const char *arch_vma_name(struct vm_area_struct *vma)
755 {
756 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
757 		return "[vdso]";
758 	if (vma == &gate_vma)
759 		return "[vsyscall]";
760 	return NULL;
761 }
762 
763 #ifdef CONFIG_SPARSEMEM_VMEMMAP
764 /*
765  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
766  */
767 int __meminit
768 vmemmap_populate(struct page *start_page, unsigned long size, int node)
769 {
770 	unsigned long addr = (unsigned long)start_page;
771 	unsigned long end = (unsigned long)(start_page + size);
772 	unsigned long next;
773 	pgd_t *pgd;
774 	pud_t *pud;
775 	pmd_t *pmd;
776 
777 	for (; addr < end; addr = next) {
778 		next = pmd_addr_end(addr, end);
779 
780 		pgd = vmemmap_pgd_populate(addr, node);
781 		if (!pgd)
782 			return -ENOMEM;
783 
784 		pud = vmemmap_pud_populate(pgd, addr, node);
785 		if (!pud)
786 			return -ENOMEM;
787 
788 		pmd = pmd_offset(pud, addr);
789 		if (pmd_none(*pmd)) {
790 			pte_t entry;
791 			void *p;
792 
793 			p = vmemmap_alloc_block(PMD_SIZE, node);
794 			if (!p)
795 				return -ENOMEM;
796 
797 			entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
798 							PAGE_KERNEL_LARGE);
799 			set_pmd(pmd, __pmd(pte_val(entry)));
800 
801 			printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
802 				addr, addr + PMD_SIZE - 1, p, node);
803 		} else {
804 			vmemmap_verify((pte_t *)pmd, node, addr, next);
805 		}
806 	}
807 	return 0;
808 }
809 #endif
810