1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/module.h> 31 #include <linux/memory.h> 32 #include <linux/memory_hotplug.h> 33 #include <linux/memremap.h> 34 #include <linux/nmi.h> 35 #include <linux/gfp.h> 36 #include <linux/kcore.h> 37 38 #include <asm/processor.h> 39 #include <asm/bios_ebda.h> 40 #include <asm/uaccess.h> 41 #include <asm/pgtable.h> 42 #include <asm/pgalloc.h> 43 #include <asm/dma.h> 44 #include <asm/fixmap.h> 45 #include <asm/e820.h> 46 #include <asm/apic.h> 47 #include <asm/tlb.h> 48 #include <asm/mmu_context.h> 49 #include <asm/proto.h> 50 #include <asm/smp.h> 51 #include <asm/sections.h> 52 #include <asm/kdebug.h> 53 #include <asm/numa.h> 54 #include <asm/cacheflush.h> 55 #include <asm/init.h> 56 #include <asm/setup.h> 57 58 #include "mm_internal.h" 59 60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page, 61 unsigned long addr, unsigned long end) 62 { 63 addr &= PMD_MASK; 64 for (; addr < end; addr += PMD_SIZE) { 65 pmd_t *pmd = pmd_page + pmd_index(addr); 66 67 if (!pmd_present(*pmd)) 68 set_pmd(pmd, __pmd(addr | pmd_flag)); 69 } 70 } 71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, 72 unsigned long addr, unsigned long end) 73 { 74 unsigned long next; 75 76 for (; addr < end; addr = next) { 77 pud_t *pud = pud_page + pud_index(addr); 78 pmd_t *pmd; 79 80 next = (addr & PUD_MASK) + PUD_SIZE; 81 if (next > end) 82 next = end; 83 84 if (pud_present(*pud)) { 85 pmd = pmd_offset(pud, 0); 86 ident_pmd_init(info->pmd_flag, pmd, addr, next); 87 continue; 88 } 89 pmd = (pmd_t *)info->alloc_pgt_page(info->context); 90 if (!pmd) 91 return -ENOMEM; 92 ident_pmd_init(info->pmd_flag, pmd, addr, next); 93 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 94 } 95 96 return 0; 97 } 98 99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, 100 unsigned long addr, unsigned long end) 101 { 102 unsigned long next; 103 int result; 104 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0; 105 106 for (; addr < end; addr = next) { 107 pgd_t *pgd = pgd_page + pgd_index(addr) + off; 108 pud_t *pud; 109 110 next = (addr & PGDIR_MASK) + PGDIR_SIZE; 111 if (next > end) 112 next = end; 113 114 if (pgd_present(*pgd)) { 115 pud = pud_offset(pgd, 0); 116 result = ident_pud_init(info, pud, addr, next); 117 if (result) 118 return result; 119 continue; 120 } 121 122 pud = (pud_t *)info->alloc_pgt_page(info->context); 123 if (!pud) 124 return -ENOMEM; 125 result = ident_pud_init(info, pud, addr, next); 126 if (result) 127 return result; 128 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 129 } 130 131 return 0; 132 } 133 134 /* 135 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 136 * physical space so we can cache the place of the first one and move 137 * around without checking the pgd every time. 138 */ 139 140 pteval_t __supported_pte_mask __read_mostly = ~0; 141 EXPORT_SYMBOL_GPL(__supported_pte_mask); 142 143 int force_personality32; 144 145 /* 146 * noexec32=on|off 147 * Control non executable heap for 32bit processes. 148 * To control the stack too use noexec=off 149 * 150 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 151 * off PROT_READ implies PROT_EXEC 152 */ 153 static int __init nonx32_setup(char *str) 154 { 155 if (!strcmp(str, "on")) 156 force_personality32 &= ~READ_IMPLIES_EXEC; 157 else if (!strcmp(str, "off")) 158 force_personality32 |= READ_IMPLIES_EXEC; 159 return 1; 160 } 161 __setup("noexec32=", nonx32_setup); 162 163 /* 164 * When memory was added/removed make sure all the processes MM have 165 * suitable PGD entries in the local PGD level page. 166 */ 167 void sync_global_pgds(unsigned long start, unsigned long end, int removed) 168 { 169 unsigned long address; 170 171 for (address = start; address <= end; address += PGDIR_SIZE) { 172 const pgd_t *pgd_ref = pgd_offset_k(address); 173 struct page *page; 174 175 /* 176 * When it is called after memory hot remove, pgd_none() 177 * returns true. In this case (removed == 1), we must clear 178 * the PGD entries in the local PGD level page. 179 */ 180 if (pgd_none(*pgd_ref) && !removed) 181 continue; 182 183 spin_lock(&pgd_lock); 184 list_for_each_entry(page, &pgd_list, lru) { 185 pgd_t *pgd; 186 spinlock_t *pgt_lock; 187 188 pgd = (pgd_t *)page_address(page) + pgd_index(address); 189 /* the pgt_lock only for Xen */ 190 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 191 spin_lock(pgt_lock); 192 193 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 194 BUG_ON(pgd_page_vaddr(*pgd) 195 != pgd_page_vaddr(*pgd_ref)); 196 197 if (removed) { 198 if (pgd_none(*pgd_ref) && !pgd_none(*pgd)) 199 pgd_clear(pgd); 200 } else { 201 if (pgd_none(*pgd)) 202 set_pgd(pgd, *pgd_ref); 203 } 204 205 spin_unlock(pgt_lock); 206 } 207 spin_unlock(&pgd_lock); 208 } 209 } 210 211 /* 212 * NOTE: This function is marked __ref because it calls __init function 213 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 214 */ 215 static __ref void *spp_getpage(void) 216 { 217 void *ptr; 218 219 if (after_bootmem) 220 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); 221 else 222 ptr = alloc_bootmem_pages(PAGE_SIZE); 223 224 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 225 panic("set_pte_phys: cannot allocate page data %s\n", 226 after_bootmem ? "after bootmem" : ""); 227 } 228 229 pr_debug("spp_getpage %p\n", ptr); 230 231 return ptr; 232 } 233 234 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) 235 { 236 if (pgd_none(*pgd)) { 237 pud_t *pud = (pud_t *)spp_getpage(); 238 pgd_populate(&init_mm, pgd, pud); 239 if (pud != pud_offset(pgd, 0)) 240 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 241 pud, pud_offset(pgd, 0)); 242 } 243 return pud_offset(pgd, vaddr); 244 } 245 246 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 247 { 248 if (pud_none(*pud)) { 249 pmd_t *pmd = (pmd_t *) spp_getpage(); 250 pud_populate(&init_mm, pud, pmd); 251 if (pmd != pmd_offset(pud, 0)) 252 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 253 pmd, pmd_offset(pud, 0)); 254 } 255 return pmd_offset(pud, vaddr); 256 } 257 258 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 259 { 260 if (pmd_none(*pmd)) { 261 pte_t *pte = (pte_t *) spp_getpage(); 262 pmd_populate_kernel(&init_mm, pmd, pte); 263 if (pte != pte_offset_kernel(pmd, 0)) 264 printk(KERN_ERR "PAGETABLE BUG #02!\n"); 265 } 266 return pte_offset_kernel(pmd, vaddr); 267 } 268 269 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 270 { 271 pud_t *pud; 272 pmd_t *pmd; 273 pte_t *pte; 274 275 pud = pud_page + pud_index(vaddr); 276 pmd = fill_pmd(pud, vaddr); 277 pte = fill_pte(pmd, vaddr); 278 279 set_pte(pte, new_pte); 280 281 /* 282 * It's enough to flush this one mapping. 283 * (PGE mappings get flushed as well) 284 */ 285 __flush_tlb_one(vaddr); 286 } 287 288 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 289 { 290 pgd_t *pgd; 291 pud_t *pud_page; 292 293 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 294 295 pgd = pgd_offset_k(vaddr); 296 if (pgd_none(*pgd)) { 297 printk(KERN_ERR 298 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 299 return; 300 } 301 pud_page = (pud_t*)pgd_page_vaddr(*pgd); 302 set_pte_vaddr_pud(pud_page, vaddr, pteval); 303 } 304 305 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 306 { 307 pgd_t *pgd; 308 pud_t *pud; 309 310 pgd = pgd_offset_k(vaddr); 311 pud = fill_pud(pgd, vaddr); 312 return fill_pmd(pud, vaddr); 313 } 314 315 pte_t * __init populate_extra_pte(unsigned long vaddr) 316 { 317 pmd_t *pmd; 318 319 pmd = populate_extra_pmd(vaddr); 320 return fill_pte(pmd, vaddr); 321 } 322 323 /* 324 * Create large page table mappings for a range of physical addresses. 325 */ 326 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 327 enum page_cache_mode cache) 328 { 329 pgd_t *pgd; 330 pud_t *pud; 331 pmd_t *pmd; 332 pgprot_t prot; 333 334 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 335 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache))); 336 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 337 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 338 pgd = pgd_offset_k((unsigned long)__va(phys)); 339 if (pgd_none(*pgd)) { 340 pud = (pud_t *) spp_getpage(); 341 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | 342 _PAGE_USER)); 343 } 344 pud = pud_offset(pgd, (unsigned long)__va(phys)); 345 if (pud_none(*pud)) { 346 pmd = (pmd_t *) spp_getpage(); 347 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 348 _PAGE_USER)); 349 } 350 pmd = pmd_offset(pud, phys); 351 BUG_ON(!pmd_none(*pmd)); 352 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 353 } 354 } 355 356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 357 { 358 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 359 } 360 361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 362 { 363 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 364 } 365 366 /* 367 * The head.S code sets up the kernel high mapping: 368 * 369 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 370 * 371 * phys_base holds the negative offset to the kernel, which is added 372 * to the compile time generated pmds. This results in invalid pmds up 373 * to the point where we hit the physaddr 0 mapping. 374 * 375 * We limit the mappings to the region from _text to _brk_end. _brk_end 376 * is rounded up to the 2MB boundary. This catches the invalid pmds as 377 * well, as they are located before _text: 378 */ 379 void __init cleanup_highmap(void) 380 { 381 unsigned long vaddr = __START_KERNEL_map; 382 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 383 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 384 pmd_t *pmd = level2_kernel_pgt; 385 386 /* 387 * Native path, max_pfn_mapped is not set yet. 388 * Xen has valid max_pfn_mapped set in 389 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 390 */ 391 if (max_pfn_mapped) 392 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 393 394 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 395 if (pmd_none(*pmd)) 396 continue; 397 if (vaddr < (unsigned long) _text || vaddr > end) 398 set_pmd(pmd, __pmd(0)); 399 } 400 } 401 402 static unsigned long __meminit 403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, 404 pgprot_t prot) 405 { 406 unsigned long pages = 0, next; 407 unsigned long last_map_addr = end; 408 int i; 409 410 pte_t *pte = pte_page + pte_index(addr); 411 412 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) { 413 next = (addr & PAGE_MASK) + PAGE_SIZE; 414 if (addr >= end) { 415 if (!after_bootmem && 416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) && 417 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN)) 418 set_pte(pte, __pte(0)); 419 continue; 420 } 421 422 /* 423 * We will re-use the existing mapping. 424 * Xen for example has some special requirements, like mapping 425 * pagetable pages as RO. So assume someone who pre-setup 426 * these mappings are more intelligent. 427 */ 428 if (pte_val(*pte)) { 429 if (!after_bootmem) 430 pages++; 431 continue; 432 } 433 434 if (0) 435 printk(" pte=%p addr=%lx pte=%016lx\n", 436 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); 437 pages++; 438 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); 439 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; 440 } 441 442 update_page_count(PG_LEVEL_4K, pages); 443 444 return last_map_addr; 445 } 446 447 static unsigned long __meminit 448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, 449 unsigned long page_size_mask, pgprot_t prot) 450 { 451 unsigned long pages = 0, next; 452 unsigned long last_map_addr = end; 453 454 int i = pmd_index(address); 455 456 for (; i < PTRS_PER_PMD; i++, address = next) { 457 pmd_t *pmd = pmd_page + pmd_index(address); 458 pte_t *pte; 459 pgprot_t new_prot = prot; 460 461 next = (address & PMD_MASK) + PMD_SIZE; 462 if (address >= end) { 463 if (!after_bootmem && 464 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) && 465 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN)) 466 set_pmd(pmd, __pmd(0)); 467 continue; 468 } 469 470 if (pmd_val(*pmd)) { 471 if (!pmd_large(*pmd)) { 472 spin_lock(&init_mm.page_table_lock); 473 pte = (pte_t *)pmd_page_vaddr(*pmd); 474 last_map_addr = phys_pte_init(pte, address, 475 end, prot); 476 spin_unlock(&init_mm.page_table_lock); 477 continue; 478 } 479 /* 480 * If we are ok with PG_LEVEL_2M mapping, then we will 481 * use the existing mapping, 482 * 483 * Otherwise, we will split the large page mapping but 484 * use the same existing protection bits except for 485 * large page, so that we don't violate Intel's TLB 486 * Application note (317080) which says, while changing 487 * the page sizes, new and old translations should 488 * not differ with respect to page frame and 489 * attributes. 490 */ 491 if (page_size_mask & (1 << PG_LEVEL_2M)) { 492 if (!after_bootmem) 493 pages++; 494 last_map_addr = next; 495 continue; 496 } 497 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 498 } 499 500 if (page_size_mask & (1<<PG_LEVEL_2M)) { 501 pages++; 502 spin_lock(&init_mm.page_table_lock); 503 set_pte((pte_t *)pmd, 504 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT, 505 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 506 spin_unlock(&init_mm.page_table_lock); 507 last_map_addr = next; 508 continue; 509 } 510 511 pte = alloc_low_page(); 512 last_map_addr = phys_pte_init(pte, address, end, new_prot); 513 514 spin_lock(&init_mm.page_table_lock); 515 pmd_populate_kernel(&init_mm, pmd, pte); 516 spin_unlock(&init_mm.page_table_lock); 517 } 518 update_page_count(PG_LEVEL_2M, pages); 519 return last_map_addr; 520 } 521 522 static unsigned long __meminit 523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, 524 unsigned long page_size_mask) 525 { 526 unsigned long pages = 0, next; 527 unsigned long last_map_addr = end; 528 int i = pud_index(addr); 529 530 for (; i < PTRS_PER_PUD; i++, addr = next) { 531 pud_t *pud = pud_page + pud_index(addr); 532 pmd_t *pmd; 533 pgprot_t prot = PAGE_KERNEL; 534 535 next = (addr & PUD_MASK) + PUD_SIZE; 536 if (addr >= end) { 537 if (!after_bootmem && 538 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) && 539 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN)) 540 set_pud(pud, __pud(0)); 541 continue; 542 } 543 544 if (pud_val(*pud)) { 545 if (!pud_large(*pud)) { 546 pmd = pmd_offset(pud, 0); 547 last_map_addr = phys_pmd_init(pmd, addr, end, 548 page_size_mask, prot); 549 __flush_tlb_all(); 550 continue; 551 } 552 /* 553 * If we are ok with PG_LEVEL_1G mapping, then we will 554 * use the existing mapping. 555 * 556 * Otherwise, we will split the gbpage mapping but use 557 * the same existing protection bits except for large 558 * page, so that we don't violate Intel's TLB 559 * Application note (317080) which says, while changing 560 * the page sizes, new and old translations should 561 * not differ with respect to page frame and 562 * attributes. 563 */ 564 if (page_size_mask & (1 << PG_LEVEL_1G)) { 565 if (!after_bootmem) 566 pages++; 567 last_map_addr = next; 568 continue; 569 } 570 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 571 } 572 573 if (page_size_mask & (1<<PG_LEVEL_1G)) { 574 pages++; 575 spin_lock(&init_mm.page_table_lock); 576 set_pte((pte_t *)pud, 577 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT, 578 PAGE_KERNEL_LARGE)); 579 spin_unlock(&init_mm.page_table_lock); 580 last_map_addr = next; 581 continue; 582 } 583 584 pmd = alloc_low_page(); 585 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, 586 prot); 587 588 spin_lock(&init_mm.page_table_lock); 589 pud_populate(&init_mm, pud, pmd); 590 spin_unlock(&init_mm.page_table_lock); 591 } 592 __flush_tlb_all(); 593 594 update_page_count(PG_LEVEL_1G, pages); 595 596 return last_map_addr; 597 } 598 599 unsigned long __meminit 600 kernel_physical_mapping_init(unsigned long start, 601 unsigned long end, 602 unsigned long page_size_mask) 603 { 604 bool pgd_changed = false; 605 unsigned long next, last_map_addr = end; 606 unsigned long addr; 607 608 start = (unsigned long)__va(start); 609 end = (unsigned long)__va(end); 610 addr = start; 611 612 for (; start < end; start = next) { 613 pgd_t *pgd = pgd_offset_k(start); 614 pud_t *pud; 615 616 next = (start & PGDIR_MASK) + PGDIR_SIZE; 617 618 if (pgd_val(*pgd)) { 619 pud = (pud_t *)pgd_page_vaddr(*pgd); 620 last_map_addr = phys_pud_init(pud, __pa(start), 621 __pa(end), page_size_mask); 622 continue; 623 } 624 625 pud = alloc_low_page(); 626 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end), 627 page_size_mask); 628 629 spin_lock(&init_mm.page_table_lock); 630 pgd_populate(&init_mm, pgd, pud); 631 spin_unlock(&init_mm.page_table_lock); 632 pgd_changed = true; 633 } 634 635 if (pgd_changed) 636 sync_global_pgds(addr, end - 1, 0); 637 638 __flush_tlb_all(); 639 640 return last_map_addr; 641 } 642 643 #ifndef CONFIG_NUMA 644 void __init initmem_init(void) 645 { 646 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 647 } 648 #endif 649 650 void __init paging_init(void) 651 { 652 sparse_memory_present_with_active_regions(MAX_NUMNODES); 653 sparse_init(); 654 655 /* 656 * clear the default setting with node 0 657 * note: don't use nodes_clear here, that is really clearing when 658 * numa support is not compiled in, and later node_set_state 659 * will not set it back. 660 */ 661 node_clear_state(0, N_MEMORY); 662 if (N_MEMORY != N_NORMAL_MEMORY) 663 node_clear_state(0, N_NORMAL_MEMORY); 664 665 zone_sizes_init(); 666 } 667 668 /* 669 * Memory hotplug specific functions 670 */ 671 #ifdef CONFIG_MEMORY_HOTPLUG 672 /* 673 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 674 * updating. 675 */ 676 static void update_end_of_memory_vars(u64 start, u64 size) 677 { 678 unsigned long end_pfn = PFN_UP(start + size); 679 680 if (end_pfn > max_pfn) { 681 max_pfn = end_pfn; 682 max_low_pfn = end_pfn; 683 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 684 } 685 } 686 687 /* 688 * Memory is added always to NORMAL zone. This means you will never get 689 * additional DMA/DMA32 memory. 690 */ 691 int arch_add_memory(int nid, u64 start, u64 size, bool for_device) 692 { 693 struct pglist_data *pgdat = NODE_DATA(nid); 694 struct zone *zone = pgdat->node_zones + 695 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device); 696 unsigned long start_pfn = start >> PAGE_SHIFT; 697 unsigned long nr_pages = size >> PAGE_SHIFT; 698 int ret; 699 700 init_memory_mapping(start, start + size); 701 702 ret = __add_pages(nid, zone, start_pfn, nr_pages); 703 WARN_ON_ONCE(ret); 704 705 /* update max_pfn, max_low_pfn and high_memory */ 706 update_end_of_memory_vars(start, size); 707 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(arch_add_memory); 711 712 #define PAGE_INUSE 0xFD 713 714 static void __meminit free_pagetable(struct page *page, int order) 715 { 716 unsigned long magic; 717 unsigned int nr_pages = 1 << order; 718 struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page); 719 720 if (altmap) { 721 vmem_altmap_free(altmap, nr_pages); 722 return; 723 } 724 725 /* bootmem page has reserved flag */ 726 if (PageReserved(page)) { 727 __ClearPageReserved(page); 728 729 magic = (unsigned long)page->lru.next; 730 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 731 while (nr_pages--) 732 put_page_bootmem(page++); 733 } else 734 while (nr_pages--) 735 free_reserved_page(page++); 736 } else 737 free_pages((unsigned long)page_address(page), order); 738 } 739 740 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 741 { 742 pte_t *pte; 743 int i; 744 745 for (i = 0; i < PTRS_PER_PTE; i++) { 746 pte = pte_start + i; 747 if (pte_val(*pte)) 748 return; 749 } 750 751 /* free a pte talbe */ 752 free_pagetable(pmd_page(*pmd), 0); 753 spin_lock(&init_mm.page_table_lock); 754 pmd_clear(pmd); 755 spin_unlock(&init_mm.page_table_lock); 756 } 757 758 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 759 { 760 pmd_t *pmd; 761 int i; 762 763 for (i = 0; i < PTRS_PER_PMD; i++) { 764 pmd = pmd_start + i; 765 if (pmd_val(*pmd)) 766 return; 767 } 768 769 /* free a pmd talbe */ 770 free_pagetable(pud_page(*pud), 0); 771 spin_lock(&init_mm.page_table_lock); 772 pud_clear(pud); 773 spin_unlock(&init_mm.page_table_lock); 774 } 775 776 /* Return true if pgd is changed, otherwise return false. */ 777 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd) 778 { 779 pud_t *pud; 780 int i; 781 782 for (i = 0; i < PTRS_PER_PUD; i++) { 783 pud = pud_start + i; 784 if (pud_val(*pud)) 785 return false; 786 } 787 788 /* free a pud table */ 789 free_pagetable(pgd_page(*pgd), 0); 790 spin_lock(&init_mm.page_table_lock); 791 pgd_clear(pgd); 792 spin_unlock(&init_mm.page_table_lock); 793 794 return true; 795 } 796 797 static void __meminit 798 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 799 bool direct) 800 { 801 unsigned long next, pages = 0; 802 pte_t *pte; 803 void *page_addr; 804 phys_addr_t phys_addr; 805 806 pte = pte_start + pte_index(addr); 807 for (; addr < end; addr = next, pte++) { 808 next = (addr + PAGE_SIZE) & PAGE_MASK; 809 if (next > end) 810 next = end; 811 812 if (!pte_present(*pte)) 813 continue; 814 815 /* 816 * We mapped [0,1G) memory as identity mapping when 817 * initializing, in arch/x86/kernel/head_64.S. These 818 * pagetables cannot be removed. 819 */ 820 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 821 if (phys_addr < (phys_addr_t)0x40000000) 822 return; 823 824 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 825 /* 826 * Do not free direct mapping pages since they were 827 * freed when offlining, or simplely not in use. 828 */ 829 if (!direct) 830 free_pagetable(pte_page(*pte), 0); 831 832 spin_lock(&init_mm.page_table_lock); 833 pte_clear(&init_mm, addr, pte); 834 spin_unlock(&init_mm.page_table_lock); 835 836 /* For non-direct mapping, pages means nothing. */ 837 pages++; 838 } else { 839 /* 840 * If we are here, we are freeing vmemmap pages since 841 * direct mapped memory ranges to be freed are aligned. 842 * 843 * If we are not removing the whole page, it means 844 * other page structs in this page are being used and 845 * we canot remove them. So fill the unused page_structs 846 * with 0xFD, and remove the page when it is wholly 847 * filled with 0xFD. 848 */ 849 memset((void *)addr, PAGE_INUSE, next - addr); 850 851 page_addr = page_address(pte_page(*pte)); 852 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 853 free_pagetable(pte_page(*pte), 0); 854 855 spin_lock(&init_mm.page_table_lock); 856 pte_clear(&init_mm, addr, pte); 857 spin_unlock(&init_mm.page_table_lock); 858 } 859 } 860 } 861 862 /* Call free_pte_table() in remove_pmd_table(). */ 863 flush_tlb_all(); 864 if (direct) 865 update_page_count(PG_LEVEL_4K, -pages); 866 } 867 868 static void __meminit 869 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 870 bool direct) 871 { 872 unsigned long next, pages = 0; 873 pte_t *pte_base; 874 pmd_t *pmd; 875 void *page_addr; 876 877 pmd = pmd_start + pmd_index(addr); 878 for (; addr < end; addr = next, pmd++) { 879 next = pmd_addr_end(addr, end); 880 881 if (!pmd_present(*pmd)) 882 continue; 883 884 if (pmd_large(*pmd)) { 885 if (IS_ALIGNED(addr, PMD_SIZE) && 886 IS_ALIGNED(next, PMD_SIZE)) { 887 if (!direct) 888 free_pagetable(pmd_page(*pmd), 889 get_order(PMD_SIZE)); 890 891 spin_lock(&init_mm.page_table_lock); 892 pmd_clear(pmd); 893 spin_unlock(&init_mm.page_table_lock); 894 pages++; 895 } else { 896 /* If here, we are freeing vmemmap pages. */ 897 memset((void *)addr, PAGE_INUSE, next - addr); 898 899 page_addr = page_address(pmd_page(*pmd)); 900 if (!memchr_inv(page_addr, PAGE_INUSE, 901 PMD_SIZE)) { 902 free_pagetable(pmd_page(*pmd), 903 get_order(PMD_SIZE)); 904 905 spin_lock(&init_mm.page_table_lock); 906 pmd_clear(pmd); 907 spin_unlock(&init_mm.page_table_lock); 908 } 909 } 910 911 continue; 912 } 913 914 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 915 remove_pte_table(pte_base, addr, next, direct); 916 free_pte_table(pte_base, pmd); 917 } 918 919 /* Call free_pmd_table() in remove_pud_table(). */ 920 if (direct) 921 update_page_count(PG_LEVEL_2M, -pages); 922 } 923 924 static void __meminit 925 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 926 bool direct) 927 { 928 unsigned long next, pages = 0; 929 pmd_t *pmd_base; 930 pud_t *pud; 931 void *page_addr; 932 933 pud = pud_start + pud_index(addr); 934 for (; addr < end; addr = next, pud++) { 935 next = pud_addr_end(addr, end); 936 937 if (!pud_present(*pud)) 938 continue; 939 940 if (pud_large(*pud)) { 941 if (IS_ALIGNED(addr, PUD_SIZE) && 942 IS_ALIGNED(next, PUD_SIZE)) { 943 if (!direct) 944 free_pagetable(pud_page(*pud), 945 get_order(PUD_SIZE)); 946 947 spin_lock(&init_mm.page_table_lock); 948 pud_clear(pud); 949 spin_unlock(&init_mm.page_table_lock); 950 pages++; 951 } else { 952 /* If here, we are freeing vmemmap pages. */ 953 memset((void *)addr, PAGE_INUSE, next - addr); 954 955 page_addr = page_address(pud_page(*pud)); 956 if (!memchr_inv(page_addr, PAGE_INUSE, 957 PUD_SIZE)) { 958 free_pagetable(pud_page(*pud), 959 get_order(PUD_SIZE)); 960 961 spin_lock(&init_mm.page_table_lock); 962 pud_clear(pud); 963 spin_unlock(&init_mm.page_table_lock); 964 } 965 } 966 967 continue; 968 } 969 970 pmd_base = (pmd_t *)pud_page_vaddr(*pud); 971 remove_pmd_table(pmd_base, addr, next, direct); 972 free_pmd_table(pmd_base, pud); 973 } 974 975 if (direct) 976 update_page_count(PG_LEVEL_1G, -pages); 977 } 978 979 /* start and end are both virtual address. */ 980 static void __meminit 981 remove_pagetable(unsigned long start, unsigned long end, bool direct) 982 { 983 unsigned long next; 984 unsigned long addr; 985 pgd_t *pgd; 986 pud_t *pud; 987 bool pgd_changed = false; 988 989 for (addr = start; addr < end; addr = next) { 990 next = pgd_addr_end(addr, end); 991 992 pgd = pgd_offset_k(addr); 993 if (!pgd_present(*pgd)) 994 continue; 995 996 pud = (pud_t *)pgd_page_vaddr(*pgd); 997 remove_pud_table(pud, addr, next, direct); 998 if (free_pud_table(pud, pgd)) 999 pgd_changed = true; 1000 } 1001 1002 if (pgd_changed) 1003 sync_global_pgds(start, end - 1, 1); 1004 1005 flush_tlb_all(); 1006 } 1007 1008 void __ref vmemmap_free(unsigned long start, unsigned long end) 1009 { 1010 remove_pagetable(start, end, false); 1011 } 1012 1013 #ifdef CONFIG_MEMORY_HOTREMOVE 1014 static void __meminit 1015 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1016 { 1017 start = (unsigned long)__va(start); 1018 end = (unsigned long)__va(end); 1019 1020 remove_pagetable(start, end, true); 1021 } 1022 1023 int __ref arch_remove_memory(u64 start, u64 size) 1024 { 1025 unsigned long start_pfn = start >> PAGE_SHIFT; 1026 unsigned long nr_pages = size >> PAGE_SHIFT; 1027 struct page *page = pfn_to_page(start_pfn); 1028 struct vmem_altmap *altmap; 1029 struct zone *zone; 1030 int ret; 1031 1032 /* With altmap the first mapped page is offset from @start */ 1033 altmap = to_vmem_altmap((unsigned long) page); 1034 if (altmap) 1035 page += vmem_altmap_offset(altmap); 1036 zone = page_zone(page); 1037 ret = __remove_pages(zone, start_pfn, nr_pages); 1038 WARN_ON_ONCE(ret); 1039 kernel_physical_mapping_remove(start, start + size); 1040 1041 return ret; 1042 } 1043 #endif 1044 #endif /* CONFIG_MEMORY_HOTPLUG */ 1045 1046 static struct kcore_list kcore_vsyscall; 1047 1048 static void __init register_page_bootmem_info(void) 1049 { 1050 #ifdef CONFIG_NUMA 1051 int i; 1052 1053 for_each_online_node(i) 1054 register_page_bootmem_info_node(NODE_DATA(i)); 1055 #endif 1056 } 1057 1058 void __init mem_init(void) 1059 { 1060 pci_iommu_alloc(); 1061 1062 /* clear_bss() already clear the empty_zero_page */ 1063 1064 register_page_bootmem_info(); 1065 1066 /* this will put all memory onto the freelists */ 1067 free_all_bootmem(); 1068 after_bootmem = 1; 1069 1070 /* Register memory areas for /proc/kcore */ 1071 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, 1072 PAGE_SIZE, KCORE_OTHER); 1073 1074 mem_init_print_info(NULL); 1075 } 1076 1077 #ifdef CONFIG_DEBUG_RODATA 1078 const int rodata_test_data = 0xC3; 1079 EXPORT_SYMBOL_GPL(rodata_test_data); 1080 1081 int kernel_set_to_readonly; 1082 1083 void set_kernel_text_rw(void) 1084 { 1085 unsigned long start = PFN_ALIGN(_text); 1086 unsigned long end = PFN_ALIGN(__stop___ex_table); 1087 1088 if (!kernel_set_to_readonly) 1089 return; 1090 1091 pr_debug("Set kernel text: %lx - %lx for read write\n", 1092 start, end); 1093 1094 /* 1095 * Make the kernel identity mapping for text RW. Kernel text 1096 * mapping will always be RO. Refer to the comment in 1097 * static_protections() in pageattr.c 1098 */ 1099 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1100 } 1101 1102 void set_kernel_text_ro(void) 1103 { 1104 unsigned long start = PFN_ALIGN(_text); 1105 unsigned long end = PFN_ALIGN(__stop___ex_table); 1106 1107 if (!kernel_set_to_readonly) 1108 return; 1109 1110 pr_debug("Set kernel text: %lx - %lx for read only\n", 1111 start, end); 1112 1113 /* 1114 * Set the kernel identity mapping for text RO. 1115 */ 1116 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1117 } 1118 1119 void mark_rodata_ro(void) 1120 { 1121 unsigned long start = PFN_ALIGN(_text); 1122 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1123 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1124 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1125 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1126 unsigned long all_end; 1127 1128 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1129 (end - start) >> 10); 1130 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1131 1132 kernel_set_to_readonly = 1; 1133 1134 /* 1135 * The rodata/data/bss/brk section (but not the kernel text!) 1136 * should also be not-executable. 1137 * 1138 * We align all_end to PMD_SIZE because the existing mapping 1139 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1140 * split the PMD and the reminder between _brk_end and the end 1141 * of the PMD will remain mapped executable. 1142 * 1143 * Any PMD which was setup after the one which covers _brk_end 1144 * has been zapped already via cleanup_highmem(). 1145 */ 1146 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1147 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1148 1149 rodata_test(); 1150 1151 #ifdef CONFIG_CPA_DEBUG 1152 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1153 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1154 1155 printk(KERN_INFO "Testing CPA: again\n"); 1156 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1157 #endif 1158 1159 free_init_pages("unused kernel", 1160 (unsigned long) __va(__pa_symbol(text_end)), 1161 (unsigned long) __va(__pa_symbol(rodata_start))); 1162 free_init_pages("unused kernel", 1163 (unsigned long) __va(__pa_symbol(rodata_end)), 1164 (unsigned long) __va(__pa_symbol(_sdata))); 1165 1166 debug_checkwx(); 1167 } 1168 1169 #endif 1170 1171 int kern_addr_valid(unsigned long addr) 1172 { 1173 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1174 pgd_t *pgd; 1175 pud_t *pud; 1176 pmd_t *pmd; 1177 pte_t *pte; 1178 1179 if (above != 0 && above != -1UL) 1180 return 0; 1181 1182 pgd = pgd_offset_k(addr); 1183 if (pgd_none(*pgd)) 1184 return 0; 1185 1186 pud = pud_offset(pgd, addr); 1187 if (pud_none(*pud)) 1188 return 0; 1189 1190 if (pud_large(*pud)) 1191 return pfn_valid(pud_pfn(*pud)); 1192 1193 pmd = pmd_offset(pud, addr); 1194 if (pmd_none(*pmd)) 1195 return 0; 1196 1197 if (pmd_large(*pmd)) 1198 return pfn_valid(pmd_pfn(*pmd)); 1199 1200 pte = pte_offset_kernel(pmd, addr); 1201 if (pte_none(*pte)) 1202 return 0; 1203 1204 return pfn_valid(pte_pfn(*pte)); 1205 } 1206 1207 static unsigned long probe_memory_block_size(void) 1208 { 1209 /* start from 2g */ 1210 unsigned long bz = 1UL<<31; 1211 1212 if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) { 1213 pr_info("Using 2GB memory block size for large-memory system\n"); 1214 return 2UL * 1024 * 1024 * 1024; 1215 } 1216 1217 /* less than 64g installed */ 1218 if ((max_pfn << PAGE_SHIFT) < (16UL << 32)) 1219 return MIN_MEMORY_BLOCK_SIZE; 1220 1221 /* get the tail size */ 1222 while (bz > MIN_MEMORY_BLOCK_SIZE) { 1223 if (!((max_pfn << PAGE_SHIFT) & (bz - 1))) 1224 break; 1225 bz >>= 1; 1226 } 1227 1228 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20); 1229 1230 return bz; 1231 } 1232 1233 static unsigned long memory_block_size_probed; 1234 unsigned long memory_block_size_bytes(void) 1235 { 1236 if (!memory_block_size_probed) 1237 memory_block_size_probed = probe_memory_block_size(); 1238 1239 return memory_block_size_probed; 1240 } 1241 1242 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1243 /* 1244 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1245 */ 1246 static long __meminitdata addr_start, addr_end; 1247 static void __meminitdata *p_start, *p_end; 1248 static int __meminitdata node_start; 1249 1250 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1251 unsigned long end, int node, struct vmem_altmap *altmap) 1252 { 1253 unsigned long addr; 1254 unsigned long next; 1255 pgd_t *pgd; 1256 pud_t *pud; 1257 pmd_t *pmd; 1258 1259 for (addr = start; addr < end; addr = next) { 1260 next = pmd_addr_end(addr, end); 1261 1262 pgd = vmemmap_pgd_populate(addr, node); 1263 if (!pgd) 1264 return -ENOMEM; 1265 1266 pud = vmemmap_pud_populate(pgd, addr, node); 1267 if (!pud) 1268 return -ENOMEM; 1269 1270 pmd = pmd_offset(pud, addr); 1271 if (pmd_none(*pmd)) { 1272 void *p; 1273 1274 p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 1275 if (p) { 1276 pte_t entry; 1277 1278 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1279 PAGE_KERNEL_LARGE); 1280 set_pmd(pmd, __pmd(pte_val(entry))); 1281 1282 /* check to see if we have contiguous blocks */ 1283 if (p_end != p || node_start != node) { 1284 if (p_start) 1285 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1286 addr_start, addr_end-1, p_start, p_end-1, node_start); 1287 addr_start = addr; 1288 node_start = node; 1289 p_start = p; 1290 } 1291 1292 addr_end = addr + PMD_SIZE; 1293 p_end = p + PMD_SIZE; 1294 continue; 1295 } else if (altmap) 1296 return -ENOMEM; /* no fallback */ 1297 } else if (pmd_large(*pmd)) { 1298 vmemmap_verify((pte_t *)pmd, node, addr, next); 1299 continue; 1300 } 1301 pr_warn_once("vmemmap: falling back to regular page backing\n"); 1302 if (vmemmap_populate_basepages(addr, next, node)) 1303 return -ENOMEM; 1304 } 1305 return 0; 1306 } 1307 1308 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) 1309 { 1310 struct vmem_altmap *altmap = to_vmem_altmap(start); 1311 int err; 1312 1313 if (cpu_has_pse) 1314 err = vmemmap_populate_hugepages(start, end, node, altmap); 1315 else if (altmap) { 1316 pr_err_once("%s: no cpu support for altmap allocations\n", 1317 __func__); 1318 err = -ENOMEM; 1319 } else 1320 err = vmemmap_populate_basepages(start, end, node); 1321 if (!err) 1322 sync_global_pgds(start, end - 1, 0); 1323 return err; 1324 } 1325 1326 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1327 void register_page_bootmem_memmap(unsigned long section_nr, 1328 struct page *start_page, unsigned long size) 1329 { 1330 unsigned long addr = (unsigned long)start_page; 1331 unsigned long end = (unsigned long)(start_page + size); 1332 unsigned long next; 1333 pgd_t *pgd; 1334 pud_t *pud; 1335 pmd_t *pmd; 1336 unsigned int nr_pages; 1337 struct page *page; 1338 1339 for (; addr < end; addr = next) { 1340 pte_t *pte = NULL; 1341 1342 pgd = pgd_offset_k(addr); 1343 if (pgd_none(*pgd)) { 1344 next = (addr + PAGE_SIZE) & PAGE_MASK; 1345 continue; 1346 } 1347 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1348 1349 pud = pud_offset(pgd, addr); 1350 if (pud_none(*pud)) { 1351 next = (addr + PAGE_SIZE) & PAGE_MASK; 1352 continue; 1353 } 1354 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1355 1356 if (!cpu_has_pse) { 1357 next = (addr + PAGE_SIZE) & PAGE_MASK; 1358 pmd = pmd_offset(pud, addr); 1359 if (pmd_none(*pmd)) 1360 continue; 1361 get_page_bootmem(section_nr, pmd_page(*pmd), 1362 MIX_SECTION_INFO); 1363 1364 pte = pte_offset_kernel(pmd, addr); 1365 if (pte_none(*pte)) 1366 continue; 1367 get_page_bootmem(section_nr, pte_page(*pte), 1368 SECTION_INFO); 1369 } else { 1370 next = pmd_addr_end(addr, end); 1371 1372 pmd = pmd_offset(pud, addr); 1373 if (pmd_none(*pmd)) 1374 continue; 1375 1376 nr_pages = 1 << (get_order(PMD_SIZE)); 1377 page = pmd_page(*pmd); 1378 while (nr_pages--) 1379 get_page_bootmem(section_nr, page++, 1380 SECTION_INFO); 1381 } 1382 } 1383 } 1384 #endif 1385 1386 void __meminit vmemmap_populate_print_last(void) 1387 { 1388 if (p_start) { 1389 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1390 addr_start, addr_end-1, p_start, p_end-1, node_start); 1391 p_start = NULL; 1392 p_end = NULL; 1393 node_start = 0; 1394 } 1395 } 1396 #endif 1397