xref: /openbmc/linux/arch/x86/mm/init_64.c (revision a06c488d)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/memremap.h>
34 #include <linux/nmi.h>
35 #include <linux/gfp.h>
36 #include <linux/kcore.h>
37 
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/e820.h>
46 #include <asm/apic.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
50 #include <asm/smp.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
53 #include <asm/numa.h>
54 #include <asm/cacheflush.h>
55 #include <asm/init.h>
56 #include <asm/setup.h>
57 
58 #include "mm_internal.h"
59 
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 			   unsigned long addr, unsigned long end)
62 {
63 	addr &= PMD_MASK;
64 	for (; addr < end; addr += PMD_SIZE) {
65 		pmd_t *pmd = pmd_page + pmd_index(addr);
66 
67 		if (!pmd_present(*pmd))
68 			set_pmd(pmd, __pmd(addr | pmd_flag));
69 	}
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 			  unsigned long addr, unsigned long end)
73 {
74 	unsigned long next;
75 
76 	for (; addr < end; addr = next) {
77 		pud_t *pud = pud_page + pud_index(addr);
78 		pmd_t *pmd;
79 
80 		next = (addr & PUD_MASK) + PUD_SIZE;
81 		if (next > end)
82 			next = end;
83 
84 		if (pud_present(*pud)) {
85 			pmd = pmd_offset(pud, 0);
86 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
87 			continue;
88 		}
89 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90 		if (!pmd)
91 			return -ENOMEM;
92 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94 	}
95 
96 	return 0;
97 }
98 
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 			      unsigned long addr, unsigned long end)
101 {
102 	unsigned long next;
103 	int result;
104 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105 
106 	for (; addr < end; addr = next) {
107 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108 		pud_t *pud;
109 
110 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111 		if (next > end)
112 			next = end;
113 
114 		if (pgd_present(*pgd)) {
115 			pud = pud_offset(pgd, 0);
116 			result = ident_pud_init(info, pud, addr, next);
117 			if (result)
118 				return result;
119 			continue;
120 		}
121 
122 		pud = (pud_t *)info->alloc_pgt_page(info->context);
123 		if (!pud)
124 			return -ENOMEM;
125 		result = ident_pud_init(info, pud, addr, next);
126 		if (result)
127 			return result;
128 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129 	}
130 
131 	return 0;
132 }
133 
134 /*
135  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
136  * physical space so we can cache the place of the first one and move
137  * around without checking the pgd every time.
138  */
139 
140 pteval_t __supported_pte_mask __read_mostly = ~0;
141 EXPORT_SYMBOL_GPL(__supported_pte_mask);
142 
143 int force_personality32;
144 
145 /*
146  * noexec32=on|off
147  * Control non executable heap for 32bit processes.
148  * To control the stack too use noexec=off
149  *
150  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
151  * off	PROT_READ implies PROT_EXEC
152  */
153 static int __init nonx32_setup(char *str)
154 {
155 	if (!strcmp(str, "on"))
156 		force_personality32 &= ~READ_IMPLIES_EXEC;
157 	else if (!strcmp(str, "off"))
158 		force_personality32 |= READ_IMPLIES_EXEC;
159 	return 1;
160 }
161 __setup("noexec32=", nonx32_setup);
162 
163 /*
164  * When memory was added/removed make sure all the processes MM have
165  * suitable PGD entries in the local PGD level page.
166  */
167 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
168 {
169 	unsigned long address;
170 
171 	for (address = start; address <= end; address += PGDIR_SIZE) {
172 		const pgd_t *pgd_ref = pgd_offset_k(address);
173 		struct page *page;
174 
175 		/*
176 		 * When it is called after memory hot remove, pgd_none()
177 		 * returns true. In this case (removed == 1), we must clear
178 		 * the PGD entries in the local PGD level page.
179 		 */
180 		if (pgd_none(*pgd_ref) && !removed)
181 			continue;
182 
183 		spin_lock(&pgd_lock);
184 		list_for_each_entry(page, &pgd_list, lru) {
185 			pgd_t *pgd;
186 			spinlock_t *pgt_lock;
187 
188 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
189 			/* the pgt_lock only for Xen */
190 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
191 			spin_lock(pgt_lock);
192 
193 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
194 				BUG_ON(pgd_page_vaddr(*pgd)
195 				       != pgd_page_vaddr(*pgd_ref));
196 
197 			if (removed) {
198 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
199 					pgd_clear(pgd);
200 			} else {
201 				if (pgd_none(*pgd))
202 					set_pgd(pgd, *pgd_ref);
203 			}
204 
205 			spin_unlock(pgt_lock);
206 		}
207 		spin_unlock(&pgd_lock);
208 	}
209 }
210 
211 /*
212  * NOTE: This function is marked __ref because it calls __init function
213  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
214  */
215 static __ref void *spp_getpage(void)
216 {
217 	void *ptr;
218 
219 	if (after_bootmem)
220 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
221 	else
222 		ptr = alloc_bootmem_pages(PAGE_SIZE);
223 
224 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
225 		panic("set_pte_phys: cannot allocate page data %s\n",
226 			after_bootmem ? "after bootmem" : "");
227 	}
228 
229 	pr_debug("spp_getpage %p\n", ptr);
230 
231 	return ptr;
232 }
233 
234 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
235 {
236 	if (pgd_none(*pgd)) {
237 		pud_t *pud = (pud_t *)spp_getpage();
238 		pgd_populate(&init_mm, pgd, pud);
239 		if (pud != pud_offset(pgd, 0))
240 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
241 			       pud, pud_offset(pgd, 0));
242 	}
243 	return pud_offset(pgd, vaddr);
244 }
245 
246 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
247 {
248 	if (pud_none(*pud)) {
249 		pmd_t *pmd = (pmd_t *) spp_getpage();
250 		pud_populate(&init_mm, pud, pmd);
251 		if (pmd != pmd_offset(pud, 0))
252 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
253 			       pmd, pmd_offset(pud, 0));
254 	}
255 	return pmd_offset(pud, vaddr);
256 }
257 
258 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
259 {
260 	if (pmd_none(*pmd)) {
261 		pte_t *pte = (pte_t *) spp_getpage();
262 		pmd_populate_kernel(&init_mm, pmd, pte);
263 		if (pte != pte_offset_kernel(pmd, 0))
264 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
265 	}
266 	return pte_offset_kernel(pmd, vaddr);
267 }
268 
269 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
270 {
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 
275 	pud = pud_page + pud_index(vaddr);
276 	pmd = fill_pmd(pud, vaddr);
277 	pte = fill_pte(pmd, vaddr);
278 
279 	set_pte(pte, new_pte);
280 
281 	/*
282 	 * It's enough to flush this one mapping.
283 	 * (PGE mappings get flushed as well)
284 	 */
285 	__flush_tlb_one(vaddr);
286 }
287 
288 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
289 {
290 	pgd_t *pgd;
291 	pud_t *pud_page;
292 
293 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
294 
295 	pgd = pgd_offset_k(vaddr);
296 	if (pgd_none(*pgd)) {
297 		printk(KERN_ERR
298 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
299 		return;
300 	}
301 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
302 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
303 }
304 
305 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
306 {
307 	pgd_t *pgd;
308 	pud_t *pud;
309 
310 	pgd = pgd_offset_k(vaddr);
311 	pud = fill_pud(pgd, vaddr);
312 	return fill_pmd(pud, vaddr);
313 }
314 
315 pte_t * __init populate_extra_pte(unsigned long vaddr)
316 {
317 	pmd_t *pmd;
318 
319 	pmd = populate_extra_pmd(vaddr);
320 	return fill_pte(pmd, vaddr);
321 }
322 
323 /*
324  * Create large page table mappings for a range of physical addresses.
325  */
326 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
327 					enum page_cache_mode cache)
328 {
329 	pgd_t *pgd;
330 	pud_t *pud;
331 	pmd_t *pmd;
332 	pgprot_t prot;
333 
334 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
335 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
336 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
337 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
338 		pgd = pgd_offset_k((unsigned long)__va(phys));
339 		if (pgd_none(*pgd)) {
340 			pud = (pud_t *) spp_getpage();
341 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
342 						_PAGE_USER));
343 		}
344 		pud = pud_offset(pgd, (unsigned long)__va(phys));
345 		if (pud_none(*pud)) {
346 			pmd = (pmd_t *) spp_getpage();
347 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
348 						_PAGE_USER));
349 		}
350 		pmd = pmd_offset(pud, phys);
351 		BUG_ON(!pmd_none(*pmd));
352 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
353 	}
354 }
355 
356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
357 {
358 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
359 }
360 
361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
362 {
363 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
364 }
365 
366 /*
367  * The head.S code sets up the kernel high mapping:
368  *
369  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
370  *
371  * phys_base holds the negative offset to the kernel, which is added
372  * to the compile time generated pmds. This results in invalid pmds up
373  * to the point where we hit the physaddr 0 mapping.
374  *
375  * We limit the mappings to the region from _text to _brk_end.  _brk_end
376  * is rounded up to the 2MB boundary. This catches the invalid pmds as
377  * well, as they are located before _text:
378  */
379 void __init cleanup_highmap(void)
380 {
381 	unsigned long vaddr = __START_KERNEL_map;
382 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
383 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
384 	pmd_t *pmd = level2_kernel_pgt;
385 
386 	/*
387 	 * Native path, max_pfn_mapped is not set yet.
388 	 * Xen has valid max_pfn_mapped set in
389 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
390 	 */
391 	if (max_pfn_mapped)
392 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
393 
394 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
395 		if (pmd_none(*pmd))
396 			continue;
397 		if (vaddr < (unsigned long) _text || vaddr > end)
398 			set_pmd(pmd, __pmd(0));
399 	}
400 }
401 
402 static unsigned long __meminit
403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
404 	      pgprot_t prot)
405 {
406 	unsigned long pages = 0, next;
407 	unsigned long last_map_addr = end;
408 	int i;
409 
410 	pte_t *pte = pte_page + pte_index(addr);
411 
412 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
413 		next = (addr & PAGE_MASK) + PAGE_SIZE;
414 		if (addr >= end) {
415 			if (!after_bootmem &&
416 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
417 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
418 				set_pte(pte, __pte(0));
419 			continue;
420 		}
421 
422 		/*
423 		 * We will re-use the existing mapping.
424 		 * Xen for example has some special requirements, like mapping
425 		 * pagetable pages as RO. So assume someone who pre-setup
426 		 * these mappings are more intelligent.
427 		 */
428 		if (pte_val(*pte)) {
429 			if (!after_bootmem)
430 				pages++;
431 			continue;
432 		}
433 
434 		if (0)
435 			printk("   pte=%p addr=%lx pte=%016lx\n",
436 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
437 		pages++;
438 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
439 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
440 	}
441 
442 	update_page_count(PG_LEVEL_4K, pages);
443 
444 	return last_map_addr;
445 }
446 
447 static unsigned long __meminit
448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
449 	      unsigned long page_size_mask, pgprot_t prot)
450 {
451 	unsigned long pages = 0, next;
452 	unsigned long last_map_addr = end;
453 
454 	int i = pmd_index(address);
455 
456 	for (; i < PTRS_PER_PMD; i++, address = next) {
457 		pmd_t *pmd = pmd_page + pmd_index(address);
458 		pte_t *pte;
459 		pgprot_t new_prot = prot;
460 
461 		next = (address & PMD_MASK) + PMD_SIZE;
462 		if (address >= end) {
463 			if (!after_bootmem &&
464 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
465 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
466 				set_pmd(pmd, __pmd(0));
467 			continue;
468 		}
469 
470 		if (pmd_val(*pmd)) {
471 			if (!pmd_large(*pmd)) {
472 				spin_lock(&init_mm.page_table_lock);
473 				pte = (pte_t *)pmd_page_vaddr(*pmd);
474 				last_map_addr = phys_pte_init(pte, address,
475 								end, prot);
476 				spin_unlock(&init_mm.page_table_lock);
477 				continue;
478 			}
479 			/*
480 			 * If we are ok with PG_LEVEL_2M mapping, then we will
481 			 * use the existing mapping,
482 			 *
483 			 * Otherwise, we will split the large page mapping but
484 			 * use the same existing protection bits except for
485 			 * large page, so that we don't violate Intel's TLB
486 			 * Application note (317080) which says, while changing
487 			 * the page sizes, new and old translations should
488 			 * not differ with respect to page frame and
489 			 * attributes.
490 			 */
491 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
492 				if (!after_bootmem)
493 					pages++;
494 				last_map_addr = next;
495 				continue;
496 			}
497 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
498 		}
499 
500 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
501 			pages++;
502 			spin_lock(&init_mm.page_table_lock);
503 			set_pte((pte_t *)pmd,
504 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
505 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
506 			spin_unlock(&init_mm.page_table_lock);
507 			last_map_addr = next;
508 			continue;
509 		}
510 
511 		pte = alloc_low_page();
512 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
513 
514 		spin_lock(&init_mm.page_table_lock);
515 		pmd_populate_kernel(&init_mm, pmd, pte);
516 		spin_unlock(&init_mm.page_table_lock);
517 	}
518 	update_page_count(PG_LEVEL_2M, pages);
519 	return last_map_addr;
520 }
521 
522 static unsigned long __meminit
523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
524 			 unsigned long page_size_mask)
525 {
526 	unsigned long pages = 0, next;
527 	unsigned long last_map_addr = end;
528 	int i = pud_index(addr);
529 
530 	for (; i < PTRS_PER_PUD; i++, addr = next) {
531 		pud_t *pud = pud_page + pud_index(addr);
532 		pmd_t *pmd;
533 		pgprot_t prot = PAGE_KERNEL;
534 
535 		next = (addr & PUD_MASK) + PUD_SIZE;
536 		if (addr >= end) {
537 			if (!after_bootmem &&
538 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
539 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
540 				set_pud(pud, __pud(0));
541 			continue;
542 		}
543 
544 		if (pud_val(*pud)) {
545 			if (!pud_large(*pud)) {
546 				pmd = pmd_offset(pud, 0);
547 				last_map_addr = phys_pmd_init(pmd, addr, end,
548 							 page_size_mask, prot);
549 				__flush_tlb_all();
550 				continue;
551 			}
552 			/*
553 			 * If we are ok with PG_LEVEL_1G mapping, then we will
554 			 * use the existing mapping.
555 			 *
556 			 * Otherwise, we will split the gbpage mapping but use
557 			 * the same existing protection  bits except for large
558 			 * page, so that we don't violate Intel's TLB
559 			 * Application note (317080) which says, while changing
560 			 * the page sizes, new and old translations should
561 			 * not differ with respect to page frame and
562 			 * attributes.
563 			 */
564 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
565 				if (!after_bootmem)
566 					pages++;
567 				last_map_addr = next;
568 				continue;
569 			}
570 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
571 		}
572 
573 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
574 			pages++;
575 			spin_lock(&init_mm.page_table_lock);
576 			set_pte((pte_t *)pud,
577 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
578 					PAGE_KERNEL_LARGE));
579 			spin_unlock(&init_mm.page_table_lock);
580 			last_map_addr = next;
581 			continue;
582 		}
583 
584 		pmd = alloc_low_page();
585 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
586 					      prot);
587 
588 		spin_lock(&init_mm.page_table_lock);
589 		pud_populate(&init_mm, pud, pmd);
590 		spin_unlock(&init_mm.page_table_lock);
591 	}
592 	__flush_tlb_all();
593 
594 	update_page_count(PG_LEVEL_1G, pages);
595 
596 	return last_map_addr;
597 }
598 
599 unsigned long __meminit
600 kernel_physical_mapping_init(unsigned long start,
601 			     unsigned long end,
602 			     unsigned long page_size_mask)
603 {
604 	bool pgd_changed = false;
605 	unsigned long next, last_map_addr = end;
606 	unsigned long addr;
607 
608 	start = (unsigned long)__va(start);
609 	end = (unsigned long)__va(end);
610 	addr = start;
611 
612 	for (; start < end; start = next) {
613 		pgd_t *pgd = pgd_offset_k(start);
614 		pud_t *pud;
615 
616 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
617 
618 		if (pgd_val(*pgd)) {
619 			pud = (pud_t *)pgd_page_vaddr(*pgd);
620 			last_map_addr = phys_pud_init(pud, __pa(start),
621 						 __pa(end), page_size_mask);
622 			continue;
623 		}
624 
625 		pud = alloc_low_page();
626 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
627 						 page_size_mask);
628 
629 		spin_lock(&init_mm.page_table_lock);
630 		pgd_populate(&init_mm, pgd, pud);
631 		spin_unlock(&init_mm.page_table_lock);
632 		pgd_changed = true;
633 	}
634 
635 	if (pgd_changed)
636 		sync_global_pgds(addr, end - 1, 0);
637 
638 	__flush_tlb_all();
639 
640 	return last_map_addr;
641 }
642 
643 #ifndef CONFIG_NUMA
644 void __init initmem_init(void)
645 {
646 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
647 }
648 #endif
649 
650 void __init paging_init(void)
651 {
652 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
653 	sparse_init();
654 
655 	/*
656 	 * clear the default setting with node 0
657 	 * note: don't use nodes_clear here, that is really clearing when
658 	 *	 numa support is not compiled in, and later node_set_state
659 	 *	 will not set it back.
660 	 */
661 	node_clear_state(0, N_MEMORY);
662 	if (N_MEMORY != N_NORMAL_MEMORY)
663 		node_clear_state(0, N_NORMAL_MEMORY);
664 
665 	zone_sizes_init();
666 }
667 
668 /*
669  * Memory hotplug specific functions
670  */
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 /*
673  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
674  * updating.
675  */
676 static void  update_end_of_memory_vars(u64 start, u64 size)
677 {
678 	unsigned long end_pfn = PFN_UP(start + size);
679 
680 	if (end_pfn > max_pfn) {
681 		max_pfn = end_pfn;
682 		max_low_pfn = end_pfn;
683 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
684 	}
685 }
686 
687 /*
688  * Memory is added always to NORMAL zone. This means you will never get
689  * additional DMA/DMA32 memory.
690  */
691 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
692 {
693 	struct pglist_data *pgdat = NODE_DATA(nid);
694 	struct zone *zone = pgdat->node_zones +
695 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
696 	unsigned long start_pfn = start >> PAGE_SHIFT;
697 	unsigned long nr_pages = size >> PAGE_SHIFT;
698 	int ret;
699 
700 	init_memory_mapping(start, start + size);
701 
702 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
703 	WARN_ON_ONCE(ret);
704 
705 	/* update max_pfn, max_low_pfn and high_memory */
706 	update_end_of_memory_vars(start, size);
707 
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(arch_add_memory);
711 
712 #define PAGE_INUSE 0xFD
713 
714 static void __meminit free_pagetable(struct page *page, int order)
715 {
716 	unsigned long magic;
717 	unsigned int nr_pages = 1 << order;
718 	struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
719 
720 	if (altmap) {
721 		vmem_altmap_free(altmap, nr_pages);
722 		return;
723 	}
724 
725 	/* bootmem page has reserved flag */
726 	if (PageReserved(page)) {
727 		__ClearPageReserved(page);
728 
729 		magic = (unsigned long)page->lru.next;
730 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
731 			while (nr_pages--)
732 				put_page_bootmem(page++);
733 		} else
734 			while (nr_pages--)
735 				free_reserved_page(page++);
736 	} else
737 		free_pages((unsigned long)page_address(page), order);
738 }
739 
740 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
741 {
742 	pte_t *pte;
743 	int i;
744 
745 	for (i = 0; i < PTRS_PER_PTE; i++) {
746 		pte = pte_start + i;
747 		if (pte_val(*pte))
748 			return;
749 	}
750 
751 	/* free a pte talbe */
752 	free_pagetable(pmd_page(*pmd), 0);
753 	spin_lock(&init_mm.page_table_lock);
754 	pmd_clear(pmd);
755 	spin_unlock(&init_mm.page_table_lock);
756 }
757 
758 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
759 {
760 	pmd_t *pmd;
761 	int i;
762 
763 	for (i = 0; i < PTRS_PER_PMD; i++) {
764 		pmd = pmd_start + i;
765 		if (pmd_val(*pmd))
766 			return;
767 	}
768 
769 	/* free a pmd talbe */
770 	free_pagetable(pud_page(*pud), 0);
771 	spin_lock(&init_mm.page_table_lock);
772 	pud_clear(pud);
773 	spin_unlock(&init_mm.page_table_lock);
774 }
775 
776 /* Return true if pgd is changed, otherwise return false. */
777 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
778 {
779 	pud_t *pud;
780 	int i;
781 
782 	for (i = 0; i < PTRS_PER_PUD; i++) {
783 		pud = pud_start + i;
784 		if (pud_val(*pud))
785 			return false;
786 	}
787 
788 	/* free a pud table */
789 	free_pagetable(pgd_page(*pgd), 0);
790 	spin_lock(&init_mm.page_table_lock);
791 	pgd_clear(pgd);
792 	spin_unlock(&init_mm.page_table_lock);
793 
794 	return true;
795 }
796 
797 static void __meminit
798 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
799 		 bool direct)
800 {
801 	unsigned long next, pages = 0;
802 	pte_t *pte;
803 	void *page_addr;
804 	phys_addr_t phys_addr;
805 
806 	pte = pte_start + pte_index(addr);
807 	for (; addr < end; addr = next, pte++) {
808 		next = (addr + PAGE_SIZE) & PAGE_MASK;
809 		if (next > end)
810 			next = end;
811 
812 		if (!pte_present(*pte))
813 			continue;
814 
815 		/*
816 		 * We mapped [0,1G) memory as identity mapping when
817 		 * initializing, in arch/x86/kernel/head_64.S. These
818 		 * pagetables cannot be removed.
819 		 */
820 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
821 		if (phys_addr < (phys_addr_t)0x40000000)
822 			return;
823 
824 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
825 			/*
826 			 * Do not free direct mapping pages since they were
827 			 * freed when offlining, or simplely not in use.
828 			 */
829 			if (!direct)
830 				free_pagetable(pte_page(*pte), 0);
831 
832 			spin_lock(&init_mm.page_table_lock);
833 			pte_clear(&init_mm, addr, pte);
834 			spin_unlock(&init_mm.page_table_lock);
835 
836 			/* For non-direct mapping, pages means nothing. */
837 			pages++;
838 		} else {
839 			/*
840 			 * If we are here, we are freeing vmemmap pages since
841 			 * direct mapped memory ranges to be freed are aligned.
842 			 *
843 			 * If we are not removing the whole page, it means
844 			 * other page structs in this page are being used and
845 			 * we canot remove them. So fill the unused page_structs
846 			 * with 0xFD, and remove the page when it is wholly
847 			 * filled with 0xFD.
848 			 */
849 			memset((void *)addr, PAGE_INUSE, next - addr);
850 
851 			page_addr = page_address(pte_page(*pte));
852 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
853 				free_pagetable(pte_page(*pte), 0);
854 
855 				spin_lock(&init_mm.page_table_lock);
856 				pte_clear(&init_mm, addr, pte);
857 				spin_unlock(&init_mm.page_table_lock);
858 			}
859 		}
860 	}
861 
862 	/* Call free_pte_table() in remove_pmd_table(). */
863 	flush_tlb_all();
864 	if (direct)
865 		update_page_count(PG_LEVEL_4K, -pages);
866 }
867 
868 static void __meminit
869 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
870 		 bool direct)
871 {
872 	unsigned long next, pages = 0;
873 	pte_t *pte_base;
874 	pmd_t *pmd;
875 	void *page_addr;
876 
877 	pmd = pmd_start + pmd_index(addr);
878 	for (; addr < end; addr = next, pmd++) {
879 		next = pmd_addr_end(addr, end);
880 
881 		if (!pmd_present(*pmd))
882 			continue;
883 
884 		if (pmd_large(*pmd)) {
885 			if (IS_ALIGNED(addr, PMD_SIZE) &&
886 			    IS_ALIGNED(next, PMD_SIZE)) {
887 				if (!direct)
888 					free_pagetable(pmd_page(*pmd),
889 						       get_order(PMD_SIZE));
890 
891 				spin_lock(&init_mm.page_table_lock);
892 				pmd_clear(pmd);
893 				spin_unlock(&init_mm.page_table_lock);
894 				pages++;
895 			} else {
896 				/* If here, we are freeing vmemmap pages. */
897 				memset((void *)addr, PAGE_INUSE, next - addr);
898 
899 				page_addr = page_address(pmd_page(*pmd));
900 				if (!memchr_inv(page_addr, PAGE_INUSE,
901 						PMD_SIZE)) {
902 					free_pagetable(pmd_page(*pmd),
903 						       get_order(PMD_SIZE));
904 
905 					spin_lock(&init_mm.page_table_lock);
906 					pmd_clear(pmd);
907 					spin_unlock(&init_mm.page_table_lock);
908 				}
909 			}
910 
911 			continue;
912 		}
913 
914 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
915 		remove_pte_table(pte_base, addr, next, direct);
916 		free_pte_table(pte_base, pmd);
917 	}
918 
919 	/* Call free_pmd_table() in remove_pud_table(). */
920 	if (direct)
921 		update_page_count(PG_LEVEL_2M, -pages);
922 }
923 
924 static void __meminit
925 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
926 		 bool direct)
927 {
928 	unsigned long next, pages = 0;
929 	pmd_t *pmd_base;
930 	pud_t *pud;
931 	void *page_addr;
932 
933 	pud = pud_start + pud_index(addr);
934 	for (; addr < end; addr = next, pud++) {
935 		next = pud_addr_end(addr, end);
936 
937 		if (!pud_present(*pud))
938 			continue;
939 
940 		if (pud_large(*pud)) {
941 			if (IS_ALIGNED(addr, PUD_SIZE) &&
942 			    IS_ALIGNED(next, PUD_SIZE)) {
943 				if (!direct)
944 					free_pagetable(pud_page(*pud),
945 						       get_order(PUD_SIZE));
946 
947 				spin_lock(&init_mm.page_table_lock);
948 				pud_clear(pud);
949 				spin_unlock(&init_mm.page_table_lock);
950 				pages++;
951 			} else {
952 				/* If here, we are freeing vmemmap pages. */
953 				memset((void *)addr, PAGE_INUSE, next - addr);
954 
955 				page_addr = page_address(pud_page(*pud));
956 				if (!memchr_inv(page_addr, PAGE_INUSE,
957 						PUD_SIZE)) {
958 					free_pagetable(pud_page(*pud),
959 						       get_order(PUD_SIZE));
960 
961 					spin_lock(&init_mm.page_table_lock);
962 					pud_clear(pud);
963 					spin_unlock(&init_mm.page_table_lock);
964 				}
965 			}
966 
967 			continue;
968 		}
969 
970 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
971 		remove_pmd_table(pmd_base, addr, next, direct);
972 		free_pmd_table(pmd_base, pud);
973 	}
974 
975 	if (direct)
976 		update_page_count(PG_LEVEL_1G, -pages);
977 }
978 
979 /* start and end are both virtual address. */
980 static void __meminit
981 remove_pagetable(unsigned long start, unsigned long end, bool direct)
982 {
983 	unsigned long next;
984 	unsigned long addr;
985 	pgd_t *pgd;
986 	pud_t *pud;
987 	bool pgd_changed = false;
988 
989 	for (addr = start; addr < end; addr = next) {
990 		next = pgd_addr_end(addr, end);
991 
992 		pgd = pgd_offset_k(addr);
993 		if (!pgd_present(*pgd))
994 			continue;
995 
996 		pud = (pud_t *)pgd_page_vaddr(*pgd);
997 		remove_pud_table(pud, addr, next, direct);
998 		if (free_pud_table(pud, pgd))
999 			pgd_changed = true;
1000 	}
1001 
1002 	if (pgd_changed)
1003 		sync_global_pgds(start, end - 1, 1);
1004 
1005 	flush_tlb_all();
1006 }
1007 
1008 void __ref vmemmap_free(unsigned long start, unsigned long end)
1009 {
1010 	remove_pagetable(start, end, false);
1011 }
1012 
1013 #ifdef CONFIG_MEMORY_HOTREMOVE
1014 static void __meminit
1015 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1016 {
1017 	start = (unsigned long)__va(start);
1018 	end = (unsigned long)__va(end);
1019 
1020 	remove_pagetable(start, end, true);
1021 }
1022 
1023 int __ref arch_remove_memory(u64 start, u64 size)
1024 {
1025 	unsigned long start_pfn = start >> PAGE_SHIFT;
1026 	unsigned long nr_pages = size >> PAGE_SHIFT;
1027 	struct page *page = pfn_to_page(start_pfn);
1028 	struct vmem_altmap *altmap;
1029 	struct zone *zone;
1030 	int ret;
1031 
1032 	/* With altmap the first mapped page is offset from @start */
1033 	altmap = to_vmem_altmap((unsigned long) page);
1034 	if (altmap)
1035 		page += vmem_altmap_offset(altmap);
1036 	zone = page_zone(page);
1037 	ret = __remove_pages(zone, start_pfn, nr_pages);
1038 	WARN_ON_ONCE(ret);
1039 	kernel_physical_mapping_remove(start, start + size);
1040 
1041 	return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045 
1046 static struct kcore_list kcore_vsyscall;
1047 
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051 	int i;
1052 
1053 	for_each_online_node(i)
1054 		register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057 
1058 void __init mem_init(void)
1059 {
1060 	pci_iommu_alloc();
1061 
1062 	/* clear_bss() already clear the empty_zero_page */
1063 
1064 	register_page_bootmem_info();
1065 
1066 	/* this will put all memory onto the freelists */
1067 	free_all_bootmem();
1068 	after_bootmem = 1;
1069 
1070 	/* Register memory areas for /proc/kcore */
1071 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1072 			 PAGE_SIZE, KCORE_OTHER);
1073 
1074 	mem_init_print_info(NULL);
1075 }
1076 
1077 #ifdef CONFIG_DEBUG_RODATA
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080 
1081 int kernel_set_to_readonly;
1082 
1083 void set_kernel_text_rw(void)
1084 {
1085 	unsigned long start = PFN_ALIGN(_text);
1086 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1087 
1088 	if (!kernel_set_to_readonly)
1089 		return;
1090 
1091 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1092 		 start, end);
1093 
1094 	/*
1095 	 * Make the kernel identity mapping for text RW. Kernel text
1096 	 * mapping will always be RO. Refer to the comment in
1097 	 * static_protections() in pageattr.c
1098 	 */
1099 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101 
1102 void set_kernel_text_ro(void)
1103 {
1104 	unsigned long start = PFN_ALIGN(_text);
1105 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1106 
1107 	if (!kernel_set_to_readonly)
1108 		return;
1109 
1110 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1111 		 start, end);
1112 
1113 	/*
1114 	 * Set the kernel identity mapping for text RO.
1115 	 */
1116 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118 
1119 void mark_rodata_ro(void)
1120 {
1121 	unsigned long start = PFN_ALIGN(_text);
1122 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126 	unsigned long all_end;
1127 
1128 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129 	       (end - start) >> 10);
1130 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131 
1132 	kernel_set_to_readonly = 1;
1133 
1134 	/*
1135 	 * The rodata/data/bss/brk section (but not the kernel text!)
1136 	 * should also be not-executable.
1137 	 *
1138 	 * We align all_end to PMD_SIZE because the existing mapping
1139 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140 	 * split the PMD and the reminder between _brk_end and the end
1141 	 * of the PMD will remain mapped executable.
1142 	 *
1143 	 * Any PMD which was setup after the one which covers _brk_end
1144 	 * has been zapped already via cleanup_highmem().
1145 	 */
1146 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1148 
1149 	rodata_test();
1150 
1151 #ifdef CONFIG_CPA_DEBUG
1152 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154 
1155 	printk(KERN_INFO "Testing CPA: again\n");
1156 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157 #endif
1158 
1159 	free_init_pages("unused kernel",
1160 			(unsigned long) __va(__pa_symbol(text_end)),
1161 			(unsigned long) __va(__pa_symbol(rodata_start)));
1162 	free_init_pages("unused kernel",
1163 			(unsigned long) __va(__pa_symbol(rodata_end)),
1164 			(unsigned long) __va(__pa_symbol(_sdata)));
1165 
1166 	debug_checkwx();
1167 }
1168 
1169 #endif
1170 
1171 int kern_addr_valid(unsigned long addr)
1172 {
1173 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1174 	pgd_t *pgd;
1175 	pud_t *pud;
1176 	pmd_t *pmd;
1177 	pte_t *pte;
1178 
1179 	if (above != 0 && above != -1UL)
1180 		return 0;
1181 
1182 	pgd = pgd_offset_k(addr);
1183 	if (pgd_none(*pgd))
1184 		return 0;
1185 
1186 	pud = pud_offset(pgd, addr);
1187 	if (pud_none(*pud))
1188 		return 0;
1189 
1190 	if (pud_large(*pud))
1191 		return pfn_valid(pud_pfn(*pud));
1192 
1193 	pmd = pmd_offset(pud, addr);
1194 	if (pmd_none(*pmd))
1195 		return 0;
1196 
1197 	if (pmd_large(*pmd))
1198 		return pfn_valid(pmd_pfn(*pmd));
1199 
1200 	pte = pte_offset_kernel(pmd, addr);
1201 	if (pte_none(*pte))
1202 		return 0;
1203 
1204 	return pfn_valid(pte_pfn(*pte));
1205 }
1206 
1207 static unsigned long probe_memory_block_size(void)
1208 {
1209 	/* start from 2g */
1210 	unsigned long bz = 1UL<<31;
1211 
1212 	if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1213 		pr_info("Using 2GB memory block size for large-memory system\n");
1214 		return 2UL * 1024 * 1024 * 1024;
1215 	}
1216 
1217 	/* less than 64g installed */
1218 	if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1219 		return MIN_MEMORY_BLOCK_SIZE;
1220 
1221 	/* get the tail size */
1222 	while (bz > MIN_MEMORY_BLOCK_SIZE) {
1223 		if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1224 			break;
1225 		bz >>= 1;
1226 	}
1227 
1228 	printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1229 
1230 	return bz;
1231 }
1232 
1233 static unsigned long memory_block_size_probed;
1234 unsigned long memory_block_size_bytes(void)
1235 {
1236 	if (!memory_block_size_probed)
1237 		memory_block_size_probed = probe_memory_block_size();
1238 
1239 	return memory_block_size_probed;
1240 }
1241 
1242 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1243 /*
1244  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1245  */
1246 static long __meminitdata addr_start, addr_end;
1247 static void __meminitdata *p_start, *p_end;
1248 static int __meminitdata node_start;
1249 
1250 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1251 		unsigned long end, int node, struct vmem_altmap *altmap)
1252 {
1253 	unsigned long addr;
1254 	unsigned long next;
1255 	pgd_t *pgd;
1256 	pud_t *pud;
1257 	pmd_t *pmd;
1258 
1259 	for (addr = start; addr < end; addr = next) {
1260 		next = pmd_addr_end(addr, end);
1261 
1262 		pgd = vmemmap_pgd_populate(addr, node);
1263 		if (!pgd)
1264 			return -ENOMEM;
1265 
1266 		pud = vmemmap_pud_populate(pgd, addr, node);
1267 		if (!pud)
1268 			return -ENOMEM;
1269 
1270 		pmd = pmd_offset(pud, addr);
1271 		if (pmd_none(*pmd)) {
1272 			void *p;
1273 
1274 			p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1275 			if (p) {
1276 				pte_t entry;
1277 
1278 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1279 						PAGE_KERNEL_LARGE);
1280 				set_pmd(pmd, __pmd(pte_val(entry)));
1281 
1282 				/* check to see if we have contiguous blocks */
1283 				if (p_end != p || node_start != node) {
1284 					if (p_start)
1285 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1286 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1287 					addr_start = addr;
1288 					node_start = node;
1289 					p_start = p;
1290 				}
1291 
1292 				addr_end = addr + PMD_SIZE;
1293 				p_end = p + PMD_SIZE;
1294 				continue;
1295 			} else if (altmap)
1296 				return -ENOMEM; /* no fallback */
1297 		} else if (pmd_large(*pmd)) {
1298 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1299 			continue;
1300 		}
1301 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1302 		if (vmemmap_populate_basepages(addr, next, node))
1303 			return -ENOMEM;
1304 	}
1305 	return 0;
1306 }
1307 
1308 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1309 {
1310 	struct vmem_altmap *altmap = to_vmem_altmap(start);
1311 	int err;
1312 
1313 	if (cpu_has_pse)
1314 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1315 	else if (altmap) {
1316 		pr_err_once("%s: no cpu support for altmap allocations\n",
1317 				__func__);
1318 		err = -ENOMEM;
1319 	} else
1320 		err = vmemmap_populate_basepages(start, end, node);
1321 	if (!err)
1322 		sync_global_pgds(start, end - 1, 0);
1323 	return err;
1324 }
1325 
1326 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1327 void register_page_bootmem_memmap(unsigned long section_nr,
1328 				  struct page *start_page, unsigned long size)
1329 {
1330 	unsigned long addr = (unsigned long)start_page;
1331 	unsigned long end = (unsigned long)(start_page + size);
1332 	unsigned long next;
1333 	pgd_t *pgd;
1334 	pud_t *pud;
1335 	pmd_t *pmd;
1336 	unsigned int nr_pages;
1337 	struct page *page;
1338 
1339 	for (; addr < end; addr = next) {
1340 		pte_t *pte = NULL;
1341 
1342 		pgd = pgd_offset_k(addr);
1343 		if (pgd_none(*pgd)) {
1344 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1345 			continue;
1346 		}
1347 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1348 
1349 		pud = pud_offset(pgd, addr);
1350 		if (pud_none(*pud)) {
1351 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1352 			continue;
1353 		}
1354 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1355 
1356 		if (!cpu_has_pse) {
1357 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1358 			pmd = pmd_offset(pud, addr);
1359 			if (pmd_none(*pmd))
1360 				continue;
1361 			get_page_bootmem(section_nr, pmd_page(*pmd),
1362 					 MIX_SECTION_INFO);
1363 
1364 			pte = pte_offset_kernel(pmd, addr);
1365 			if (pte_none(*pte))
1366 				continue;
1367 			get_page_bootmem(section_nr, pte_page(*pte),
1368 					 SECTION_INFO);
1369 		} else {
1370 			next = pmd_addr_end(addr, end);
1371 
1372 			pmd = pmd_offset(pud, addr);
1373 			if (pmd_none(*pmd))
1374 				continue;
1375 
1376 			nr_pages = 1 << (get_order(PMD_SIZE));
1377 			page = pmd_page(*pmd);
1378 			while (nr_pages--)
1379 				get_page_bootmem(section_nr, page++,
1380 						 SECTION_INFO);
1381 		}
1382 	}
1383 }
1384 #endif
1385 
1386 void __meminit vmemmap_populate_print_last(void)
1387 {
1388 	if (p_start) {
1389 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1390 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1391 		p_start = NULL;
1392 		p_end = NULL;
1393 		node_start = 0;
1394 	}
1395 }
1396 #endif
1397