xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9 
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58 
59 #include "mm_internal.h"
60 
61 #include "ident_map.c"
62 
63 #define DEFINE_POPULATE(fname, type1, type2, init)		\
64 static inline void fname##_init(struct mm_struct *mm,		\
65 		type1##_t *arg1, type2##_t *arg2, bool init)	\
66 {								\
67 	if (init)						\
68 		fname##_safe(mm, arg1, arg2);			\
69 	else							\
70 		fname(mm, arg1, arg2);				\
71 }
72 
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77 
78 #define DEFINE_ENTRY(type1, type2, init)			\
79 static inline void set_##type1##_init(type1##_t *arg1,		\
80 			type2##_t arg2, bool init)		\
81 {								\
82 	if (init)						\
83 		set_##type1##_safe(arg1, arg2);			\
84 	else							\
85 		set_##type1(arg1, arg2);			\
86 }
87 
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92 
93 
94 /*
95  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
96  * physical space so we can cache the place of the first one and move
97  * around without checking the pgd every time.
98  */
99 
100 /* Bits supported by the hardware: */
101 pteval_t __supported_pte_mask __read_mostly = ~0;
102 /* Bits allowed in normal kernel mappings: */
103 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
104 EXPORT_SYMBOL_GPL(__supported_pte_mask);
105 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
106 EXPORT_SYMBOL(__default_kernel_pte_mask);
107 
108 int force_personality32;
109 
110 /*
111  * noexec32=on|off
112  * Control non executable heap for 32bit processes.
113  * To control the stack too use noexec=off
114  *
115  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
116  * off	PROT_READ implies PROT_EXEC
117  */
118 static int __init nonx32_setup(char *str)
119 {
120 	if (!strcmp(str, "on"))
121 		force_personality32 &= ~READ_IMPLIES_EXEC;
122 	else if (!strcmp(str, "off"))
123 		force_personality32 |= READ_IMPLIES_EXEC;
124 	return 1;
125 }
126 __setup("noexec32=", nonx32_setup);
127 
128 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
129 {
130 	unsigned long addr;
131 
132 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
133 		const pgd_t *pgd_ref = pgd_offset_k(addr);
134 		struct page *page;
135 
136 		/* Check for overflow */
137 		if (addr < start)
138 			break;
139 
140 		if (pgd_none(*pgd_ref))
141 			continue;
142 
143 		spin_lock(&pgd_lock);
144 		list_for_each_entry(page, &pgd_list, lru) {
145 			pgd_t *pgd;
146 			spinlock_t *pgt_lock;
147 
148 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
149 			/* the pgt_lock only for Xen */
150 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
151 			spin_lock(pgt_lock);
152 
153 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
154 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
155 
156 			if (pgd_none(*pgd))
157 				set_pgd(pgd, *pgd_ref);
158 
159 			spin_unlock(pgt_lock);
160 		}
161 		spin_unlock(&pgd_lock);
162 	}
163 }
164 
165 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
166 {
167 	unsigned long addr;
168 
169 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
170 		pgd_t *pgd_ref = pgd_offset_k(addr);
171 		const p4d_t *p4d_ref;
172 		struct page *page;
173 
174 		/*
175 		 * With folded p4d, pgd_none() is always false, we need to
176 		 * handle synchonization on p4d level.
177 		 */
178 		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
179 		p4d_ref = p4d_offset(pgd_ref, addr);
180 
181 		if (p4d_none(*p4d_ref))
182 			continue;
183 
184 		spin_lock(&pgd_lock);
185 		list_for_each_entry(page, &pgd_list, lru) {
186 			pgd_t *pgd;
187 			p4d_t *p4d;
188 			spinlock_t *pgt_lock;
189 
190 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
191 			p4d = p4d_offset(pgd, addr);
192 			/* the pgt_lock only for Xen */
193 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
194 			spin_lock(pgt_lock);
195 
196 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
197 				BUG_ON(p4d_page_vaddr(*p4d)
198 				       != p4d_page_vaddr(*p4d_ref));
199 
200 			if (p4d_none(*p4d))
201 				set_p4d(p4d, *p4d_ref);
202 
203 			spin_unlock(pgt_lock);
204 		}
205 		spin_unlock(&pgd_lock);
206 	}
207 }
208 
209 /*
210  * When memory was added make sure all the processes MM have
211  * suitable PGD entries in the local PGD level page.
212  */
213 void sync_global_pgds(unsigned long start, unsigned long end)
214 {
215 	if (pgtable_l5_enabled())
216 		sync_global_pgds_l5(start, end);
217 	else
218 		sync_global_pgds_l4(start, end);
219 }
220 
221 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
222 {
223 	sync_global_pgds(start, end);
224 }
225 
226 /*
227  * NOTE: This function is marked __ref because it calls __init function
228  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229  */
230 static __ref void *spp_getpage(void)
231 {
232 	void *ptr;
233 
234 	if (after_bootmem)
235 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236 	else
237 		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238 
239 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240 		panic("set_pte_phys: cannot allocate page data %s\n",
241 			after_bootmem ? "after bootmem" : "");
242 	}
243 
244 	pr_debug("spp_getpage %p\n", ptr);
245 
246 	return ptr;
247 }
248 
249 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250 {
251 	if (pgd_none(*pgd)) {
252 		p4d_t *p4d = (p4d_t *)spp_getpage();
253 		pgd_populate(&init_mm, pgd, p4d);
254 		if (p4d != p4d_offset(pgd, 0))
255 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256 			       p4d, p4d_offset(pgd, 0));
257 	}
258 	return p4d_offset(pgd, vaddr);
259 }
260 
261 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262 {
263 	if (p4d_none(*p4d)) {
264 		pud_t *pud = (pud_t *)spp_getpage();
265 		p4d_populate(&init_mm, p4d, pud);
266 		if (pud != pud_offset(p4d, 0))
267 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268 			       pud, pud_offset(p4d, 0));
269 	}
270 	return pud_offset(p4d, vaddr);
271 }
272 
273 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274 {
275 	if (pud_none(*pud)) {
276 		pmd_t *pmd = (pmd_t *) spp_getpage();
277 		pud_populate(&init_mm, pud, pmd);
278 		if (pmd != pmd_offset(pud, 0))
279 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280 			       pmd, pmd_offset(pud, 0));
281 	}
282 	return pmd_offset(pud, vaddr);
283 }
284 
285 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286 {
287 	if (pmd_none(*pmd)) {
288 		pte_t *pte = (pte_t *) spp_getpage();
289 		pmd_populate_kernel(&init_mm, pmd, pte);
290 		if (pte != pte_offset_kernel(pmd, 0))
291 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
292 	}
293 	return pte_offset_kernel(pmd, vaddr);
294 }
295 
296 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297 {
298 	pmd_t *pmd = fill_pmd(pud, vaddr);
299 	pte_t *pte = fill_pte(pmd, vaddr);
300 
301 	set_pte(pte, new_pte);
302 
303 	/*
304 	 * It's enough to flush this one mapping.
305 	 * (PGE mappings get flushed as well)
306 	 */
307 	__flush_tlb_one_kernel(vaddr);
308 }
309 
310 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311 {
312 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
313 	pud_t *pud = fill_pud(p4d, vaddr);
314 
315 	__set_pte_vaddr(pud, vaddr, new_pte);
316 }
317 
318 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319 {
320 	pud_t *pud = pud_page + pud_index(vaddr);
321 
322 	__set_pte_vaddr(pud, vaddr, new_pte);
323 }
324 
325 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326 {
327 	pgd_t *pgd;
328 	p4d_t *p4d_page;
329 
330 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331 
332 	pgd = pgd_offset_k(vaddr);
333 	if (pgd_none(*pgd)) {
334 		printk(KERN_ERR
335 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
336 		return;
337 	}
338 
339 	p4d_page = p4d_offset(pgd, 0);
340 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341 }
342 
343 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344 {
345 	pgd_t *pgd;
346 	p4d_t *p4d;
347 	pud_t *pud;
348 
349 	pgd = pgd_offset_k(vaddr);
350 	p4d = fill_p4d(pgd, vaddr);
351 	pud = fill_pud(p4d, vaddr);
352 	return fill_pmd(pud, vaddr);
353 }
354 
355 pte_t * __init populate_extra_pte(unsigned long vaddr)
356 {
357 	pmd_t *pmd;
358 
359 	pmd = populate_extra_pmd(vaddr);
360 	return fill_pte(pmd, vaddr);
361 }
362 
363 /*
364  * Create large page table mappings for a range of physical addresses.
365  */
366 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367 					enum page_cache_mode cache)
368 {
369 	pgd_t *pgd;
370 	p4d_t *p4d;
371 	pud_t *pud;
372 	pmd_t *pmd;
373 	pgprot_t prot;
374 
375 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
377 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379 		pgd = pgd_offset_k((unsigned long)__va(phys));
380 		if (pgd_none(*pgd)) {
381 			p4d = (p4d_t *) spp_getpage();
382 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383 						_PAGE_USER));
384 		}
385 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386 		if (p4d_none(*p4d)) {
387 			pud = (pud_t *) spp_getpage();
388 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389 						_PAGE_USER));
390 		}
391 		pud = pud_offset(p4d, (unsigned long)__va(phys));
392 		if (pud_none(*pud)) {
393 			pmd = (pmd_t *) spp_getpage();
394 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395 						_PAGE_USER));
396 		}
397 		pmd = pmd_offset(pud, phys);
398 		BUG_ON(!pmd_none(*pmd));
399 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400 	}
401 }
402 
403 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404 {
405 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406 }
407 
408 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409 {
410 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411 }
412 
413 /*
414  * The head.S code sets up the kernel high mapping:
415  *
416  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417  *
418  * phys_base holds the negative offset to the kernel, which is added
419  * to the compile time generated pmds. This results in invalid pmds up
420  * to the point where we hit the physaddr 0 mapping.
421  *
422  * We limit the mappings to the region from _text to _brk_end.  _brk_end
423  * is rounded up to the 2MB boundary. This catches the invalid pmds as
424  * well, as they are located before _text:
425  */
426 void __init cleanup_highmap(void)
427 {
428 	unsigned long vaddr = __START_KERNEL_map;
429 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431 	pmd_t *pmd = level2_kernel_pgt;
432 
433 	/*
434 	 * Native path, max_pfn_mapped is not set yet.
435 	 * Xen has valid max_pfn_mapped set in
436 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437 	 */
438 	if (max_pfn_mapped)
439 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440 
441 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442 		if (pmd_none(*pmd))
443 			continue;
444 		if (vaddr < (unsigned long) _text || vaddr > end)
445 			set_pmd(pmd, __pmd(0));
446 	}
447 }
448 
449 /*
450  * Create PTE level page table mapping for physical addresses.
451  * It returns the last physical address mapped.
452  */
453 static unsigned long __meminit
454 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455 	      pgprot_t prot, bool init)
456 {
457 	unsigned long pages = 0, paddr_next;
458 	unsigned long paddr_last = paddr_end;
459 	pte_t *pte;
460 	int i;
461 
462 	pte = pte_page + pte_index(paddr);
463 	i = pte_index(paddr);
464 
465 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467 		if (paddr >= paddr_end) {
468 			if (!after_bootmem &&
469 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470 					     E820_TYPE_RAM) &&
471 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472 					     E820_TYPE_RESERVED_KERN))
473 				set_pte_init(pte, __pte(0), init);
474 			continue;
475 		}
476 
477 		/*
478 		 * We will re-use the existing mapping.
479 		 * Xen for example has some special requirements, like mapping
480 		 * pagetable pages as RO. So assume someone who pre-setup
481 		 * these mappings are more intelligent.
482 		 */
483 		if (!pte_none(*pte)) {
484 			if (!after_bootmem)
485 				pages++;
486 			continue;
487 		}
488 
489 		if (0)
490 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
491 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
492 		pages++;
493 		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
494 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
495 	}
496 
497 	update_page_count(PG_LEVEL_4K, pages);
498 
499 	return paddr_last;
500 }
501 
502 /*
503  * Create PMD level page table mapping for physical addresses. The virtual
504  * and physical address have to be aligned at this level.
505  * It returns the last physical address mapped.
506  */
507 static unsigned long __meminit
508 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
509 	      unsigned long page_size_mask, pgprot_t prot, bool init)
510 {
511 	unsigned long pages = 0, paddr_next;
512 	unsigned long paddr_last = paddr_end;
513 
514 	int i = pmd_index(paddr);
515 
516 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
517 		pmd_t *pmd = pmd_page + pmd_index(paddr);
518 		pte_t *pte;
519 		pgprot_t new_prot = prot;
520 
521 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
522 		if (paddr >= paddr_end) {
523 			if (!after_bootmem &&
524 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
525 					     E820_TYPE_RAM) &&
526 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527 					     E820_TYPE_RESERVED_KERN))
528 				set_pmd_init(pmd, __pmd(0), init);
529 			continue;
530 		}
531 
532 		if (!pmd_none(*pmd)) {
533 			if (!pmd_large(*pmd)) {
534 				spin_lock(&init_mm.page_table_lock);
535 				pte = (pte_t *)pmd_page_vaddr(*pmd);
536 				paddr_last = phys_pte_init(pte, paddr,
537 							   paddr_end, prot,
538 							   init);
539 				spin_unlock(&init_mm.page_table_lock);
540 				continue;
541 			}
542 			/*
543 			 * If we are ok with PG_LEVEL_2M mapping, then we will
544 			 * use the existing mapping,
545 			 *
546 			 * Otherwise, we will split the large page mapping but
547 			 * use the same existing protection bits except for
548 			 * large page, so that we don't violate Intel's TLB
549 			 * Application note (317080) which says, while changing
550 			 * the page sizes, new and old translations should
551 			 * not differ with respect to page frame and
552 			 * attributes.
553 			 */
554 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
555 				if (!after_bootmem)
556 					pages++;
557 				paddr_last = paddr_next;
558 				continue;
559 			}
560 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
561 		}
562 
563 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
564 			pages++;
565 			spin_lock(&init_mm.page_table_lock);
566 			set_pte_init((pte_t *)pmd,
567 				     pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
568 					     __pgprot(pgprot_val(prot) | _PAGE_PSE)),
569 				     init);
570 			spin_unlock(&init_mm.page_table_lock);
571 			paddr_last = paddr_next;
572 			continue;
573 		}
574 
575 		pte = alloc_low_page();
576 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
577 
578 		spin_lock(&init_mm.page_table_lock);
579 		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
580 		spin_unlock(&init_mm.page_table_lock);
581 	}
582 	update_page_count(PG_LEVEL_2M, pages);
583 	return paddr_last;
584 }
585 
586 /*
587  * Create PUD level page table mapping for physical addresses. The virtual
588  * and physical address do not have to be aligned at this level. KASLR can
589  * randomize virtual addresses up to this level.
590  * It returns the last physical address mapped.
591  */
592 static unsigned long __meminit
593 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
594 	      unsigned long page_size_mask, pgprot_t _prot, bool init)
595 {
596 	unsigned long pages = 0, paddr_next;
597 	unsigned long paddr_last = paddr_end;
598 	unsigned long vaddr = (unsigned long)__va(paddr);
599 	int i = pud_index(vaddr);
600 
601 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
602 		pud_t *pud;
603 		pmd_t *pmd;
604 		pgprot_t prot = _prot;
605 
606 		vaddr = (unsigned long)__va(paddr);
607 		pud = pud_page + pud_index(vaddr);
608 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
609 
610 		if (paddr >= paddr_end) {
611 			if (!after_bootmem &&
612 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
613 					     E820_TYPE_RAM) &&
614 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
615 					     E820_TYPE_RESERVED_KERN))
616 				set_pud_init(pud, __pud(0), init);
617 			continue;
618 		}
619 
620 		if (!pud_none(*pud)) {
621 			if (!pud_large(*pud)) {
622 				pmd = pmd_offset(pud, 0);
623 				paddr_last = phys_pmd_init(pmd, paddr,
624 							   paddr_end,
625 							   page_size_mask,
626 							   prot, init);
627 				continue;
628 			}
629 			/*
630 			 * If we are ok with PG_LEVEL_1G mapping, then we will
631 			 * use the existing mapping.
632 			 *
633 			 * Otherwise, we will split the gbpage mapping but use
634 			 * the same existing protection  bits except for large
635 			 * page, so that we don't violate Intel's TLB
636 			 * Application note (317080) which says, while changing
637 			 * the page sizes, new and old translations should
638 			 * not differ with respect to page frame and
639 			 * attributes.
640 			 */
641 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
642 				if (!after_bootmem)
643 					pages++;
644 				paddr_last = paddr_next;
645 				continue;
646 			}
647 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
648 		}
649 
650 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
651 			pages++;
652 			spin_lock(&init_mm.page_table_lock);
653 
654 			prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
655 
656 			set_pte_init((pte_t *)pud,
657 				     pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
658 					     prot),
659 				     init);
660 			spin_unlock(&init_mm.page_table_lock);
661 			paddr_last = paddr_next;
662 			continue;
663 		}
664 
665 		pmd = alloc_low_page();
666 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
667 					   page_size_mask, prot, init);
668 
669 		spin_lock(&init_mm.page_table_lock);
670 		pud_populate_init(&init_mm, pud, pmd, init);
671 		spin_unlock(&init_mm.page_table_lock);
672 	}
673 
674 	update_page_count(PG_LEVEL_1G, pages);
675 
676 	return paddr_last;
677 }
678 
679 static unsigned long __meminit
680 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
681 	      unsigned long page_size_mask, pgprot_t prot, bool init)
682 {
683 	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
684 
685 	paddr_last = paddr_end;
686 	vaddr = (unsigned long)__va(paddr);
687 	vaddr_end = (unsigned long)__va(paddr_end);
688 
689 	if (!pgtable_l5_enabled())
690 		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
691 				     page_size_mask, prot, init);
692 
693 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
694 		p4d_t *p4d = p4d_page + p4d_index(vaddr);
695 		pud_t *pud;
696 
697 		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
698 		paddr = __pa(vaddr);
699 
700 		if (paddr >= paddr_end) {
701 			paddr_next = __pa(vaddr_next);
702 			if (!after_bootmem &&
703 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
704 					     E820_TYPE_RAM) &&
705 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
706 					     E820_TYPE_RESERVED_KERN))
707 				set_p4d_init(p4d, __p4d(0), init);
708 			continue;
709 		}
710 
711 		if (!p4d_none(*p4d)) {
712 			pud = pud_offset(p4d, 0);
713 			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
714 					page_size_mask, prot, init);
715 			continue;
716 		}
717 
718 		pud = alloc_low_page();
719 		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
720 					   page_size_mask, prot, init);
721 
722 		spin_lock(&init_mm.page_table_lock);
723 		p4d_populate_init(&init_mm, p4d, pud, init);
724 		spin_unlock(&init_mm.page_table_lock);
725 	}
726 
727 	return paddr_last;
728 }
729 
730 static unsigned long __meminit
731 __kernel_physical_mapping_init(unsigned long paddr_start,
732 			       unsigned long paddr_end,
733 			       unsigned long page_size_mask,
734 			       pgprot_t prot, bool init)
735 {
736 	bool pgd_changed = false;
737 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
738 
739 	paddr_last = paddr_end;
740 	vaddr = (unsigned long)__va(paddr_start);
741 	vaddr_end = (unsigned long)__va(paddr_end);
742 	vaddr_start = vaddr;
743 
744 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
745 		pgd_t *pgd = pgd_offset_k(vaddr);
746 		p4d_t *p4d;
747 
748 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
749 
750 		if (pgd_val(*pgd)) {
751 			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
752 			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
753 						   __pa(vaddr_end),
754 						   page_size_mask,
755 						   prot, init);
756 			continue;
757 		}
758 
759 		p4d = alloc_low_page();
760 		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
761 					   page_size_mask, prot, init);
762 
763 		spin_lock(&init_mm.page_table_lock);
764 		if (pgtable_l5_enabled())
765 			pgd_populate_init(&init_mm, pgd, p4d, init);
766 		else
767 			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
768 					  (pud_t *) p4d, init);
769 
770 		spin_unlock(&init_mm.page_table_lock);
771 		pgd_changed = true;
772 	}
773 
774 	if (pgd_changed)
775 		sync_global_pgds(vaddr_start, vaddr_end - 1);
776 
777 	return paddr_last;
778 }
779 
780 
781 /*
782  * Create page table mapping for the physical memory for specific physical
783  * addresses. Note that it can only be used to populate non-present entries.
784  * The virtual and physical addresses have to be aligned on PMD level
785  * down. It returns the last physical address mapped.
786  */
787 unsigned long __meminit
788 kernel_physical_mapping_init(unsigned long paddr_start,
789 			     unsigned long paddr_end,
790 			     unsigned long page_size_mask, pgprot_t prot)
791 {
792 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
793 					      page_size_mask, prot, true);
794 }
795 
796 /*
797  * This function is similar to kernel_physical_mapping_init() above with the
798  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
799  * when updating the mapping. The caller is responsible to flush the TLBs after
800  * the function returns.
801  */
802 unsigned long __meminit
803 kernel_physical_mapping_change(unsigned long paddr_start,
804 			       unsigned long paddr_end,
805 			       unsigned long page_size_mask)
806 {
807 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
808 					      page_size_mask, PAGE_KERNEL,
809 					      false);
810 }
811 
812 #ifndef CONFIG_NUMA
813 void __init initmem_init(void)
814 {
815 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
816 }
817 #endif
818 
819 void __init paging_init(void)
820 {
821 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
822 	sparse_init();
823 
824 	/*
825 	 * clear the default setting with node 0
826 	 * note: don't use nodes_clear here, that is really clearing when
827 	 *	 numa support is not compiled in, and later node_set_state
828 	 *	 will not set it back.
829 	 */
830 	node_clear_state(0, N_MEMORY);
831 	node_clear_state(0, N_NORMAL_MEMORY);
832 
833 	zone_sizes_init();
834 }
835 
836 /*
837  * Memory hotplug specific functions
838  */
839 #ifdef CONFIG_MEMORY_HOTPLUG
840 /*
841  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
842  * updating.
843  */
844 static void update_end_of_memory_vars(u64 start, u64 size)
845 {
846 	unsigned long end_pfn = PFN_UP(start + size);
847 
848 	if (end_pfn > max_pfn) {
849 		max_pfn = end_pfn;
850 		max_low_pfn = end_pfn;
851 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
852 	}
853 }
854 
855 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
856 	      struct mhp_params *params)
857 {
858 	int ret;
859 
860 	ret = __add_pages(nid, start_pfn, nr_pages, params);
861 	WARN_ON_ONCE(ret);
862 
863 	/* update max_pfn, max_low_pfn and high_memory */
864 	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
865 				  nr_pages << PAGE_SHIFT);
866 
867 	return ret;
868 }
869 
870 int arch_add_memory(int nid, u64 start, u64 size,
871 		    struct mhp_params *params)
872 {
873 	unsigned long start_pfn = start >> PAGE_SHIFT;
874 	unsigned long nr_pages = size >> PAGE_SHIFT;
875 
876 	init_memory_mapping(start, start + size, params->pgprot);
877 
878 	return add_pages(nid, start_pfn, nr_pages, params);
879 }
880 
881 #define PAGE_INUSE 0xFD
882 
883 static void __meminit free_pagetable(struct page *page, int order)
884 {
885 	unsigned long magic;
886 	unsigned int nr_pages = 1 << order;
887 
888 	/* bootmem page has reserved flag */
889 	if (PageReserved(page)) {
890 		__ClearPageReserved(page);
891 
892 		magic = (unsigned long)page->freelist;
893 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
894 			while (nr_pages--)
895 				put_page_bootmem(page++);
896 		} else
897 			while (nr_pages--)
898 				free_reserved_page(page++);
899 	} else
900 		free_pages((unsigned long)page_address(page), order);
901 }
902 
903 static void __meminit free_hugepage_table(struct page *page,
904 		struct vmem_altmap *altmap)
905 {
906 	if (altmap)
907 		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
908 	else
909 		free_pagetable(page, get_order(PMD_SIZE));
910 }
911 
912 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
913 {
914 	pte_t *pte;
915 	int i;
916 
917 	for (i = 0; i < PTRS_PER_PTE; i++) {
918 		pte = pte_start + i;
919 		if (!pte_none(*pte))
920 			return;
921 	}
922 
923 	/* free a pte talbe */
924 	free_pagetable(pmd_page(*pmd), 0);
925 	spin_lock(&init_mm.page_table_lock);
926 	pmd_clear(pmd);
927 	spin_unlock(&init_mm.page_table_lock);
928 }
929 
930 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
931 {
932 	pmd_t *pmd;
933 	int i;
934 
935 	for (i = 0; i < PTRS_PER_PMD; i++) {
936 		pmd = pmd_start + i;
937 		if (!pmd_none(*pmd))
938 			return;
939 	}
940 
941 	/* free a pmd talbe */
942 	free_pagetable(pud_page(*pud), 0);
943 	spin_lock(&init_mm.page_table_lock);
944 	pud_clear(pud);
945 	spin_unlock(&init_mm.page_table_lock);
946 }
947 
948 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
949 {
950 	pud_t *pud;
951 	int i;
952 
953 	for (i = 0; i < PTRS_PER_PUD; i++) {
954 		pud = pud_start + i;
955 		if (!pud_none(*pud))
956 			return;
957 	}
958 
959 	/* free a pud talbe */
960 	free_pagetable(p4d_page(*p4d), 0);
961 	spin_lock(&init_mm.page_table_lock);
962 	p4d_clear(p4d);
963 	spin_unlock(&init_mm.page_table_lock);
964 }
965 
966 static void __meminit
967 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
968 		 bool direct)
969 {
970 	unsigned long next, pages = 0;
971 	pte_t *pte;
972 	void *page_addr;
973 	phys_addr_t phys_addr;
974 
975 	pte = pte_start + pte_index(addr);
976 	for (; addr < end; addr = next, pte++) {
977 		next = (addr + PAGE_SIZE) & PAGE_MASK;
978 		if (next > end)
979 			next = end;
980 
981 		if (!pte_present(*pte))
982 			continue;
983 
984 		/*
985 		 * We mapped [0,1G) memory as identity mapping when
986 		 * initializing, in arch/x86/kernel/head_64.S. These
987 		 * pagetables cannot be removed.
988 		 */
989 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
990 		if (phys_addr < (phys_addr_t)0x40000000)
991 			return;
992 
993 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
994 			/*
995 			 * Do not free direct mapping pages since they were
996 			 * freed when offlining, or simplely not in use.
997 			 */
998 			if (!direct)
999 				free_pagetable(pte_page(*pte), 0);
1000 
1001 			spin_lock(&init_mm.page_table_lock);
1002 			pte_clear(&init_mm, addr, pte);
1003 			spin_unlock(&init_mm.page_table_lock);
1004 
1005 			/* For non-direct mapping, pages means nothing. */
1006 			pages++;
1007 		} else {
1008 			/*
1009 			 * If we are here, we are freeing vmemmap pages since
1010 			 * direct mapped memory ranges to be freed are aligned.
1011 			 *
1012 			 * If we are not removing the whole page, it means
1013 			 * other page structs in this page are being used and
1014 			 * we canot remove them. So fill the unused page_structs
1015 			 * with 0xFD, and remove the page when it is wholly
1016 			 * filled with 0xFD.
1017 			 */
1018 			memset((void *)addr, PAGE_INUSE, next - addr);
1019 
1020 			page_addr = page_address(pte_page(*pte));
1021 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1022 				free_pagetable(pte_page(*pte), 0);
1023 
1024 				spin_lock(&init_mm.page_table_lock);
1025 				pte_clear(&init_mm, addr, pte);
1026 				spin_unlock(&init_mm.page_table_lock);
1027 			}
1028 		}
1029 	}
1030 
1031 	/* Call free_pte_table() in remove_pmd_table(). */
1032 	flush_tlb_all();
1033 	if (direct)
1034 		update_page_count(PG_LEVEL_4K, -pages);
1035 }
1036 
1037 static void __meminit
1038 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1039 		 bool direct, struct vmem_altmap *altmap)
1040 {
1041 	unsigned long next, pages = 0;
1042 	pte_t *pte_base;
1043 	pmd_t *pmd;
1044 	void *page_addr;
1045 
1046 	pmd = pmd_start + pmd_index(addr);
1047 	for (; addr < end; addr = next, pmd++) {
1048 		next = pmd_addr_end(addr, end);
1049 
1050 		if (!pmd_present(*pmd))
1051 			continue;
1052 
1053 		if (pmd_large(*pmd)) {
1054 			if (IS_ALIGNED(addr, PMD_SIZE) &&
1055 			    IS_ALIGNED(next, PMD_SIZE)) {
1056 				if (!direct)
1057 					free_hugepage_table(pmd_page(*pmd),
1058 							    altmap);
1059 
1060 				spin_lock(&init_mm.page_table_lock);
1061 				pmd_clear(pmd);
1062 				spin_unlock(&init_mm.page_table_lock);
1063 				pages++;
1064 			} else {
1065 				/* If here, we are freeing vmemmap pages. */
1066 				memset((void *)addr, PAGE_INUSE, next - addr);
1067 
1068 				page_addr = page_address(pmd_page(*pmd));
1069 				if (!memchr_inv(page_addr, PAGE_INUSE,
1070 						PMD_SIZE)) {
1071 					free_hugepage_table(pmd_page(*pmd),
1072 							    altmap);
1073 
1074 					spin_lock(&init_mm.page_table_lock);
1075 					pmd_clear(pmd);
1076 					spin_unlock(&init_mm.page_table_lock);
1077 				}
1078 			}
1079 
1080 			continue;
1081 		}
1082 
1083 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1084 		remove_pte_table(pte_base, addr, next, direct);
1085 		free_pte_table(pte_base, pmd);
1086 	}
1087 
1088 	/* Call free_pmd_table() in remove_pud_table(). */
1089 	if (direct)
1090 		update_page_count(PG_LEVEL_2M, -pages);
1091 }
1092 
1093 static void __meminit
1094 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1095 		 struct vmem_altmap *altmap, bool direct)
1096 {
1097 	unsigned long next, pages = 0;
1098 	pmd_t *pmd_base;
1099 	pud_t *pud;
1100 	void *page_addr;
1101 
1102 	pud = pud_start + pud_index(addr);
1103 	for (; addr < end; addr = next, pud++) {
1104 		next = pud_addr_end(addr, end);
1105 
1106 		if (!pud_present(*pud))
1107 			continue;
1108 
1109 		if (pud_large(*pud)) {
1110 			if (IS_ALIGNED(addr, PUD_SIZE) &&
1111 			    IS_ALIGNED(next, PUD_SIZE)) {
1112 				if (!direct)
1113 					free_pagetable(pud_page(*pud),
1114 						       get_order(PUD_SIZE));
1115 
1116 				spin_lock(&init_mm.page_table_lock);
1117 				pud_clear(pud);
1118 				spin_unlock(&init_mm.page_table_lock);
1119 				pages++;
1120 			} else {
1121 				/* If here, we are freeing vmemmap pages. */
1122 				memset((void *)addr, PAGE_INUSE, next - addr);
1123 
1124 				page_addr = page_address(pud_page(*pud));
1125 				if (!memchr_inv(page_addr, PAGE_INUSE,
1126 						PUD_SIZE)) {
1127 					free_pagetable(pud_page(*pud),
1128 						       get_order(PUD_SIZE));
1129 
1130 					spin_lock(&init_mm.page_table_lock);
1131 					pud_clear(pud);
1132 					spin_unlock(&init_mm.page_table_lock);
1133 				}
1134 			}
1135 
1136 			continue;
1137 		}
1138 
1139 		pmd_base = pmd_offset(pud, 0);
1140 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1141 		free_pmd_table(pmd_base, pud);
1142 	}
1143 
1144 	if (direct)
1145 		update_page_count(PG_LEVEL_1G, -pages);
1146 }
1147 
1148 static void __meminit
1149 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1150 		 struct vmem_altmap *altmap, bool direct)
1151 {
1152 	unsigned long next, pages = 0;
1153 	pud_t *pud_base;
1154 	p4d_t *p4d;
1155 
1156 	p4d = p4d_start + p4d_index(addr);
1157 	for (; addr < end; addr = next, p4d++) {
1158 		next = p4d_addr_end(addr, end);
1159 
1160 		if (!p4d_present(*p4d))
1161 			continue;
1162 
1163 		BUILD_BUG_ON(p4d_large(*p4d));
1164 
1165 		pud_base = pud_offset(p4d, 0);
1166 		remove_pud_table(pud_base, addr, next, altmap, direct);
1167 		/*
1168 		 * For 4-level page tables we do not want to free PUDs, but in the
1169 		 * 5-level case we should free them. This code will have to change
1170 		 * to adapt for boot-time switching between 4 and 5 level page tables.
1171 		 */
1172 		if (pgtable_l5_enabled())
1173 			free_pud_table(pud_base, p4d);
1174 	}
1175 
1176 	if (direct)
1177 		update_page_count(PG_LEVEL_512G, -pages);
1178 }
1179 
1180 /* start and end are both virtual address. */
1181 static void __meminit
1182 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1183 		struct vmem_altmap *altmap)
1184 {
1185 	unsigned long next;
1186 	unsigned long addr;
1187 	pgd_t *pgd;
1188 	p4d_t *p4d;
1189 
1190 	for (addr = start; addr < end; addr = next) {
1191 		next = pgd_addr_end(addr, end);
1192 
1193 		pgd = pgd_offset_k(addr);
1194 		if (!pgd_present(*pgd))
1195 			continue;
1196 
1197 		p4d = p4d_offset(pgd, 0);
1198 		remove_p4d_table(p4d, addr, next, altmap, direct);
1199 	}
1200 
1201 	flush_tlb_all();
1202 }
1203 
1204 void __ref vmemmap_free(unsigned long start, unsigned long end,
1205 		struct vmem_altmap *altmap)
1206 {
1207 	remove_pagetable(start, end, false, altmap);
1208 }
1209 
1210 static void __meminit
1211 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1212 {
1213 	start = (unsigned long)__va(start);
1214 	end = (unsigned long)__va(end);
1215 
1216 	remove_pagetable(start, end, true, NULL);
1217 }
1218 
1219 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1220 			      struct vmem_altmap *altmap)
1221 {
1222 	unsigned long start_pfn = start >> PAGE_SHIFT;
1223 	unsigned long nr_pages = size >> PAGE_SHIFT;
1224 
1225 	__remove_pages(start_pfn, nr_pages, altmap);
1226 	kernel_physical_mapping_remove(start, start + size);
1227 }
1228 #endif /* CONFIG_MEMORY_HOTPLUG */
1229 
1230 static struct kcore_list kcore_vsyscall;
1231 
1232 static void __init register_page_bootmem_info(void)
1233 {
1234 #ifdef CONFIG_NUMA
1235 	int i;
1236 
1237 	for_each_online_node(i)
1238 		register_page_bootmem_info_node(NODE_DATA(i));
1239 #endif
1240 }
1241 
1242 void __init mem_init(void)
1243 {
1244 	pci_iommu_alloc();
1245 
1246 	/* clear_bss() already clear the empty_zero_page */
1247 
1248 	/* this will put all memory onto the freelists */
1249 	memblock_free_all();
1250 	after_bootmem = 1;
1251 	x86_init.hyper.init_after_bootmem();
1252 
1253 	/*
1254 	 * Must be done after boot memory is put on freelist, because here we
1255 	 * might set fields in deferred struct pages that have not yet been
1256 	 * initialized, and memblock_free_all() initializes all the reserved
1257 	 * deferred pages for us.
1258 	 */
1259 	register_page_bootmem_info();
1260 
1261 	/* Register memory areas for /proc/kcore */
1262 	if (get_gate_vma(&init_mm))
1263 		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1264 
1265 	mem_init_print_info(NULL);
1266 }
1267 
1268 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1269 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1270 {
1271 	/*
1272 	 * More CPUs always led to greater speedups on tested systems, up to
1273 	 * all the nodes' CPUs.  Use all since the system is otherwise idle
1274 	 * now.
1275 	 */
1276 	return max_t(int, cpumask_weight(node_cpumask), 1);
1277 }
1278 #endif
1279 
1280 int kernel_set_to_readonly;
1281 
1282 void mark_rodata_ro(void)
1283 {
1284 	unsigned long start = PFN_ALIGN(_text);
1285 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1286 	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1287 	unsigned long text_end = PFN_ALIGN(_etext);
1288 	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1289 	unsigned long all_end;
1290 
1291 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1292 	       (end - start) >> 10);
1293 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1294 
1295 	kernel_set_to_readonly = 1;
1296 
1297 	/*
1298 	 * The rodata/data/bss/brk section (but not the kernel text!)
1299 	 * should also be not-executable.
1300 	 *
1301 	 * We align all_end to PMD_SIZE because the existing mapping
1302 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1303 	 * split the PMD and the reminder between _brk_end and the end
1304 	 * of the PMD will remain mapped executable.
1305 	 *
1306 	 * Any PMD which was setup after the one which covers _brk_end
1307 	 * has been zapped already via cleanup_highmem().
1308 	 */
1309 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1310 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1311 
1312 	set_ftrace_ops_ro();
1313 
1314 #ifdef CONFIG_CPA_DEBUG
1315 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1316 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1317 
1318 	printk(KERN_INFO "Testing CPA: again\n");
1319 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1320 #endif
1321 
1322 	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1323 				(void *)text_end, (void *)rodata_start);
1324 	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1325 				(void *)rodata_end, (void *)_sdata);
1326 
1327 	debug_checkwx();
1328 }
1329 
1330 int kern_addr_valid(unsigned long addr)
1331 {
1332 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1333 	pgd_t *pgd;
1334 	p4d_t *p4d;
1335 	pud_t *pud;
1336 	pmd_t *pmd;
1337 	pte_t *pte;
1338 
1339 	if (above != 0 && above != -1UL)
1340 		return 0;
1341 
1342 	pgd = pgd_offset_k(addr);
1343 	if (pgd_none(*pgd))
1344 		return 0;
1345 
1346 	p4d = p4d_offset(pgd, addr);
1347 	if (p4d_none(*p4d))
1348 		return 0;
1349 
1350 	pud = pud_offset(p4d, addr);
1351 	if (pud_none(*pud))
1352 		return 0;
1353 
1354 	if (pud_large(*pud))
1355 		return pfn_valid(pud_pfn(*pud));
1356 
1357 	pmd = pmd_offset(pud, addr);
1358 	if (pmd_none(*pmd))
1359 		return 0;
1360 
1361 	if (pmd_large(*pmd))
1362 		return pfn_valid(pmd_pfn(*pmd));
1363 
1364 	pte = pte_offset_kernel(pmd, addr);
1365 	if (pte_none(*pte))
1366 		return 0;
1367 
1368 	return pfn_valid(pte_pfn(*pte));
1369 }
1370 
1371 /*
1372  * Block size is the minimum amount of memory which can be hotplugged or
1373  * hotremoved. It must be power of two and must be equal or larger than
1374  * MIN_MEMORY_BLOCK_SIZE.
1375  */
1376 #define MAX_BLOCK_SIZE (2UL << 30)
1377 
1378 /* Amount of ram needed to start using large blocks */
1379 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1380 
1381 /* Adjustable memory block size */
1382 static unsigned long set_memory_block_size;
1383 int __init set_memory_block_size_order(unsigned int order)
1384 {
1385 	unsigned long size = 1UL << order;
1386 
1387 	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1388 		return -EINVAL;
1389 
1390 	set_memory_block_size = size;
1391 	return 0;
1392 }
1393 
1394 static unsigned long probe_memory_block_size(void)
1395 {
1396 	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1397 	unsigned long bz;
1398 
1399 	/* If memory block size has been set, then use it */
1400 	bz = set_memory_block_size;
1401 	if (bz)
1402 		goto done;
1403 
1404 	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1405 	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1406 		bz = MIN_MEMORY_BLOCK_SIZE;
1407 		goto done;
1408 	}
1409 
1410 	/* Find the largest allowed block size that aligns to memory end */
1411 	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1412 		if (IS_ALIGNED(boot_mem_end, bz))
1413 			break;
1414 	}
1415 done:
1416 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1417 
1418 	return bz;
1419 }
1420 
1421 static unsigned long memory_block_size_probed;
1422 unsigned long memory_block_size_bytes(void)
1423 {
1424 	if (!memory_block_size_probed)
1425 		memory_block_size_probed = probe_memory_block_size();
1426 
1427 	return memory_block_size_probed;
1428 }
1429 
1430 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1431 /*
1432  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1433  */
1434 static long __meminitdata addr_start, addr_end;
1435 static void __meminitdata *p_start, *p_end;
1436 static int __meminitdata node_start;
1437 
1438 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1439 		unsigned long end, int node, struct vmem_altmap *altmap)
1440 {
1441 	unsigned long addr;
1442 	unsigned long next;
1443 	pgd_t *pgd;
1444 	p4d_t *p4d;
1445 	pud_t *pud;
1446 	pmd_t *pmd;
1447 
1448 	for (addr = start; addr < end; addr = next) {
1449 		next = pmd_addr_end(addr, end);
1450 
1451 		pgd = vmemmap_pgd_populate(addr, node);
1452 		if (!pgd)
1453 			return -ENOMEM;
1454 
1455 		p4d = vmemmap_p4d_populate(pgd, addr, node);
1456 		if (!p4d)
1457 			return -ENOMEM;
1458 
1459 		pud = vmemmap_pud_populate(p4d, addr, node);
1460 		if (!pud)
1461 			return -ENOMEM;
1462 
1463 		pmd = pmd_offset(pud, addr);
1464 		if (pmd_none(*pmd)) {
1465 			void *p;
1466 
1467 			if (altmap)
1468 				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1469 			else
1470 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1471 			if (p) {
1472 				pte_t entry;
1473 
1474 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1475 						PAGE_KERNEL_LARGE);
1476 				set_pmd(pmd, __pmd(pte_val(entry)));
1477 
1478 				/* check to see if we have contiguous blocks */
1479 				if (p_end != p || node_start != node) {
1480 					if (p_start)
1481 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1482 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1483 					addr_start = addr;
1484 					node_start = node;
1485 					p_start = p;
1486 				}
1487 
1488 				addr_end = addr + PMD_SIZE;
1489 				p_end = p + PMD_SIZE;
1490 				continue;
1491 			} else if (altmap)
1492 				return -ENOMEM; /* no fallback */
1493 		} else if (pmd_large(*pmd)) {
1494 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1495 			continue;
1496 		}
1497 		if (vmemmap_populate_basepages(addr, next, node))
1498 			return -ENOMEM;
1499 	}
1500 	return 0;
1501 }
1502 
1503 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1504 		struct vmem_altmap *altmap)
1505 {
1506 	int err;
1507 
1508 	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1509 		err = vmemmap_populate_basepages(start, end, node);
1510 	else if (boot_cpu_has(X86_FEATURE_PSE))
1511 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1512 	else if (altmap) {
1513 		pr_err_once("%s: no cpu support for altmap allocations\n",
1514 				__func__);
1515 		err = -ENOMEM;
1516 	} else
1517 		err = vmemmap_populate_basepages(start, end, node);
1518 	if (!err)
1519 		sync_global_pgds(start, end - 1);
1520 	return err;
1521 }
1522 
1523 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1524 void register_page_bootmem_memmap(unsigned long section_nr,
1525 				  struct page *start_page, unsigned long nr_pages)
1526 {
1527 	unsigned long addr = (unsigned long)start_page;
1528 	unsigned long end = (unsigned long)(start_page + nr_pages);
1529 	unsigned long next;
1530 	pgd_t *pgd;
1531 	p4d_t *p4d;
1532 	pud_t *pud;
1533 	pmd_t *pmd;
1534 	unsigned int nr_pmd_pages;
1535 	struct page *page;
1536 
1537 	for (; addr < end; addr = next) {
1538 		pte_t *pte = NULL;
1539 
1540 		pgd = pgd_offset_k(addr);
1541 		if (pgd_none(*pgd)) {
1542 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1543 			continue;
1544 		}
1545 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1546 
1547 		p4d = p4d_offset(pgd, addr);
1548 		if (p4d_none(*p4d)) {
1549 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1550 			continue;
1551 		}
1552 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1553 
1554 		pud = pud_offset(p4d, addr);
1555 		if (pud_none(*pud)) {
1556 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1557 			continue;
1558 		}
1559 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1560 
1561 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1562 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1563 			pmd = pmd_offset(pud, addr);
1564 			if (pmd_none(*pmd))
1565 				continue;
1566 			get_page_bootmem(section_nr, pmd_page(*pmd),
1567 					 MIX_SECTION_INFO);
1568 
1569 			pte = pte_offset_kernel(pmd, addr);
1570 			if (pte_none(*pte))
1571 				continue;
1572 			get_page_bootmem(section_nr, pte_page(*pte),
1573 					 SECTION_INFO);
1574 		} else {
1575 			next = pmd_addr_end(addr, end);
1576 
1577 			pmd = pmd_offset(pud, addr);
1578 			if (pmd_none(*pmd))
1579 				continue;
1580 
1581 			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1582 			page = pmd_page(*pmd);
1583 			while (nr_pmd_pages--)
1584 				get_page_bootmem(section_nr, page++,
1585 						 SECTION_INFO);
1586 		}
1587 	}
1588 }
1589 #endif
1590 
1591 void __meminit vmemmap_populate_print_last(void)
1592 {
1593 	if (p_start) {
1594 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1595 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1596 		p_start = NULL;
1597 		p_end = NULL;
1598 		node_start = 0;
1599 	}
1600 }
1601 #endif
1602