1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/module.h> 31 #include <linux/memory.h> 32 #include <linux/memory_hotplug.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 36 #include <asm/processor.h> 37 #include <asm/bios_ebda.h> 38 #include <asm/uaccess.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/dma.h> 42 #include <asm/fixmap.h> 43 #include <asm/e820.h> 44 #include <asm/apic.h> 45 #include <asm/tlb.h> 46 #include <asm/mmu_context.h> 47 #include <asm/proto.h> 48 #include <asm/smp.h> 49 #include <asm/sections.h> 50 #include <asm/kdebug.h> 51 #include <asm/numa.h> 52 #include <asm/cacheflush.h> 53 #include <asm/init.h> 54 #include <asm/uv/uv.h> 55 #include <asm/setup.h> 56 57 #include "mm_internal.h" 58 59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page, 60 unsigned long addr, unsigned long end) 61 { 62 addr &= PMD_MASK; 63 for (; addr < end; addr += PMD_SIZE) { 64 pmd_t *pmd = pmd_page + pmd_index(addr); 65 66 if (!pmd_present(*pmd)) 67 set_pmd(pmd, __pmd(addr | pmd_flag)); 68 } 69 } 70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, 71 unsigned long addr, unsigned long end) 72 { 73 unsigned long next; 74 75 for (; addr < end; addr = next) { 76 pud_t *pud = pud_page + pud_index(addr); 77 pmd_t *pmd; 78 79 next = (addr & PUD_MASK) + PUD_SIZE; 80 if (next > end) 81 next = end; 82 83 if (pud_present(*pud)) { 84 pmd = pmd_offset(pud, 0); 85 ident_pmd_init(info->pmd_flag, pmd, addr, next); 86 continue; 87 } 88 pmd = (pmd_t *)info->alloc_pgt_page(info->context); 89 if (!pmd) 90 return -ENOMEM; 91 ident_pmd_init(info->pmd_flag, pmd, addr, next); 92 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 93 } 94 95 return 0; 96 } 97 98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, 99 unsigned long addr, unsigned long end) 100 { 101 unsigned long next; 102 int result; 103 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0; 104 105 for (; addr < end; addr = next) { 106 pgd_t *pgd = pgd_page + pgd_index(addr) + off; 107 pud_t *pud; 108 109 next = (addr & PGDIR_MASK) + PGDIR_SIZE; 110 if (next > end) 111 next = end; 112 113 if (pgd_present(*pgd)) { 114 pud = pud_offset(pgd, 0); 115 result = ident_pud_init(info, pud, addr, next); 116 if (result) 117 return result; 118 continue; 119 } 120 121 pud = (pud_t *)info->alloc_pgt_page(info->context); 122 if (!pud) 123 return -ENOMEM; 124 result = ident_pud_init(info, pud, addr, next); 125 if (result) 126 return result; 127 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 128 } 129 130 return 0; 131 } 132 133 static int __init parse_direct_gbpages_off(char *arg) 134 { 135 direct_gbpages = 0; 136 return 0; 137 } 138 early_param("nogbpages", parse_direct_gbpages_off); 139 140 static int __init parse_direct_gbpages_on(char *arg) 141 { 142 direct_gbpages = 1; 143 return 0; 144 } 145 early_param("gbpages", parse_direct_gbpages_on); 146 147 /* 148 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 149 * physical space so we can cache the place of the first one and move 150 * around without checking the pgd every time. 151 */ 152 153 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; 154 EXPORT_SYMBOL_GPL(__supported_pte_mask); 155 156 int force_personality32; 157 158 /* 159 * noexec32=on|off 160 * Control non executable heap for 32bit processes. 161 * To control the stack too use noexec=off 162 * 163 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 164 * off PROT_READ implies PROT_EXEC 165 */ 166 static int __init nonx32_setup(char *str) 167 { 168 if (!strcmp(str, "on")) 169 force_personality32 &= ~READ_IMPLIES_EXEC; 170 else if (!strcmp(str, "off")) 171 force_personality32 |= READ_IMPLIES_EXEC; 172 return 1; 173 } 174 __setup("noexec32=", nonx32_setup); 175 176 /* 177 * When memory was added/removed make sure all the processes MM have 178 * suitable PGD entries in the local PGD level page. 179 */ 180 void sync_global_pgds(unsigned long start, unsigned long end) 181 { 182 unsigned long address; 183 184 for (address = start; address <= end; address += PGDIR_SIZE) { 185 const pgd_t *pgd_ref = pgd_offset_k(address); 186 struct page *page; 187 188 if (pgd_none(*pgd_ref)) 189 continue; 190 191 spin_lock(&pgd_lock); 192 list_for_each_entry(page, &pgd_list, lru) { 193 pgd_t *pgd; 194 spinlock_t *pgt_lock; 195 196 pgd = (pgd_t *)page_address(page) + pgd_index(address); 197 /* the pgt_lock only for Xen */ 198 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 199 spin_lock(pgt_lock); 200 201 if (pgd_none(*pgd)) 202 set_pgd(pgd, *pgd_ref); 203 else 204 BUG_ON(pgd_page_vaddr(*pgd) 205 != pgd_page_vaddr(*pgd_ref)); 206 207 spin_unlock(pgt_lock); 208 } 209 spin_unlock(&pgd_lock); 210 } 211 } 212 213 /* 214 * NOTE: This function is marked __ref because it calls __init function 215 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 216 */ 217 static __ref void *spp_getpage(void) 218 { 219 void *ptr; 220 221 if (after_bootmem) 222 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); 223 else 224 ptr = alloc_bootmem_pages(PAGE_SIZE); 225 226 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 227 panic("set_pte_phys: cannot allocate page data %s\n", 228 after_bootmem ? "after bootmem" : ""); 229 } 230 231 pr_debug("spp_getpage %p\n", ptr); 232 233 return ptr; 234 } 235 236 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) 237 { 238 if (pgd_none(*pgd)) { 239 pud_t *pud = (pud_t *)spp_getpage(); 240 pgd_populate(&init_mm, pgd, pud); 241 if (pud != pud_offset(pgd, 0)) 242 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 243 pud, pud_offset(pgd, 0)); 244 } 245 return pud_offset(pgd, vaddr); 246 } 247 248 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 249 { 250 if (pud_none(*pud)) { 251 pmd_t *pmd = (pmd_t *) spp_getpage(); 252 pud_populate(&init_mm, pud, pmd); 253 if (pmd != pmd_offset(pud, 0)) 254 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 255 pmd, pmd_offset(pud, 0)); 256 } 257 return pmd_offset(pud, vaddr); 258 } 259 260 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 261 { 262 if (pmd_none(*pmd)) { 263 pte_t *pte = (pte_t *) spp_getpage(); 264 pmd_populate_kernel(&init_mm, pmd, pte); 265 if (pte != pte_offset_kernel(pmd, 0)) 266 printk(KERN_ERR "PAGETABLE BUG #02!\n"); 267 } 268 return pte_offset_kernel(pmd, vaddr); 269 } 270 271 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 272 { 273 pud_t *pud; 274 pmd_t *pmd; 275 pte_t *pte; 276 277 pud = pud_page + pud_index(vaddr); 278 pmd = fill_pmd(pud, vaddr); 279 pte = fill_pte(pmd, vaddr); 280 281 set_pte(pte, new_pte); 282 283 /* 284 * It's enough to flush this one mapping. 285 * (PGE mappings get flushed as well) 286 */ 287 __flush_tlb_one(vaddr); 288 } 289 290 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 291 { 292 pgd_t *pgd; 293 pud_t *pud_page; 294 295 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 296 297 pgd = pgd_offset_k(vaddr); 298 if (pgd_none(*pgd)) { 299 printk(KERN_ERR 300 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 301 return; 302 } 303 pud_page = (pud_t*)pgd_page_vaddr(*pgd); 304 set_pte_vaddr_pud(pud_page, vaddr, pteval); 305 } 306 307 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 308 { 309 pgd_t *pgd; 310 pud_t *pud; 311 312 pgd = pgd_offset_k(vaddr); 313 pud = fill_pud(pgd, vaddr); 314 return fill_pmd(pud, vaddr); 315 } 316 317 pte_t * __init populate_extra_pte(unsigned long vaddr) 318 { 319 pmd_t *pmd; 320 321 pmd = populate_extra_pmd(vaddr); 322 return fill_pte(pmd, vaddr); 323 } 324 325 /* 326 * Create large page table mappings for a range of physical addresses. 327 */ 328 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 329 pgprot_t prot) 330 { 331 pgd_t *pgd; 332 pud_t *pud; 333 pmd_t *pmd; 334 335 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 336 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 337 pgd = pgd_offset_k((unsigned long)__va(phys)); 338 if (pgd_none(*pgd)) { 339 pud = (pud_t *) spp_getpage(); 340 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | 341 _PAGE_USER)); 342 } 343 pud = pud_offset(pgd, (unsigned long)__va(phys)); 344 if (pud_none(*pud)) { 345 pmd = (pmd_t *) spp_getpage(); 346 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 347 _PAGE_USER)); 348 } 349 pmd = pmd_offset(pud, phys); 350 BUG_ON(!pmd_none(*pmd)); 351 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 352 } 353 } 354 355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 356 { 357 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); 358 } 359 360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 361 { 362 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); 363 } 364 365 /* 366 * The head.S code sets up the kernel high mapping: 367 * 368 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 369 * 370 * phys_addr holds the negative offset to the kernel, which is added 371 * to the compile time generated pmds. This results in invalid pmds up 372 * to the point where we hit the physaddr 0 mapping. 373 * 374 * We limit the mappings to the region from _text to _brk_end. _brk_end 375 * is rounded up to the 2MB boundary. This catches the invalid pmds as 376 * well, as they are located before _text: 377 */ 378 void __init cleanup_highmap(void) 379 { 380 unsigned long vaddr = __START_KERNEL_map; 381 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 382 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 383 pmd_t *pmd = level2_kernel_pgt; 384 385 /* 386 * Native path, max_pfn_mapped is not set yet. 387 * Xen has valid max_pfn_mapped set in 388 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 389 */ 390 if (max_pfn_mapped) 391 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 392 393 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 394 if (pmd_none(*pmd)) 395 continue; 396 if (vaddr < (unsigned long) _text || vaddr > end) 397 set_pmd(pmd, __pmd(0)); 398 } 399 } 400 401 static unsigned long __meminit 402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, 403 pgprot_t prot) 404 { 405 unsigned long pages = 0, next; 406 unsigned long last_map_addr = end; 407 int i; 408 409 pte_t *pte = pte_page + pte_index(addr); 410 411 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) { 412 next = (addr & PAGE_MASK) + PAGE_SIZE; 413 if (addr >= end) { 414 if (!after_bootmem && 415 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) && 416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN)) 417 set_pte(pte, __pte(0)); 418 continue; 419 } 420 421 /* 422 * We will re-use the existing mapping. 423 * Xen for example has some special requirements, like mapping 424 * pagetable pages as RO. So assume someone who pre-setup 425 * these mappings are more intelligent. 426 */ 427 if (pte_val(*pte)) { 428 if (!after_bootmem) 429 pages++; 430 continue; 431 } 432 433 if (0) 434 printk(" pte=%p addr=%lx pte=%016lx\n", 435 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); 436 pages++; 437 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); 438 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; 439 } 440 441 update_page_count(PG_LEVEL_4K, pages); 442 443 return last_map_addr; 444 } 445 446 static unsigned long __meminit 447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, 448 unsigned long page_size_mask, pgprot_t prot) 449 { 450 unsigned long pages = 0, next; 451 unsigned long last_map_addr = end; 452 453 int i = pmd_index(address); 454 455 for (; i < PTRS_PER_PMD; i++, address = next) { 456 pmd_t *pmd = pmd_page + pmd_index(address); 457 pte_t *pte; 458 pgprot_t new_prot = prot; 459 460 next = (address & PMD_MASK) + PMD_SIZE; 461 if (address >= end) { 462 if (!after_bootmem && 463 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) && 464 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN)) 465 set_pmd(pmd, __pmd(0)); 466 continue; 467 } 468 469 if (pmd_val(*pmd)) { 470 if (!pmd_large(*pmd)) { 471 spin_lock(&init_mm.page_table_lock); 472 pte = (pte_t *)pmd_page_vaddr(*pmd); 473 last_map_addr = phys_pte_init(pte, address, 474 end, prot); 475 spin_unlock(&init_mm.page_table_lock); 476 continue; 477 } 478 /* 479 * If we are ok with PG_LEVEL_2M mapping, then we will 480 * use the existing mapping, 481 * 482 * Otherwise, we will split the large page mapping but 483 * use the same existing protection bits except for 484 * large page, so that we don't violate Intel's TLB 485 * Application note (317080) which says, while changing 486 * the page sizes, new and old translations should 487 * not differ with respect to page frame and 488 * attributes. 489 */ 490 if (page_size_mask & (1 << PG_LEVEL_2M)) { 491 if (!after_bootmem) 492 pages++; 493 last_map_addr = next; 494 continue; 495 } 496 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 497 } 498 499 if (page_size_mask & (1<<PG_LEVEL_2M)) { 500 pages++; 501 spin_lock(&init_mm.page_table_lock); 502 set_pte((pte_t *)pmd, 503 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT, 504 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 505 spin_unlock(&init_mm.page_table_lock); 506 last_map_addr = next; 507 continue; 508 } 509 510 pte = alloc_low_page(); 511 last_map_addr = phys_pte_init(pte, address, end, new_prot); 512 513 spin_lock(&init_mm.page_table_lock); 514 pmd_populate_kernel(&init_mm, pmd, pte); 515 spin_unlock(&init_mm.page_table_lock); 516 } 517 update_page_count(PG_LEVEL_2M, pages); 518 return last_map_addr; 519 } 520 521 static unsigned long __meminit 522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, 523 unsigned long page_size_mask) 524 { 525 unsigned long pages = 0, next; 526 unsigned long last_map_addr = end; 527 int i = pud_index(addr); 528 529 for (; i < PTRS_PER_PUD; i++, addr = next) { 530 pud_t *pud = pud_page + pud_index(addr); 531 pmd_t *pmd; 532 pgprot_t prot = PAGE_KERNEL; 533 534 next = (addr & PUD_MASK) + PUD_SIZE; 535 if (addr >= end) { 536 if (!after_bootmem && 537 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) && 538 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN)) 539 set_pud(pud, __pud(0)); 540 continue; 541 } 542 543 if (pud_val(*pud)) { 544 if (!pud_large(*pud)) { 545 pmd = pmd_offset(pud, 0); 546 last_map_addr = phys_pmd_init(pmd, addr, end, 547 page_size_mask, prot); 548 __flush_tlb_all(); 549 continue; 550 } 551 /* 552 * If we are ok with PG_LEVEL_1G mapping, then we will 553 * use the existing mapping. 554 * 555 * Otherwise, we will split the gbpage mapping but use 556 * the same existing protection bits except for large 557 * page, so that we don't violate Intel's TLB 558 * Application note (317080) which says, while changing 559 * the page sizes, new and old translations should 560 * not differ with respect to page frame and 561 * attributes. 562 */ 563 if (page_size_mask & (1 << PG_LEVEL_1G)) { 564 if (!after_bootmem) 565 pages++; 566 last_map_addr = next; 567 continue; 568 } 569 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 570 } 571 572 if (page_size_mask & (1<<PG_LEVEL_1G)) { 573 pages++; 574 spin_lock(&init_mm.page_table_lock); 575 set_pte((pte_t *)pud, 576 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT, 577 PAGE_KERNEL_LARGE)); 578 spin_unlock(&init_mm.page_table_lock); 579 last_map_addr = next; 580 continue; 581 } 582 583 pmd = alloc_low_page(); 584 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, 585 prot); 586 587 spin_lock(&init_mm.page_table_lock); 588 pud_populate(&init_mm, pud, pmd); 589 spin_unlock(&init_mm.page_table_lock); 590 } 591 __flush_tlb_all(); 592 593 update_page_count(PG_LEVEL_1G, pages); 594 595 return last_map_addr; 596 } 597 598 unsigned long __meminit 599 kernel_physical_mapping_init(unsigned long start, 600 unsigned long end, 601 unsigned long page_size_mask) 602 { 603 bool pgd_changed = false; 604 unsigned long next, last_map_addr = end; 605 unsigned long addr; 606 607 start = (unsigned long)__va(start); 608 end = (unsigned long)__va(end); 609 addr = start; 610 611 for (; start < end; start = next) { 612 pgd_t *pgd = pgd_offset_k(start); 613 pud_t *pud; 614 615 next = (start & PGDIR_MASK) + PGDIR_SIZE; 616 617 if (pgd_val(*pgd)) { 618 pud = (pud_t *)pgd_page_vaddr(*pgd); 619 last_map_addr = phys_pud_init(pud, __pa(start), 620 __pa(end), page_size_mask); 621 continue; 622 } 623 624 pud = alloc_low_page(); 625 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end), 626 page_size_mask); 627 628 spin_lock(&init_mm.page_table_lock); 629 pgd_populate(&init_mm, pgd, pud); 630 spin_unlock(&init_mm.page_table_lock); 631 pgd_changed = true; 632 } 633 634 if (pgd_changed) 635 sync_global_pgds(addr, end - 1); 636 637 __flush_tlb_all(); 638 639 return last_map_addr; 640 } 641 642 #ifndef CONFIG_NUMA 643 void __init initmem_init(void) 644 { 645 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); 646 } 647 #endif 648 649 void __init paging_init(void) 650 { 651 sparse_memory_present_with_active_regions(MAX_NUMNODES); 652 sparse_init(); 653 654 /* 655 * clear the default setting with node 0 656 * note: don't use nodes_clear here, that is really clearing when 657 * numa support is not compiled in, and later node_set_state 658 * will not set it back. 659 */ 660 node_clear_state(0, N_MEMORY); 661 if (N_MEMORY != N_NORMAL_MEMORY) 662 node_clear_state(0, N_NORMAL_MEMORY); 663 664 zone_sizes_init(); 665 } 666 667 /* 668 * Memory hotplug specific functions 669 */ 670 #ifdef CONFIG_MEMORY_HOTPLUG 671 /* 672 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 673 * updating. 674 */ 675 static void update_end_of_memory_vars(u64 start, u64 size) 676 { 677 unsigned long end_pfn = PFN_UP(start + size); 678 679 if (end_pfn > max_pfn) { 680 max_pfn = end_pfn; 681 max_low_pfn = end_pfn; 682 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 683 } 684 } 685 686 /* 687 * Memory is added always to NORMAL zone. This means you will never get 688 * additional DMA/DMA32 memory. 689 */ 690 int arch_add_memory(int nid, u64 start, u64 size) 691 { 692 struct pglist_data *pgdat = NODE_DATA(nid); 693 struct zone *zone = pgdat->node_zones + ZONE_NORMAL; 694 unsigned long start_pfn = start >> PAGE_SHIFT; 695 unsigned long nr_pages = size >> PAGE_SHIFT; 696 int ret; 697 698 init_memory_mapping(start, start + size); 699 700 ret = __add_pages(nid, zone, start_pfn, nr_pages); 701 WARN_ON_ONCE(ret); 702 703 /* update max_pfn, max_low_pfn and high_memory */ 704 update_end_of_memory_vars(start, size); 705 706 return ret; 707 } 708 EXPORT_SYMBOL_GPL(arch_add_memory); 709 710 #define PAGE_INUSE 0xFD 711 712 static void __meminit free_pagetable(struct page *page, int order) 713 { 714 struct zone *zone; 715 bool bootmem = false; 716 unsigned long magic; 717 unsigned int nr_pages = 1 << order; 718 719 /* bootmem page has reserved flag */ 720 if (PageReserved(page)) { 721 __ClearPageReserved(page); 722 bootmem = true; 723 724 magic = (unsigned long)page->lru.next; 725 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 726 while (nr_pages--) 727 put_page_bootmem(page++); 728 } else 729 __free_pages_bootmem(page, order); 730 } else 731 free_pages((unsigned long)page_address(page), order); 732 733 /* 734 * SECTION_INFO pages and MIX_SECTION_INFO pages 735 * are all allocated by bootmem. 736 */ 737 if (bootmem) { 738 zone = page_zone(page); 739 zone_span_writelock(zone); 740 zone->present_pages += nr_pages; 741 zone_span_writeunlock(zone); 742 totalram_pages += nr_pages; 743 } 744 } 745 746 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 747 { 748 pte_t *pte; 749 int i; 750 751 for (i = 0; i < PTRS_PER_PTE; i++) { 752 pte = pte_start + i; 753 if (pte_val(*pte)) 754 return; 755 } 756 757 /* free a pte talbe */ 758 free_pagetable(pmd_page(*pmd), 0); 759 spin_lock(&init_mm.page_table_lock); 760 pmd_clear(pmd); 761 spin_unlock(&init_mm.page_table_lock); 762 } 763 764 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 765 { 766 pmd_t *pmd; 767 int i; 768 769 for (i = 0; i < PTRS_PER_PMD; i++) { 770 pmd = pmd_start + i; 771 if (pmd_val(*pmd)) 772 return; 773 } 774 775 /* free a pmd talbe */ 776 free_pagetable(pud_page(*pud), 0); 777 spin_lock(&init_mm.page_table_lock); 778 pud_clear(pud); 779 spin_unlock(&init_mm.page_table_lock); 780 } 781 782 /* Return true if pgd is changed, otherwise return false. */ 783 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd) 784 { 785 pud_t *pud; 786 int i; 787 788 for (i = 0; i < PTRS_PER_PUD; i++) { 789 pud = pud_start + i; 790 if (pud_val(*pud)) 791 return false; 792 } 793 794 /* free a pud table */ 795 free_pagetable(pgd_page(*pgd), 0); 796 spin_lock(&init_mm.page_table_lock); 797 pgd_clear(pgd); 798 spin_unlock(&init_mm.page_table_lock); 799 800 return true; 801 } 802 803 static void __meminit 804 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 805 bool direct) 806 { 807 unsigned long next, pages = 0; 808 pte_t *pte; 809 void *page_addr; 810 phys_addr_t phys_addr; 811 812 pte = pte_start + pte_index(addr); 813 for (; addr < end; addr = next, pte++) { 814 next = (addr + PAGE_SIZE) & PAGE_MASK; 815 if (next > end) 816 next = end; 817 818 if (!pte_present(*pte)) 819 continue; 820 821 /* 822 * We mapped [0,1G) memory as identity mapping when 823 * initializing, in arch/x86/kernel/head_64.S. These 824 * pagetables cannot be removed. 825 */ 826 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 827 if (phys_addr < (phys_addr_t)0x40000000) 828 return; 829 830 if (IS_ALIGNED(addr, PAGE_SIZE) && 831 IS_ALIGNED(next, PAGE_SIZE)) { 832 /* 833 * Do not free direct mapping pages since they were 834 * freed when offlining, or simplely not in use. 835 */ 836 if (!direct) 837 free_pagetable(pte_page(*pte), 0); 838 839 spin_lock(&init_mm.page_table_lock); 840 pte_clear(&init_mm, addr, pte); 841 spin_unlock(&init_mm.page_table_lock); 842 843 /* For non-direct mapping, pages means nothing. */ 844 pages++; 845 } else { 846 /* 847 * If we are here, we are freeing vmemmap pages since 848 * direct mapped memory ranges to be freed are aligned. 849 * 850 * If we are not removing the whole page, it means 851 * other page structs in this page are being used and 852 * we canot remove them. So fill the unused page_structs 853 * with 0xFD, and remove the page when it is wholly 854 * filled with 0xFD. 855 */ 856 memset((void *)addr, PAGE_INUSE, next - addr); 857 858 page_addr = page_address(pte_page(*pte)); 859 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 860 free_pagetable(pte_page(*pte), 0); 861 862 spin_lock(&init_mm.page_table_lock); 863 pte_clear(&init_mm, addr, pte); 864 spin_unlock(&init_mm.page_table_lock); 865 } 866 } 867 } 868 869 /* Call free_pte_table() in remove_pmd_table(). */ 870 flush_tlb_all(); 871 if (direct) 872 update_page_count(PG_LEVEL_4K, -pages); 873 } 874 875 static void __meminit 876 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 877 bool direct) 878 { 879 unsigned long next, pages = 0; 880 pte_t *pte_base; 881 pmd_t *pmd; 882 void *page_addr; 883 884 pmd = pmd_start + pmd_index(addr); 885 for (; addr < end; addr = next, pmd++) { 886 next = pmd_addr_end(addr, end); 887 888 if (!pmd_present(*pmd)) 889 continue; 890 891 if (pmd_large(*pmd)) { 892 if (IS_ALIGNED(addr, PMD_SIZE) && 893 IS_ALIGNED(next, PMD_SIZE)) { 894 if (!direct) 895 free_pagetable(pmd_page(*pmd), 896 get_order(PMD_SIZE)); 897 898 spin_lock(&init_mm.page_table_lock); 899 pmd_clear(pmd); 900 spin_unlock(&init_mm.page_table_lock); 901 pages++; 902 } else { 903 /* If here, we are freeing vmemmap pages. */ 904 memset((void *)addr, PAGE_INUSE, next - addr); 905 906 page_addr = page_address(pmd_page(*pmd)); 907 if (!memchr_inv(page_addr, PAGE_INUSE, 908 PMD_SIZE)) { 909 free_pagetable(pmd_page(*pmd), 910 get_order(PMD_SIZE)); 911 912 spin_lock(&init_mm.page_table_lock); 913 pmd_clear(pmd); 914 spin_unlock(&init_mm.page_table_lock); 915 } 916 } 917 918 continue; 919 } 920 921 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 922 remove_pte_table(pte_base, addr, next, direct); 923 free_pte_table(pte_base, pmd); 924 } 925 926 /* Call free_pmd_table() in remove_pud_table(). */ 927 if (direct) 928 update_page_count(PG_LEVEL_2M, -pages); 929 } 930 931 static void __meminit 932 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 933 bool direct) 934 { 935 unsigned long next, pages = 0; 936 pmd_t *pmd_base; 937 pud_t *pud; 938 void *page_addr; 939 940 pud = pud_start + pud_index(addr); 941 for (; addr < end; addr = next, pud++) { 942 next = pud_addr_end(addr, end); 943 944 if (!pud_present(*pud)) 945 continue; 946 947 if (pud_large(*pud)) { 948 if (IS_ALIGNED(addr, PUD_SIZE) && 949 IS_ALIGNED(next, PUD_SIZE)) { 950 if (!direct) 951 free_pagetable(pud_page(*pud), 952 get_order(PUD_SIZE)); 953 954 spin_lock(&init_mm.page_table_lock); 955 pud_clear(pud); 956 spin_unlock(&init_mm.page_table_lock); 957 pages++; 958 } else { 959 /* If here, we are freeing vmemmap pages. */ 960 memset((void *)addr, PAGE_INUSE, next - addr); 961 962 page_addr = page_address(pud_page(*pud)); 963 if (!memchr_inv(page_addr, PAGE_INUSE, 964 PUD_SIZE)) { 965 free_pagetable(pud_page(*pud), 966 get_order(PUD_SIZE)); 967 968 spin_lock(&init_mm.page_table_lock); 969 pud_clear(pud); 970 spin_unlock(&init_mm.page_table_lock); 971 } 972 } 973 974 continue; 975 } 976 977 pmd_base = (pmd_t *)pud_page_vaddr(*pud); 978 remove_pmd_table(pmd_base, addr, next, direct); 979 free_pmd_table(pmd_base, pud); 980 } 981 982 if (direct) 983 update_page_count(PG_LEVEL_1G, -pages); 984 } 985 986 /* start and end are both virtual address. */ 987 static void __meminit 988 remove_pagetable(unsigned long start, unsigned long end, bool direct) 989 { 990 unsigned long next; 991 pgd_t *pgd; 992 pud_t *pud; 993 bool pgd_changed = false; 994 995 for (; start < end; start = next) { 996 next = pgd_addr_end(start, end); 997 998 pgd = pgd_offset_k(start); 999 if (!pgd_present(*pgd)) 1000 continue; 1001 1002 pud = (pud_t *)pgd_page_vaddr(*pgd); 1003 remove_pud_table(pud, start, next, direct); 1004 if (free_pud_table(pud, pgd)) 1005 pgd_changed = true; 1006 } 1007 1008 if (pgd_changed) 1009 sync_global_pgds(start, end - 1); 1010 1011 flush_tlb_all(); 1012 } 1013 1014 void __ref vmemmap_free(struct page *memmap, unsigned long nr_pages) 1015 { 1016 unsigned long start = (unsigned long)memmap; 1017 unsigned long end = (unsigned long)(memmap + nr_pages); 1018 1019 remove_pagetable(start, end, false); 1020 } 1021 1022 static void __meminit 1023 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1024 { 1025 start = (unsigned long)__va(start); 1026 end = (unsigned long)__va(end); 1027 1028 remove_pagetable(start, end, true); 1029 } 1030 1031 #ifdef CONFIG_MEMORY_HOTREMOVE 1032 int __ref arch_remove_memory(u64 start, u64 size) 1033 { 1034 unsigned long start_pfn = start >> PAGE_SHIFT; 1035 unsigned long nr_pages = size >> PAGE_SHIFT; 1036 struct zone *zone; 1037 int ret; 1038 1039 zone = page_zone(pfn_to_page(start_pfn)); 1040 kernel_physical_mapping_remove(start, start + size); 1041 ret = __remove_pages(zone, start_pfn, nr_pages); 1042 WARN_ON_ONCE(ret); 1043 1044 return ret; 1045 } 1046 #endif 1047 #endif /* CONFIG_MEMORY_HOTPLUG */ 1048 1049 static struct kcore_list kcore_vsyscall; 1050 1051 static void __init register_page_bootmem_info(void) 1052 { 1053 #ifdef CONFIG_NUMA 1054 int i; 1055 1056 for_each_online_node(i) 1057 register_page_bootmem_info_node(NODE_DATA(i)); 1058 #endif 1059 } 1060 1061 void __init mem_init(void) 1062 { 1063 long codesize, reservedpages, datasize, initsize; 1064 unsigned long absent_pages; 1065 1066 pci_iommu_alloc(); 1067 1068 /* clear_bss() already clear the empty_zero_page */ 1069 1070 reservedpages = 0; 1071 1072 /* this will put all low memory onto the freelists */ 1073 register_page_bootmem_info(); 1074 totalram_pages = free_all_bootmem(); 1075 1076 absent_pages = absent_pages_in_range(0, max_pfn); 1077 reservedpages = max_pfn - totalram_pages - absent_pages; 1078 after_bootmem = 1; 1079 1080 codesize = (unsigned long) &_etext - (unsigned long) &_text; 1081 datasize = (unsigned long) &_edata - (unsigned long) &_etext; 1082 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; 1083 1084 /* Register memory areas for /proc/kcore */ 1085 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, 1086 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER); 1087 1088 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " 1089 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n", 1090 nr_free_pages() << (PAGE_SHIFT-10), 1091 max_pfn << (PAGE_SHIFT-10), 1092 codesize >> 10, 1093 absent_pages << (PAGE_SHIFT-10), 1094 reservedpages << (PAGE_SHIFT-10), 1095 datasize >> 10, 1096 initsize >> 10); 1097 } 1098 1099 #ifdef CONFIG_DEBUG_RODATA 1100 const int rodata_test_data = 0xC3; 1101 EXPORT_SYMBOL_GPL(rodata_test_data); 1102 1103 int kernel_set_to_readonly; 1104 1105 void set_kernel_text_rw(void) 1106 { 1107 unsigned long start = PFN_ALIGN(_text); 1108 unsigned long end = PFN_ALIGN(__stop___ex_table); 1109 1110 if (!kernel_set_to_readonly) 1111 return; 1112 1113 pr_debug("Set kernel text: %lx - %lx for read write\n", 1114 start, end); 1115 1116 /* 1117 * Make the kernel identity mapping for text RW. Kernel text 1118 * mapping will always be RO. Refer to the comment in 1119 * static_protections() in pageattr.c 1120 */ 1121 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1122 } 1123 1124 void set_kernel_text_ro(void) 1125 { 1126 unsigned long start = PFN_ALIGN(_text); 1127 unsigned long end = PFN_ALIGN(__stop___ex_table); 1128 1129 if (!kernel_set_to_readonly) 1130 return; 1131 1132 pr_debug("Set kernel text: %lx - %lx for read only\n", 1133 start, end); 1134 1135 /* 1136 * Set the kernel identity mapping for text RO. 1137 */ 1138 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1139 } 1140 1141 void mark_rodata_ro(void) 1142 { 1143 unsigned long start = PFN_ALIGN(_text); 1144 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1145 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1146 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1147 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1148 unsigned long all_end = PFN_ALIGN(&_end); 1149 1150 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1151 (end - start) >> 10); 1152 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1153 1154 kernel_set_to_readonly = 1; 1155 1156 /* 1157 * The rodata/data/bss/brk section (but not the kernel text!) 1158 * should also be not-executable. 1159 */ 1160 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT); 1161 1162 rodata_test(); 1163 1164 #ifdef CONFIG_CPA_DEBUG 1165 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1166 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1167 1168 printk(KERN_INFO "Testing CPA: again\n"); 1169 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1170 #endif 1171 1172 free_init_pages("unused kernel memory", 1173 (unsigned long) __va(__pa_symbol(text_end)), 1174 (unsigned long) __va(__pa_symbol(rodata_start))); 1175 1176 free_init_pages("unused kernel memory", 1177 (unsigned long) __va(__pa_symbol(rodata_end)), 1178 (unsigned long) __va(__pa_symbol(_sdata))); 1179 } 1180 1181 #endif 1182 1183 int kern_addr_valid(unsigned long addr) 1184 { 1185 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1186 pgd_t *pgd; 1187 pud_t *pud; 1188 pmd_t *pmd; 1189 pte_t *pte; 1190 1191 if (above != 0 && above != -1UL) 1192 return 0; 1193 1194 pgd = pgd_offset_k(addr); 1195 if (pgd_none(*pgd)) 1196 return 0; 1197 1198 pud = pud_offset(pgd, addr); 1199 if (pud_none(*pud)) 1200 return 0; 1201 1202 if (pud_large(*pud)) 1203 return pfn_valid(pud_pfn(*pud)); 1204 1205 pmd = pmd_offset(pud, addr); 1206 if (pmd_none(*pmd)) 1207 return 0; 1208 1209 if (pmd_large(*pmd)) 1210 return pfn_valid(pmd_pfn(*pmd)); 1211 1212 pte = pte_offset_kernel(pmd, addr); 1213 if (pte_none(*pte)) 1214 return 0; 1215 1216 return pfn_valid(pte_pfn(*pte)); 1217 } 1218 1219 /* 1220 * A pseudo VMA to allow ptrace access for the vsyscall page. This only 1221 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does 1222 * not need special handling anymore: 1223 */ 1224 static struct vm_area_struct gate_vma = { 1225 .vm_start = VSYSCALL_START, 1226 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), 1227 .vm_page_prot = PAGE_READONLY_EXEC, 1228 .vm_flags = VM_READ | VM_EXEC 1229 }; 1230 1231 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 1232 { 1233 #ifdef CONFIG_IA32_EMULATION 1234 if (!mm || mm->context.ia32_compat) 1235 return NULL; 1236 #endif 1237 return &gate_vma; 1238 } 1239 1240 int in_gate_area(struct mm_struct *mm, unsigned long addr) 1241 { 1242 struct vm_area_struct *vma = get_gate_vma(mm); 1243 1244 if (!vma) 1245 return 0; 1246 1247 return (addr >= vma->vm_start) && (addr < vma->vm_end); 1248 } 1249 1250 /* 1251 * Use this when you have no reliable mm, typically from interrupt 1252 * context. It is less reliable than using a task's mm and may give 1253 * false positives. 1254 */ 1255 int in_gate_area_no_mm(unsigned long addr) 1256 { 1257 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); 1258 } 1259 1260 const char *arch_vma_name(struct vm_area_struct *vma) 1261 { 1262 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) 1263 return "[vdso]"; 1264 if (vma == &gate_vma) 1265 return "[vsyscall]"; 1266 return NULL; 1267 } 1268 1269 #ifdef CONFIG_X86_UV 1270 unsigned long memory_block_size_bytes(void) 1271 { 1272 if (is_uv_system()) { 1273 printk(KERN_INFO "UV: memory block size 2GB\n"); 1274 return 2UL * 1024 * 1024 * 1024; 1275 } 1276 return MIN_MEMORY_BLOCK_SIZE; 1277 } 1278 #endif 1279 1280 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1281 /* 1282 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1283 */ 1284 static long __meminitdata addr_start, addr_end; 1285 static void __meminitdata *p_start, *p_end; 1286 static int __meminitdata node_start; 1287 1288 int __meminit 1289 vmemmap_populate(struct page *start_page, unsigned long size, int node) 1290 { 1291 unsigned long addr = (unsigned long)start_page; 1292 unsigned long end = (unsigned long)(start_page + size); 1293 unsigned long next; 1294 pgd_t *pgd; 1295 pud_t *pud; 1296 pmd_t *pmd; 1297 1298 for (; addr < end; addr = next) { 1299 void *p = NULL; 1300 1301 pgd = vmemmap_pgd_populate(addr, node); 1302 if (!pgd) 1303 return -ENOMEM; 1304 1305 pud = vmemmap_pud_populate(pgd, addr, node); 1306 if (!pud) 1307 return -ENOMEM; 1308 1309 if (!cpu_has_pse) { 1310 next = (addr + PAGE_SIZE) & PAGE_MASK; 1311 pmd = vmemmap_pmd_populate(pud, addr, node); 1312 1313 if (!pmd) 1314 return -ENOMEM; 1315 1316 p = vmemmap_pte_populate(pmd, addr, node); 1317 1318 if (!p) 1319 return -ENOMEM; 1320 1321 addr_end = addr + PAGE_SIZE; 1322 p_end = p + PAGE_SIZE; 1323 } else { 1324 next = pmd_addr_end(addr, end); 1325 1326 pmd = pmd_offset(pud, addr); 1327 if (pmd_none(*pmd)) { 1328 pte_t entry; 1329 1330 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1331 if (!p) 1332 return -ENOMEM; 1333 1334 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1335 PAGE_KERNEL_LARGE); 1336 set_pmd(pmd, __pmd(pte_val(entry))); 1337 1338 /* check to see if we have contiguous blocks */ 1339 if (p_end != p || node_start != node) { 1340 if (p_start) 1341 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1342 addr_start, addr_end-1, p_start, p_end-1, node_start); 1343 addr_start = addr; 1344 node_start = node; 1345 p_start = p; 1346 } 1347 1348 addr_end = addr + PMD_SIZE; 1349 p_end = p + PMD_SIZE; 1350 } else 1351 vmemmap_verify((pte_t *)pmd, node, addr, next); 1352 } 1353 1354 } 1355 sync_global_pgds((unsigned long)start_page, end - 1); 1356 return 0; 1357 } 1358 1359 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1360 void register_page_bootmem_memmap(unsigned long section_nr, 1361 struct page *start_page, unsigned long size) 1362 { 1363 unsigned long addr = (unsigned long)start_page; 1364 unsigned long end = (unsigned long)(start_page + size); 1365 unsigned long next; 1366 pgd_t *pgd; 1367 pud_t *pud; 1368 pmd_t *pmd; 1369 unsigned int nr_pages; 1370 struct page *page; 1371 1372 for (; addr < end; addr = next) { 1373 pte_t *pte = NULL; 1374 1375 pgd = pgd_offset_k(addr); 1376 if (pgd_none(*pgd)) { 1377 next = (addr + PAGE_SIZE) & PAGE_MASK; 1378 continue; 1379 } 1380 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1381 1382 pud = pud_offset(pgd, addr); 1383 if (pud_none(*pud)) { 1384 next = (addr + PAGE_SIZE) & PAGE_MASK; 1385 continue; 1386 } 1387 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1388 1389 if (!cpu_has_pse) { 1390 next = (addr + PAGE_SIZE) & PAGE_MASK; 1391 pmd = pmd_offset(pud, addr); 1392 if (pmd_none(*pmd)) 1393 continue; 1394 get_page_bootmem(section_nr, pmd_page(*pmd), 1395 MIX_SECTION_INFO); 1396 1397 pte = pte_offset_kernel(pmd, addr); 1398 if (pte_none(*pte)) 1399 continue; 1400 get_page_bootmem(section_nr, pte_page(*pte), 1401 SECTION_INFO); 1402 } else { 1403 next = pmd_addr_end(addr, end); 1404 1405 pmd = pmd_offset(pud, addr); 1406 if (pmd_none(*pmd)) 1407 continue; 1408 1409 nr_pages = 1 << (get_order(PMD_SIZE)); 1410 page = pmd_page(*pmd); 1411 while (nr_pages--) 1412 get_page_bootmem(section_nr, page++, 1413 SECTION_INFO); 1414 } 1415 } 1416 } 1417 #endif 1418 1419 void __meminit vmemmap_populate_print_last(void) 1420 { 1421 if (p_start) { 1422 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1423 addr_start, addr_end-1, p_start, p_end-1, node_start); 1424 p_start = NULL; 1425 p_end = NULL; 1426 node_start = 0; 1427 } 1428 } 1429 #endif 1430