xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 97da55fc)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56 
57 #include "mm_internal.h"
58 
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60 			   unsigned long addr, unsigned long end)
61 {
62 	addr &= PMD_MASK;
63 	for (; addr < end; addr += PMD_SIZE) {
64 		pmd_t *pmd = pmd_page + pmd_index(addr);
65 
66 		if (!pmd_present(*pmd))
67 			set_pmd(pmd, __pmd(addr | pmd_flag));
68 	}
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71 			  unsigned long addr, unsigned long end)
72 {
73 	unsigned long next;
74 
75 	for (; addr < end; addr = next) {
76 		pud_t *pud = pud_page + pud_index(addr);
77 		pmd_t *pmd;
78 
79 		next = (addr & PUD_MASK) + PUD_SIZE;
80 		if (next > end)
81 			next = end;
82 
83 		if (pud_present(*pud)) {
84 			pmd = pmd_offset(pud, 0);
85 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
86 			continue;
87 		}
88 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89 		if (!pmd)
90 			return -ENOMEM;
91 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
92 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93 	}
94 
95 	return 0;
96 }
97 
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99 			      unsigned long addr, unsigned long end)
100 {
101 	unsigned long next;
102 	int result;
103 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104 
105 	for (; addr < end; addr = next) {
106 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107 		pud_t *pud;
108 
109 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110 		if (next > end)
111 			next = end;
112 
113 		if (pgd_present(*pgd)) {
114 			pud = pud_offset(pgd, 0);
115 			result = ident_pud_init(info, pud, addr, next);
116 			if (result)
117 				return result;
118 			continue;
119 		}
120 
121 		pud = (pud_t *)info->alloc_pgt_page(info->context);
122 		if (!pud)
123 			return -ENOMEM;
124 		result = ident_pud_init(info, pud, addr, next);
125 		if (result)
126 			return result;
127 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128 	}
129 
130 	return 0;
131 }
132 
133 static int __init parse_direct_gbpages_off(char *arg)
134 {
135 	direct_gbpages = 0;
136 	return 0;
137 }
138 early_param("nogbpages", parse_direct_gbpages_off);
139 
140 static int __init parse_direct_gbpages_on(char *arg)
141 {
142 	direct_gbpages = 1;
143 	return 0;
144 }
145 early_param("gbpages", parse_direct_gbpages_on);
146 
147 /*
148  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
149  * physical space so we can cache the place of the first one and move
150  * around without checking the pgd every time.
151  */
152 
153 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
154 EXPORT_SYMBOL_GPL(__supported_pte_mask);
155 
156 int force_personality32;
157 
158 /*
159  * noexec32=on|off
160  * Control non executable heap for 32bit processes.
161  * To control the stack too use noexec=off
162  *
163  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
164  * off	PROT_READ implies PROT_EXEC
165  */
166 static int __init nonx32_setup(char *str)
167 {
168 	if (!strcmp(str, "on"))
169 		force_personality32 &= ~READ_IMPLIES_EXEC;
170 	else if (!strcmp(str, "off"))
171 		force_personality32 |= READ_IMPLIES_EXEC;
172 	return 1;
173 }
174 __setup("noexec32=", nonx32_setup);
175 
176 /*
177  * When memory was added/removed make sure all the processes MM have
178  * suitable PGD entries in the local PGD level page.
179  */
180 void sync_global_pgds(unsigned long start, unsigned long end)
181 {
182 	unsigned long address;
183 
184 	for (address = start; address <= end; address += PGDIR_SIZE) {
185 		const pgd_t *pgd_ref = pgd_offset_k(address);
186 		struct page *page;
187 
188 		if (pgd_none(*pgd_ref))
189 			continue;
190 
191 		spin_lock(&pgd_lock);
192 		list_for_each_entry(page, &pgd_list, lru) {
193 			pgd_t *pgd;
194 			spinlock_t *pgt_lock;
195 
196 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
197 			/* the pgt_lock only for Xen */
198 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 			spin_lock(pgt_lock);
200 
201 			if (pgd_none(*pgd))
202 				set_pgd(pgd, *pgd_ref);
203 			else
204 				BUG_ON(pgd_page_vaddr(*pgd)
205 				       != pgd_page_vaddr(*pgd_ref));
206 
207 			spin_unlock(pgt_lock);
208 		}
209 		spin_unlock(&pgd_lock);
210 	}
211 }
212 
213 /*
214  * NOTE: This function is marked __ref because it calls __init function
215  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
216  */
217 static __ref void *spp_getpage(void)
218 {
219 	void *ptr;
220 
221 	if (after_bootmem)
222 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
223 	else
224 		ptr = alloc_bootmem_pages(PAGE_SIZE);
225 
226 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
227 		panic("set_pte_phys: cannot allocate page data %s\n",
228 			after_bootmem ? "after bootmem" : "");
229 	}
230 
231 	pr_debug("spp_getpage %p\n", ptr);
232 
233 	return ptr;
234 }
235 
236 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
237 {
238 	if (pgd_none(*pgd)) {
239 		pud_t *pud = (pud_t *)spp_getpage();
240 		pgd_populate(&init_mm, pgd, pud);
241 		if (pud != pud_offset(pgd, 0))
242 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
243 			       pud, pud_offset(pgd, 0));
244 	}
245 	return pud_offset(pgd, vaddr);
246 }
247 
248 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
249 {
250 	if (pud_none(*pud)) {
251 		pmd_t *pmd = (pmd_t *) spp_getpage();
252 		pud_populate(&init_mm, pud, pmd);
253 		if (pmd != pmd_offset(pud, 0))
254 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
255 			       pmd, pmd_offset(pud, 0));
256 	}
257 	return pmd_offset(pud, vaddr);
258 }
259 
260 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
261 {
262 	if (pmd_none(*pmd)) {
263 		pte_t *pte = (pte_t *) spp_getpage();
264 		pmd_populate_kernel(&init_mm, pmd, pte);
265 		if (pte != pte_offset_kernel(pmd, 0))
266 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
267 	}
268 	return pte_offset_kernel(pmd, vaddr);
269 }
270 
271 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
272 {
273 	pud_t *pud;
274 	pmd_t *pmd;
275 	pte_t *pte;
276 
277 	pud = pud_page + pud_index(vaddr);
278 	pmd = fill_pmd(pud, vaddr);
279 	pte = fill_pte(pmd, vaddr);
280 
281 	set_pte(pte, new_pte);
282 
283 	/*
284 	 * It's enough to flush this one mapping.
285 	 * (PGE mappings get flushed as well)
286 	 */
287 	__flush_tlb_one(vaddr);
288 }
289 
290 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
291 {
292 	pgd_t *pgd;
293 	pud_t *pud_page;
294 
295 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
296 
297 	pgd = pgd_offset_k(vaddr);
298 	if (pgd_none(*pgd)) {
299 		printk(KERN_ERR
300 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
301 		return;
302 	}
303 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
304 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
305 }
306 
307 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
308 {
309 	pgd_t *pgd;
310 	pud_t *pud;
311 
312 	pgd = pgd_offset_k(vaddr);
313 	pud = fill_pud(pgd, vaddr);
314 	return fill_pmd(pud, vaddr);
315 }
316 
317 pte_t * __init populate_extra_pte(unsigned long vaddr)
318 {
319 	pmd_t *pmd;
320 
321 	pmd = populate_extra_pmd(vaddr);
322 	return fill_pte(pmd, vaddr);
323 }
324 
325 /*
326  * Create large page table mappings for a range of physical addresses.
327  */
328 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
329 						pgprot_t prot)
330 {
331 	pgd_t *pgd;
332 	pud_t *pud;
333 	pmd_t *pmd;
334 
335 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337 		pgd = pgd_offset_k((unsigned long)__va(phys));
338 		if (pgd_none(*pgd)) {
339 			pud = (pud_t *) spp_getpage();
340 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341 						_PAGE_USER));
342 		}
343 		pud = pud_offset(pgd, (unsigned long)__va(phys));
344 		if (pud_none(*pud)) {
345 			pmd = (pmd_t *) spp_getpage();
346 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347 						_PAGE_USER));
348 		}
349 		pmd = pmd_offset(pud, phys);
350 		BUG_ON(!pmd_none(*pmd));
351 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352 	}
353 }
354 
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
358 }
359 
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
363 }
364 
365 /*
366  * The head.S code sets up the kernel high mapping:
367  *
368  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369  *
370  * phys_addr holds the negative offset to the kernel, which is added
371  * to the compile time generated pmds. This results in invalid pmds up
372  * to the point where we hit the physaddr 0 mapping.
373  *
374  * We limit the mappings to the region from _text to _brk_end.  _brk_end
375  * is rounded up to the 2MB boundary. This catches the invalid pmds as
376  * well, as they are located before _text:
377  */
378 void __init cleanup_highmap(void)
379 {
380 	unsigned long vaddr = __START_KERNEL_map;
381 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383 	pmd_t *pmd = level2_kernel_pgt;
384 
385 	/*
386 	 * Native path, max_pfn_mapped is not set yet.
387 	 * Xen has valid max_pfn_mapped set in
388 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389 	 */
390 	if (max_pfn_mapped)
391 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392 
393 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394 		if (pmd_none(*pmd))
395 			continue;
396 		if (vaddr < (unsigned long) _text || vaddr > end)
397 			set_pmd(pmd, __pmd(0));
398 	}
399 }
400 
401 static unsigned long __meminit
402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
403 	      pgprot_t prot)
404 {
405 	unsigned long pages = 0, next;
406 	unsigned long last_map_addr = end;
407 	int i;
408 
409 	pte_t *pte = pte_page + pte_index(addr);
410 
411 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
412 		next = (addr & PAGE_MASK) + PAGE_SIZE;
413 		if (addr >= end) {
414 			if (!after_bootmem &&
415 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
416 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
417 				set_pte(pte, __pte(0));
418 			continue;
419 		}
420 
421 		/*
422 		 * We will re-use the existing mapping.
423 		 * Xen for example has some special requirements, like mapping
424 		 * pagetable pages as RO. So assume someone who pre-setup
425 		 * these mappings are more intelligent.
426 		 */
427 		if (pte_val(*pte)) {
428 			if (!after_bootmem)
429 				pages++;
430 			continue;
431 		}
432 
433 		if (0)
434 			printk("   pte=%p addr=%lx pte=%016lx\n",
435 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
436 		pages++;
437 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
438 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
439 	}
440 
441 	update_page_count(PG_LEVEL_4K, pages);
442 
443 	return last_map_addr;
444 }
445 
446 static unsigned long __meminit
447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
448 	      unsigned long page_size_mask, pgprot_t prot)
449 {
450 	unsigned long pages = 0, next;
451 	unsigned long last_map_addr = end;
452 
453 	int i = pmd_index(address);
454 
455 	for (; i < PTRS_PER_PMD; i++, address = next) {
456 		pmd_t *pmd = pmd_page + pmd_index(address);
457 		pte_t *pte;
458 		pgprot_t new_prot = prot;
459 
460 		next = (address & PMD_MASK) + PMD_SIZE;
461 		if (address >= end) {
462 			if (!after_bootmem &&
463 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
464 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
465 				set_pmd(pmd, __pmd(0));
466 			continue;
467 		}
468 
469 		if (pmd_val(*pmd)) {
470 			if (!pmd_large(*pmd)) {
471 				spin_lock(&init_mm.page_table_lock);
472 				pte = (pte_t *)pmd_page_vaddr(*pmd);
473 				last_map_addr = phys_pte_init(pte, address,
474 								end, prot);
475 				spin_unlock(&init_mm.page_table_lock);
476 				continue;
477 			}
478 			/*
479 			 * If we are ok with PG_LEVEL_2M mapping, then we will
480 			 * use the existing mapping,
481 			 *
482 			 * Otherwise, we will split the large page mapping but
483 			 * use the same existing protection bits except for
484 			 * large page, so that we don't violate Intel's TLB
485 			 * Application note (317080) which says, while changing
486 			 * the page sizes, new and old translations should
487 			 * not differ with respect to page frame and
488 			 * attributes.
489 			 */
490 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
491 				if (!after_bootmem)
492 					pages++;
493 				last_map_addr = next;
494 				continue;
495 			}
496 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
497 		}
498 
499 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
500 			pages++;
501 			spin_lock(&init_mm.page_table_lock);
502 			set_pte((pte_t *)pmd,
503 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
504 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
505 			spin_unlock(&init_mm.page_table_lock);
506 			last_map_addr = next;
507 			continue;
508 		}
509 
510 		pte = alloc_low_page();
511 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
512 
513 		spin_lock(&init_mm.page_table_lock);
514 		pmd_populate_kernel(&init_mm, pmd, pte);
515 		spin_unlock(&init_mm.page_table_lock);
516 	}
517 	update_page_count(PG_LEVEL_2M, pages);
518 	return last_map_addr;
519 }
520 
521 static unsigned long __meminit
522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
523 			 unsigned long page_size_mask)
524 {
525 	unsigned long pages = 0, next;
526 	unsigned long last_map_addr = end;
527 	int i = pud_index(addr);
528 
529 	for (; i < PTRS_PER_PUD; i++, addr = next) {
530 		pud_t *pud = pud_page + pud_index(addr);
531 		pmd_t *pmd;
532 		pgprot_t prot = PAGE_KERNEL;
533 
534 		next = (addr & PUD_MASK) + PUD_SIZE;
535 		if (addr >= end) {
536 			if (!after_bootmem &&
537 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
538 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
539 				set_pud(pud, __pud(0));
540 			continue;
541 		}
542 
543 		if (pud_val(*pud)) {
544 			if (!pud_large(*pud)) {
545 				pmd = pmd_offset(pud, 0);
546 				last_map_addr = phys_pmd_init(pmd, addr, end,
547 							 page_size_mask, prot);
548 				__flush_tlb_all();
549 				continue;
550 			}
551 			/*
552 			 * If we are ok with PG_LEVEL_1G mapping, then we will
553 			 * use the existing mapping.
554 			 *
555 			 * Otherwise, we will split the gbpage mapping but use
556 			 * the same existing protection  bits except for large
557 			 * page, so that we don't violate Intel's TLB
558 			 * Application note (317080) which says, while changing
559 			 * the page sizes, new and old translations should
560 			 * not differ with respect to page frame and
561 			 * attributes.
562 			 */
563 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
564 				if (!after_bootmem)
565 					pages++;
566 				last_map_addr = next;
567 				continue;
568 			}
569 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
570 		}
571 
572 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
573 			pages++;
574 			spin_lock(&init_mm.page_table_lock);
575 			set_pte((pte_t *)pud,
576 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
577 					PAGE_KERNEL_LARGE));
578 			spin_unlock(&init_mm.page_table_lock);
579 			last_map_addr = next;
580 			continue;
581 		}
582 
583 		pmd = alloc_low_page();
584 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
585 					      prot);
586 
587 		spin_lock(&init_mm.page_table_lock);
588 		pud_populate(&init_mm, pud, pmd);
589 		spin_unlock(&init_mm.page_table_lock);
590 	}
591 	__flush_tlb_all();
592 
593 	update_page_count(PG_LEVEL_1G, pages);
594 
595 	return last_map_addr;
596 }
597 
598 unsigned long __meminit
599 kernel_physical_mapping_init(unsigned long start,
600 			     unsigned long end,
601 			     unsigned long page_size_mask)
602 {
603 	bool pgd_changed = false;
604 	unsigned long next, last_map_addr = end;
605 	unsigned long addr;
606 
607 	start = (unsigned long)__va(start);
608 	end = (unsigned long)__va(end);
609 	addr = start;
610 
611 	for (; start < end; start = next) {
612 		pgd_t *pgd = pgd_offset_k(start);
613 		pud_t *pud;
614 
615 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
616 
617 		if (pgd_val(*pgd)) {
618 			pud = (pud_t *)pgd_page_vaddr(*pgd);
619 			last_map_addr = phys_pud_init(pud, __pa(start),
620 						 __pa(end), page_size_mask);
621 			continue;
622 		}
623 
624 		pud = alloc_low_page();
625 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
626 						 page_size_mask);
627 
628 		spin_lock(&init_mm.page_table_lock);
629 		pgd_populate(&init_mm, pgd, pud);
630 		spin_unlock(&init_mm.page_table_lock);
631 		pgd_changed = true;
632 	}
633 
634 	if (pgd_changed)
635 		sync_global_pgds(addr, end - 1);
636 
637 	__flush_tlb_all();
638 
639 	return last_map_addr;
640 }
641 
642 #ifndef CONFIG_NUMA
643 void __init initmem_init(void)
644 {
645 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
646 }
647 #endif
648 
649 void __init paging_init(void)
650 {
651 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
652 	sparse_init();
653 
654 	/*
655 	 * clear the default setting with node 0
656 	 * note: don't use nodes_clear here, that is really clearing when
657 	 *	 numa support is not compiled in, and later node_set_state
658 	 *	 will not set it back.
659 	 */
660 	node_clear_state(0, N_MEMORY);
661 	if (N_MEMORY != N_NORMAL_MEMORY)
662 		node_clear_state(0, N_NORMAL_MEMORY);
663 
664 	zone_sizes_init();
665 }
666 
667 /*
668  * Memory hotplug specific functions
669  */
670 #ifdef CONFIG_MEMORY_HOTPLUG
671 /*
672  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
673  * updating.
674  */
675 static void  update_end_of_memory_vars(u64 start, u64 size)
676 {
677 	unsigned long end_pfn = PFN_UP(start + size);
678 
679 	if (end_pfn > max_pfn) {
680 		max_pfn = end_pfn;
681 		max_low_pfn = end_pfn;
682 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
683 	}
684 }
685 
686 /*
687  * Memory is added always to NORMAL zone. This means you will never get
688  * additional DMA/DMA32 memory.
689  */
690 int arch_add_memory(int nid, u64 start, u64 size)
691 {
692 	struct pglist_data *pgdat = NODE_DATA(nid);
693 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
694 	unsigned long start_pfn = start >> PAGE_SHIFT;
695 	unsigned long nr_pages = size >> PAGE_SHIFT;
696 	int ret;
697 
698 	init_memory_mapping(start, start + size);
699 
700 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
701 	WARN_ON_ONCE(ret);
702 
703 	/* update max_pfn, max_low_pfn and high_memory */
704 	update_end_of_memory_vars(start, size);
705 
706 	return ret;
707 }
708 EXPORT_SYMBOL_GPL(arch_add_memory);
709 
710 #define PAGE_INUSE 0xFD
711 
712 static void __meminit free_pagetable(struct page *page, int order)
713 {
714 	struct zone *zone;
715 	bool bootmem = false;
716 	unsigned long magic;
717 	unsigned int nr_pages = 1 << order;
718 
719 	/* bootmem page has reserved flag */
720 	if (PageReserved(page)) {
721 		__ClearPageReserved(page);
722 		bootmem = true;
723 
724 		magic = (unsigned long)page->lru.next;
725 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
726 			while (nr_pages--)
727 				put_page_bootmem(page++);
728 		} else
729 			__free_pages_bootmem(page, order);
730 	} else
731 		free_pages((unsigned long)page_address(page), order);
732 
733 	/*
734 	 * SECTION_INFO pages and MIX_SECTION_INFO pages
735 	 * are all allocated by bootmem.
736 	 */
737 	if (bootmem) {
738 		zone = page_zone(page);
739 		zone_span_writelock(zone);
740 		zone->present_pages += nr_pages;
741 		zone_span_writeunlock(zone);
742 		totalram_pages += nr_pages;
743 	}
744 }
745 
746 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
747 {
748 	pte_t *pte;
749 	int i;
750 
751 	for (i = 0; i < PTRS_PER_PTE; i++) {
752 		pte = pte_start + i;
753 		if (pte_val(*pte))
754 			return;
755 	}
756 
757 	/* free a pte talbe */
758 	free_pagetable(pmd_page(*pmd), 0);
759 	spin_lock(&init_mm.page_table_lock);
760 	pmd_clear(pmd);
761 	spin_unlock(&init_mm.page_table_lock);
762 }
763 
764 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
765 {
766 	pmd_t *pmd;
767 	int i;
768 
769 	for (i = 0; i < PTRS_PER_PMD; i++) {
770 		pmd = pmd_start + i;
771 		if (pmd_val(*pmd))
772 			return;
773 	}
774 
775 	/* free a pmd talbe */
776 	free_pagetable(pud_page(*pud), 0);
777 	spin_lock(&init_mm.page_table_lock);
778 	pud_clear(pud);
779 	spin_unlock(&init_mm.page_table_lock);
780 }
781 
782 /* Return true if pgd is changed, otherwise return false. */
783 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
784 {
785 	pud_t *pud;
786 	int i;
787 
788 	for (i = 0; i < PTRS_PER_PUD; i++) {
789 		pud = pud_start + i;
790 		if (pud_val(*pud))
791 			return false;
792 	}
793 
794 	/* free a pud table */
795 	free_pagetable(pgd_page(*pgd), 0);
796 	spin_lock(&init_mm.page_table_lock);
797 	pgd_clear(pgd);
798 	spin_unlock(&init_mm.page_table_lock);
799 
800 	return true;
801 }
802 
803 static void __meminit
804 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
805 		 bool direct)
806 {
807 	unsigned long next, pages = 0;
808 	pte_t *pte;
809 	void *page_addr;
810 	phys_addr_t phys_addr;
811 
812 	pte = pte_start + pte_index(addr);
813 	for (; addr < end; addr = next, pte++) {
814 		next = (addr + PAGE_SIZE) & PAGE_MASK;
815 		if (next > end)
816 			next = end;
817 
818 		if (!pte_present(*pte))
819 			continue;
820 
821 		/*
822 		 * We mapped [0,1G) memory as identity mapping when
823 		 * initializing, in arch/x86/kernel/head_64.S. These
824 		 * pagetables cannot be removed.
825 		 */
826 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
827 		if (phys_addr < (phys_addr_t)0x40000000)
828 			return;
829 
830 		if (IS_ALIGNED(addr, PAGE_SIZE) &&
831 		    IS_ALIGNED(next, PAGE_SIZE)) {
832 			/*
833 			 * Do not free direct mapping pages since they were
834 			 * freed when offlining, or simplely not in use.
835 			 */
836 			if (!direct)
837 				free_pagetable(pte_page(*pte), 0);
838 
839 			spin_lock(&init_mm.page_table_lock);
840 			pte_clear(&init_mm, addr, pte);
841 			spin_unlock(&init_mm.page_table_lock);
842 
843 			/* For non-direct mapping, pages means nothing. */
844 			pages++;
845 		} else {
846 			/*
847 			 * If we are here, we are freeing vmemmap pages since
848 			 * direct mapped memory ranges to be freed are aligned.
849 			 *
850 			 * If we are not removing the whole page, it means
851 			 * other page structs in this page are being used and
852 			 * we canot remove them. So fill the unused page_structs
853 			 * with 0xFD, and remove the page when it is wholly
854 			 * filled with 0xFD.
855 			 */
856 			memset((void *)addr, PAGE_INUSE, next - addr);
857 
858 			page_addr = page_address(pte_page(*pte));
859 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
860 				free_pagetable(pte_page(*pte), 0);
861 
862 				spin_lock(&init_mm.page_table_lock);
863 				pte_clear(&init_mm, addr, pte);
864 				spin_unlock(&init_mm.page_table_lock);
865 			}
866 		}
867 	}
868 
869 	/* Call free_pte_table() in remove_pmd_table(). */
870 	flush_tlb_all();
871 	if (direct)
872 		update_page_count(PG_LEVEL_4K, -pages);
873 }
874 
875 static void __meminit
876 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
877 		 bool direct)
878 {
879 	unsigned long next, pages = 0;
880 	pte_t *pte_base;
881 	pmd_t *pmd;
882 	void *page_addr;
883 
884 	pmd = pmd_start + pmd_index(addr);
885 	for (; addr < end; addr = next, pmd++) {
886 		next = pmd_addr_end(addr, end);
887 
888 		if (!pmd_present(*pmd))
889 			continue;
890 
891 		if (pmd_large(*pmd)) {
892 			if (IS_ALIGNED(addr, PMD_SIZE) &&
893 			    IS_ALIGNED(next, PMD_SIZE)) {
894 				if (!direct)
895 					free_pagetable(pmd_page(*pmd),
896 						       get_order(PMD_SIZE));
897 
898 				spin_lock(&init_mm.page_table_lock);
899 				pmd_clear(pmd);
900 				spin_unlock(&init_mm.page_table_lock);
901 				pages++;
902 			} else {
903 				/* If here, we are freeing vmemmap pages. */
904 				memset((void *)addr, PAGE_INUSE, next - addr);
905 
906 				page_addr = page_address(pmd_page(*pmd));
907 				if (!memchr_inv(page_addr, PAGE_INUSE,
908 						PMD_SIZE)) {
909 					free_pagetable(pmd_page(*pmd),
910 						       get_order(PMD_SIZE));
911 
912 					spin_lock(&init_mm.page_table_lock);
913 					pmd_clear(pmd);
914 					spin_unlock(&init_mm.page_table_lock);
915 				}
916 			}
917 
918 			continue;
919 		}
920 
921 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
922 		remove_pte_table(pte_base, addr, next, direct);
923 		free_pte_table(pte_base, pmd);
924 	}
925 
926 	/* Call free_pmd_table() in remove_pud_table(). */
927 	if (direct)
928 		update_page_count(PG_LEVEL_2M, -pages);
929 }
930 
931 static void __meminit
932 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
933 		 bool direct)
934 {
935 	unsigned long next, pages = 0;
936 	pmd_t *pmd_base;
937 	pud_t *pud;
938 	void *page_addr;
939 
940 	pud = pud_start + pud_index(addr);
941 	for (; addr < end; addr = next, pud++) {
942 		next = pud_addr_end(addr, end);
943 
944 		if (!pud_present(*pud))
945 			continue;
946 
947 		if (pud_large(*pud)) {
948 			if (IS_ALIGNED(addr, PUD_SIZE) &&
949 			    IS_ALIGNED(next, PUD_SIZE)) {
950 				if (!direct)
951 					free_pagetable(pud_page(*pud),
952 						       get_order(PUD_SIZE));
953 
954 				spin_lock(&init_mm.page_table_lock);
955 				pud_clear(pud);
956 				spin_unlock(&init_mm.page_table_lock);
957 				pages++;
958 			} else {
959 				/* If here, we are freeing vmemmap pages. */
960 				memset((void *)addr, PAGE_INUSE, next - addr);
961 
962 				page_addr = page_address(pud_page(*pud));
963 				if (!memchr_inv(page_addr, PAGE_INUSE,
964 						PUD_SIZE)) {
965 					free_pagetable(pud_page(*pud),
966 						       get_order(PUD_SIZE));
967 
968 					spin_lock(&init_mm.page_table_lock);
969 					pud_clear(pud);
970 					spin_unlock(&init_mm.page_table_lock);
971 				}
972 			}
973 
974 			continue;
975 		}
976 
977 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
978 		remove_pmd_table(pmd_base, addr, next, direct);
979 		free_pmd_table(pmd_base, pud);
980 	}
981 
982 	if (direct)
983 		update_page_count(PG_LEVEL_1G, -pages);
984 }
985 
986 /* start and end are both virtual address. */
987 static void __meminit
988 remove_pagetable(unsigned long start, unsigned long end, bool direct)
989 {
990 	unsigned long next;
991 	pgd_t *pgd;
992 	pud_t *pud;
993 	bool pgd_changed = false;
994 
995 	for (; start < end; start = next) {
996 		next = pgd_addr_end(start, end);
997 
998 		pgd = pgd_offset_k(start);
999 		if (!pgd_present(*pgd))
1000 			continue;
1001 
1002 		pud = (pud_t *)pgd_page_vaddr(*pgd);
1003 		remove_pud_table(pud, start, next, direct);
1004 		if (free_pud_table(pud, pgd))
1005 			pgd_changed = true;
1006 	}
1007 
1008 	if (pgd_changed)
1009 		sync_global_pgds(start, end - 1);
1010 
1011 	flush_tlb_all();
1012 }
1013 
1014 void __ref vmemmap_free(struct page *memmap, unsigned long nr_pages)
1015 {
1016 	unsigned long start = (unsigned long)memmap;
1017 	unsigned long end = (unsigned long)(memmap + nr_pages);
1018 
1019 	remove_pagetable(start, end, false);
1020 }
1021 
1022 static void __meminit
1023 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1024 {
1025 	start = (unsigned long)__va(start);
1026 	end = (unsigned long)__va(end);
1027 
1028 	remove_pagetable(start, end, true);
1029 }
1030 
1031 #ifdef CONFIG_MEMORY_HOTREMOVE
1032 int __ref arch_remove_memory(u64 start, u64 size)
1033 {
1034 	unsigned long start_pfn = start >> PAGE_SHIFT;
1035 	unsigned long nr_pages = size >> PAGE_SHIFT;
1036 	struct zone *zone;
1037 	int ret;
1038 
1039 	zone = page_zone(pfn_to_page(start_pfn));
1040 	kernel_physical_mapping_remove(start, start + size);
1041 	ret = __remove_pages(zone, start_pfn, nr_pages);
1042 	WARN_ON_ONCE(ret);
1043 
1044 	return ret;
1045 }
1046 #endif
1047 #endif /* CONFIG_MEMORY_HOTPLUG */
1048 
1049 static struct kcore_list kcore_vsyscall;
1050 
1051 static void __init register_page_bootmem_info(void)
1052 {
1053 #ifdef CONFIG_NUMA
1054 	int i;
1055 
1056 	for_each_online_node(i)
1057 		register_page_bootmem_info_node(NODE_DATA(i));
1058 #endif
1059 }
1060 
1061 void __init mem_init(void)
1062 {
1063 	long codesize, reservedpages, datasize, initsize;
1064 	unsigned long absent_pages;
1065 
1066 	pci_iommu_alloc();
1067 
1068 	/* clear_bss() already clear the empty_zero_page */
1069 
1070 	reservedpages = 0;
1071 
1072 	/* this will put all low memory onto the freelists */
1073 	register_page_bootmem_info();
1074 	totalram_pages = free_all_bootmem();
1075 
1076 	absent_pages = absent_pages_in_range(0, max_pfn);
1077 	reservedpages = max_pfn - totalram_pages - absent_pages;
1078 	after_bootmem = 1;
1079 
1080 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
1081 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
1082 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
1083 
1084 	/* Register memory areas for /proc/kcore */
1085 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
1086 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
1087 
1088 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
1089 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
1090 		nr_free_pages() << (PAGE_SHIFT-10),
1091 		max_pfn << (PAGE_SHIFT-10),
1092 		codesize >> 10,
1093 		absent_pages << (PAGE_SHIFT-10),
1094 		reservedpages << (PAGE_SHIFT-10),
1095 		datasize >> 10,
1096 		initsize >> 10);
1097 }
1098 
1099 #ifdef CONFIG_DEBUG_RODATA
1100 const int rodata_test_data = 0xC3;
1101 EXPORT_SYMBOL_GPL(rodata_test_data);
1102 
1103 int kernel_set_to_readonly;
1104 
1105 void set_kernel_text_rw(void)
1106 {
1107 	unsigned long start = PFN_ALIGN(_text);
1108 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1109 
1110 	if (!kernel_set_to_readonly)
1111 		return;
1112 
1113 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1114 		 start, end);
1115 
1116 	/*
1117 	 * Make the kernel identity mapping for text RW. Kernel text
1118 	 * mapping will always be RO. Refer to the comment in
1119 	 * static_protections() in pageattr.c
1120 	 */
1121 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1122 }
1123 
1124 void set_kernel_text_ro(void)
1125 {
1126 	unsigned long start = PFN_ALIGN(_text);
1127 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1128 
1129 	if (!kernel_set_to_readonly)
1130 		return;
1131 
1132 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1133 		 start, end);
1134 
1135 	/*
1136 	 * Set the kernel identity mapping for text RO.
1137 	 */
1138 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1139 }
1140 
1141 void mark_rodata_ro(void)
1142 {
1143 	unsigned long start = PFN_ALIGN(_text);
1144 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1145 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1146 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1147 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1148 	unsigned long all_end = PFN_ALIGN(&_end);
1149 
1150 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1151 	       (end - start) >> 10);
1152 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1153 
1154 	kernel_set_to_readonly = 1;
1155 
1156 	/*
1157 	 * The rodata/data/bss/brk section (but not the kernel text!)
1158 	 * should also be not-executable.
1159 	 */
1160 	set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1161 
1162 	rodata_test();
1163 
1164 #ifdef CONFIG_CPA_DEBUG
1165 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1166 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1167 
1168 	printk(KERN_INFO "Testing CPA: again\n");
1169 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1170 #endif
1171 
1172 	free_init_pages("unused kernel memory",
1173 			(unsigned long) __va(__pa_symbol(text_end)),
1174 			(unsigned long) __va(__pa_symbol(rodata_start)));
1175 
1176 	free_init_pages("unused kernel memory",
1177 			(unsigned long) __va(__pa_symbol(rodata_end)),
1178 			(unsigned long) __va(__pa_symbol(_sdata)));
1179 }
1180 
1181 #endif
1182 
1183 int kern_addr_valid(unsigned long addr)
1184 {
1185 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1186 	pgd_t *pgd;
1187 	pud_t *pud;
1188 	pmd_t *pmd;
1189 	pte_t *pte;
1190 
1191 	if (above != 0 && above != -1UL)
1192 		return 0;
1193 
1194 	pgd = pgd_offset_k(addr);
1195 	if (pgd_none(*pgd))
1196 		return 0;
1197 
1198 	pud = pud_offset(pgd, addr);
1199 	if (pud_none(*pud))
1200 		return 0;
1201 
1202 	if (pud_large(*pud))
1203 		return pfn_valid(pud_pfn(*pud));
1204 
1205 	pmd = pmd_offset(pud, addr);
1206 	if (pmd_none(*pmd))
1207 		return 0;
1208 
1209 	if (pmd_large(*pmd))
1210 		return pfn_valid(pmd_pfn(*pmd));
1211 
1212 	pte = pte_offset_kernel(pmd, addr);
1213 	if (pte_none(*pte))
1214 		return 0;
1215 
1216 	return pfn_valid(pte_pfn(*pte));
1217 }
1218 
1219 /*
1220  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1221  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1222  * not need special handling anymore:
1223  */
1224 static struct vm_area_struct gate_vma = {
1225 	.vm_start	= VSYSCALL_START,
1226 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1227 	.vm_page_prot	= PAGE_READONLY_EXEC,
1228 	.vm_flags	= VM_READ | VM_EXEC
1229 };
1230 
1231 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1232 {
1233 #ifdef CONFIG_IA32_EMULATION
1234 	if (!mm || mm->context.ia32_compat)
1235 		return NULL;
1236 #endif
1237 	return &gate_vma;
1238 }
1239 
1240 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1241 {
1242 	struct vm_area_struct *vma = get_gate_vma(mm);
1243 
1244 	if (!vma)
1245 		return 0;
1246 
1247 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1248 }
1249 
1250 /*
1251  * Use this when you have no reliable mm, typically from interrupt
1252  * context. It is less reliable than using a task's mm and may give
1253  * false positives.
1254  */
1255 int in_gate_area_no_mm(unsigned long addr)
1256 {
1257 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1258 }
1259 
1260 const char *arch_vma_name(struct vm_area_struct *vma)
1261 {
1262 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1263 		return "[vdso]";
1264 	if (vma == &gate_vma)
1265 		return "[vsyscall]";
1266 	return NULL;
1267 }
1268 
1269 #ifdef CONFIG_X86_UV
1270 unsigned long memory_block_size_bytes(void)
1271 {
1272 	if (is_uv_system()) {
1273 		printk(KERN_INFO "UV: memory block size 2GB\n");
1274 		return 2UL * 1024 * 1024 * 1024;
1275 	}
1276 	return MIN_MEMORY_BLOCK_SIZE;
1277 }
1278 #endif
1279 
1280 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1281 /*
1282  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1283  */
1284 static long __meminitdata addr_start, addr_end;
1285 static void __meminitdata *p_start, *p_end;
1286 static int __meminitdata node_start;
1287 
1288 int __meminit
1289 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1290 {
1291 	unsigned long addr = (unsigned long)start_page;
1292 	unsigned long end = (unsigned long)(start_page + size);
1293 	unsigned long next;
1294 	pgd_t *pgd;
1295 	pud_t *pud;
1296 	pmd_t *pmd;
1297 
1298 	for (; addr < end; addr = next) {
1299 		void *p = NULL;
1300 
1301 		pgd = vmemmap_pgd_populate(addr, node);
1302 		if (!pgd)
1303 			return -ENOMEM;
1304 
1305 		pud = vmemmap_pud_populate(pgd, addr, node);
1306 		if (!pud)
1307 			return -ENOMEM;
1308 
1309 		if (!cpu_has_pse) {
1310 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1311 			pmd = vmemmap_pmd_populate(pud, addr, node);
1312 
1313 			if (!pmd)
1314 				return -ENOMEM;
1315 
1316 			p = vmemmap_pte_populate(pmd, addr, node);
1317 
1318 			if (!p)
1319 				return -ENOMEM;
1320 
1321 			addr_end = addr + PAGE_SIZE;
1322 			p_end = p + PAGE_SIZE;
1323 		} else {
1324 			next = pmd_addr_end(addr, end);
1325 
1326 			pmd = pmd_offset(pud, addr);
1327 			if (pmd_none(*pmd)) {
1328 				pte_t entry;
1329 
1330 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1331 				if (!p)
1332 					return -ENOMEM;
1333 
1334 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1335 						PAGE_KERNEL_LARGE);
1336 				set_pmd(pmd, __pmd(pte_val(entry)));
1337 
1338 				/* check to see if we have contiguous blocks */
1339 				if (p_end != p || node_start != node) {
1340 					if (p_start)
1341 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1342 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1343 					addr_start = addr;
1344 					node_start = node;
1345 					p_start = p;
1346 				}
1347 
1348 				addr_end = addr + PMD_SIZE;
1349 				p_end = p + PMD_SIZE;
1350 			} else
1351 				vmemmap_verify((pte_t *)pmd, node, addr, next);
1352 		}
1353 
1354 	}
1355 	sync_global_pgds((unsigned long)start_page, end - 1);
1356 	return 0;
1357 }
1358 
1359 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1360 void register_page_bootmem_memmap(unsigned long section_nr,
1361 				  struct page *start_page, unsigned long size)
1362 {
1363 	unsigned long addr = (unsigned long)start_page;
1364 	unsigned long end = (unsigned long)(start_page + size);
1365 	unsigned long next;
1366 	pgd_t *pgd;
1367 	pud_t *pud;
1368 	pmd_t *pmd;
1369 	unsigned int nr_pages;
1370 	struct page *page;
1371 
1372 	for (; addr < end; addr = next) {
1373 		pte_t *pte = NULL;
1374 
1375 		pgd = pgd_offset_k(addr);
1376 		if (pgd_none(*pgd)) {
1377 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1378 			continue;
1379 		}
1380 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1381 
1382 		pud = pud_offset(pgd, addr);
1383 		if (pud_none(*pud)) {
1384 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1385 			continue;
1386 		}
1387 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1388 
1389 		if (!cpu_has_pse) {
1390 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1391 			pmd = pmd_offset(pud, addr);
1392 			if (pmd_none(*pmd))
1393 				continue;
1394 			get_page_bootmem(section_nr, pmd_page(*pmd),
1395 					 MIX_SECTION_INFO);
1396 
1397 			pte = pte_offset_kernel(pmd, addr);
1398 			if (pte_none(*pte))
1399 				continue;
1400 			get_page_bootmem(section_nr, pte_page(*pte),
1401 					 SECTION_INFO);
1402 		} else {
1403 			next = pmd_addr_end(addr, end);
1404 
1405 			pmd = pmd_offset(pud, addr);
1406 			if (pmd_none(*pmd))
1407 				continue;
1408 
1409 			nr_pages = 1 << (get_order(PMD_SIZE));
1410 			page = pmd_page(*pmd);
1411 			while (nr_pages--)
1412 				get_page_bootmem(section_nr, page++,
1413 						 SECTION_INFO);
1414 		}
1415 	}
1416 }
1417 #endif
1418 
1419 void __meminit vmemmap_populate_print_last(void)
1420 {
1421 	if (p_start) {
1422 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1423 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1424 		p_start = NULL;
1425 		p_end = NULL;
1426 		node_start = 0;
1427 	}
1428 }
1429 #endif
1430