1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/memory.h> 31 #include <linux/memory_hotplug.h> 32 #include <linux/memremap.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 37 #include <asm/processor.h> 38 #include <asm/bios_ebda.h> 39 #include <linux/uaccess.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/dma.h> 43 #include <asm/fixmap.h> 44 #include <asm/e820/api.h> 45 #include <asm/apic.h> 46 #include <asm/tlb.h> 47 #include <asm/mmu_context.h> 48 #include <asm/proto.h> 49 #include <asm/smp.h> 50 #include <asm/sections.h> 51 #include <asm/kdebug.h> 52 #include <asm/numa.h> 53 #include <asm/set_memory.h> 54 #include <asm/init.h> 55 #include <asm/uv/uv.h> 56 #include <asm/setup.h> 57 58 #include "mm_internal.h" 59 60 #include "ident_map.c" 61 62 /* 63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 64 * physical space so we can cache the place of the first one and move 65 * around without checking the pgd every time. 66 */ 67 68 pteval_t __supported_pte_mask __read_mostly = ~0; 69 EXPORT_SYMBOL_GPL(__supported_pte_mask); 70 71 int force_personality32; 72 73 /* 74 * noexec32=on|off 75 * Control non executable heap for 32bit processes. 76 * To control the stack too use noexec=off 77 * 78 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 79 * off PROT_READ implies PROT_EXEC 80 */ 81 static int __init nonx32_setup(char *str) 82 { 83 if (!strcmp(str, "on")) 84 force_personality32 &= ~READ_IMPLIES_EXEC; 85 else if (!strcmp(str, "off")) 86 force_personality32 |= READ_IMPLIES_EXEC; 87 return 1; 88 } 89 __setup("noexec32=", nonx32_setup); 90 91 /* 92 * When memory was added make sure all the processes MM have 93 * suitable PGD entries in the local PGD level page. 94 */ 95 #ifdef CONFIG_X86_5LEVEL 96 void sync_global_pgds(unsigned long start, unsigned long end) 97 { 98 unsigned long addr; 99 100 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 101 const pgd_t *pgd_ref = pgd_offset_k(addr); 102 struct page *page; 103 104 /* Check for overflow */ 105 if (addr < start) 106 break; 107 108 if (pgd_none(*pgd_ref)) 109 continue; 110 111 spin_lock(&pgd_lock); 112 list_for_each_entry(page, &pgd_list, lru) { 113 pgd_t *pgd; 114 spinlock_t *pgt_lock; 115 116 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 117 /* the pgt_lock only for Xen */ 118 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 119 spin_lock(pgt_lock); 120 121 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 122 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 123 124 if (pgd_none(*pgd)) 125 set_pgd(pgd, *pgd_ref); 126 127 spin_unlock(pgt_lock); 128 } 129 spin_unlock(&pgd_lock); 130 } 131 } 132 #else 133 void sync_global_pgds(unsigned long start, unsigned long end) 134 { 135 unsigned long addr; 136 137 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 138 pgd_t *pgd_ref = pgd_offset_k(addr); 139 const p4d_t *p4d_ref; 140 struct page *page; 141 142 /* 143 * With folded p4d, pgd_none() is always false, we need to 144 * handle synchonization on p4d level. 145 */ 146 BUILD_BUG_ON(pgd_none(*pgd_ref)); 147 p4d_ref = p4d_offset(pgd_ref, addr); 148 149 if (p4d_none(*p4d_ref)) 150 continue; 151 152 spin_lock(&pgd_lock); 153 list_for_each_entry(page, &pgd_list, lru) { 154 pgd_t *pgd; 155 p4d_t *p4d; 156 spinlock_t *pgt_lock; 157 158 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 159 p4d = p4d_offset(pgd, addr); 160 /* the pgt_lock only for Xen */ 161 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 162 spin_lock(pgt_lock); 163 164 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) 165 BUG_ON(p4d_page_vaddr(*p4d) 166 != p4d_page_vaddr(*p4d_ref)); 167 168 if (p4d_none(*p4d)) 169 set_p4d(p4d, *p4d_ref); 170 171 spin_unlock(pgt_lock); 172 } 173 spin_unlock(&pgd_lock); 174 } 175 } 176 #endif 177 178 /* 179 * NOTE: This function is marked __ref because it calls __init function 180 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 181 */ 182 static __ref void *spp_getpage(void) 183 { 184 void *ptr; 185 186 if (after_bootmem) 187 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 188 else 189 ptr = alloc_bootmem_pages(PAGE_SIZE); 190 191 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 192 panic("set_pte_phys: cannot allocate page data %s\n", 193 after_bootmem ? "after bootmem" : ""); 194 } 195 196 pr_debug("spp_getpage %p\n", ptr); 197 198 return ptr; 199 } 200 201 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) 202 { 203 if (pgd_none(*pgd)) { 204 p4d_t *p4d = (p4d_t *)spp_getpage(); 205 pgd_populate(&init_mm, pgd, p4d); 206 if (p4d != p4d_offset(pgd, 0)) 207 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 208 p4d, p4d_offset(pgd, 0)); 209 } 210 return p4d_offset(pgd, vaddr); 211 } 212 213 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) 214 { 215 if (p4d_none(*p4d)) { 216 pud_t *pud = (pud_t *)spp_getpage(); 217 p4d_populate(&init_mm, p4d, pud); 218 if (pud != pud_offset(p4d, 0)) 219 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 220 pud, pud_offset(p4d, 0)); 221 } 222 return pud_offset(p4d, vaddr); 223 } 224 225 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 226 { 227 if (pud_none(*pud)) { 228 pmd_t *pmd = (pmd_t *) spp_getpage(); 229 pud_populate(&init_mm, pud, pmd); 230 if (pmd != pmd_offset(pud, 0)) 231 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", 232 pmd, pmd_offset(pud, 0)); 233 } 234 return pmd_offset(pud, vaddr); 235 } 236 237 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 238 { 239 if (pmd_none(*pmd)) { 240 pte_t *pte = (pte_t *) spp_getpage(); 241 pmd_populate_kernel(&init_mm, pmd, pte); 242 if (pte != pte_offset_kernel(pmd, 0)) 243 printk(KERN_ERR "PAGETABLE BUG #03!\n"); 244 } 245 return pte_offset_kernel(pmd, vaddr); 246 } 247 248 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) 249 { 250 pmd_t *pmd = fill_pmd(pud, vaddr); 251 pte_t *pte = fill_pte(pmd, vaddr); 252 253 set_pte(pte, new_pte); 254 255 /* 256 * It's enough to flush this one mapping. 257 * (PGE mappings get flushed as well) 258 */ 259 __flush_tlb_one_kernel(vaddr); 260 } 261 262 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) 263 { 264 p4d_t *p4d = p4d_page + p4d_index(vaddr); 265 pud_t *pud = fill_pud(p4d, vaddr); 266 267 __set_pte_vaddr(pud, vaddr, new_pte); 268 } 269 270 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 271 { 272 pud_t *pud = pud_page + pud_index(vaddr); 273 274 __set_pte_vaddr(pud, vaddr, new_pte); 275 } 276 277 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 278 { 279 pgd_t *pgd; 280 p4d_t *p4d_page; 281 282 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 283 284 pgd = pgd_offset_k(vaddr); 285 if (pgd_none(*pgd)) { 286 printk(KERN_ERR 287 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 288 return; 289 } 290 291 p4d_page = p4d_offset(pgd, 0); 292 set_pte_vaddr_p4d(p4d_page, vaddr, pteval); 293 } 294 295 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 296 { 297 pgd_t *pgd; 298 p4d_t *p4d; 299 pud_t *pud; 300 301 pgd = pgd_offset_k(vaddr); 302 p4d = fill_p4d(pgd, vaddr); 303 pud = fill_pud(p4d, vaddr); 304 return fill_pmd(pud, vaddr); 305 } 306 307 pte_t * __init populate_extra_pte(unsigned long vaddr) 308 { 309 pmd_t *pmd; 310 311 pmd = populate_extra_pmd(vaddr); 312 return fill_pte(pmd, vaddr); 313 } 314 315 /* 316 * Create large page table mappings for a range of physical addresses. 317 */ 318 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 319 enum page_cache_mode cache) 320 { 321 pgd_t *pgd; 322 p4d_t *p4d; 323 pud_t *pud; 324 pmd_t *pmd; 325 pgprot_t prot; 326 327 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 328 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache))); 329 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 330 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 331 pgd = pgd_offset_k((unsigned long)__va(phys)); 332 if (pgd_none(*pgd)) { 333 p4d = (p4d_t *) spp_getpage(); 334 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | 335 _PAGE_USER)); 336 } 337 p4d = p4d_offset(pgd, (unsigned long)__va(phys)); 338 if (p4d_none(*p4d)) { 339 pud = (pud_t *) spp_getpage(); 340 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | 341 _PAGE_USER)); 342 } 343 pud = pud_offset(p4d, (unsigned long)__va(phys)); 344 if (pud_none(*pud)) { 345 pmd = (pmd_t *) spp_getpage(); 346 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 347 _PAGE_USER)); 348 } 349 pmd = pmd_offset(pud, phys); 350 BUG_ON(!pmd_none(*pmd)); 351 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 352 } 353 } 354 355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 356 { 357 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 358 } 359 360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 361 { 362 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 363 } 364 365 /* 366 * The head.S code sets up the kernel high mapping: 367 * 368 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 369 * 370 * phys_base holds the negative offset to the kernel, which is added 371 * to the compile time generated pmds. This results in invalid pmds up 372 * to the point where we hit the physaddr 0 mapping. 373 * 374 * We limit the mappings to the region from _text to _brk_end. _brk_end 375 * is rounded up to the 2MB boundary. This catches the invalid pmds as 376 * well, as they are located before _text: 377 */ 378 void __init cleanup_highmap(void) 379 { 380 unsigned long vaddr = __START_KERNEL_map; 381 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 382 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 383 pmd_t *pmd = level2_kernel_pgt; 384 385 /* 386 * Native path, max_pfn_mapped is not set yet. 387 * Xen has valid max_pfn_mapped set in 388 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 389 */ 390 if (max_pfn_mapped) 391 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 392 393 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 394 if (pmd_none(*pmd)) 395 continue; 396 if (vaddr < (unsigned long) _text || vaddr > end) 397 set_pmd(pmd, __pmd(0)); 398 } 399 } 400 401 /* 402 * Create PTE level page table mapping for physical addresses. 403 * It returns the last physical address mapped. 404 */ 405 static unsigned long __meminit 406 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, 407 pgprot_t prot) 408 { 409 unsigned long pages = 0, paddr_next; 410 unsigned long paddr_last = paddr_end; 411 pte_t *pte; 412 int i; 413 414 pte = pte_page + pte_index(paddr); 415 i = pte_index(paddr); 416 417 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { 418 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; 419 if (paddr >= paddr_end) { 420 if (!after_bootmem && 421 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 422 E820_TYPE_RAM) && 423 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 424 E820_TYPE_RESERVED_KERN)) 425 set_pte(pte, __pte(0)); 426 continue; 427 } 428 429 /* 430 * We will re-use the existing mapping. 431 * Xen for example has some special requirements, like mapping 432 * pagetable pages as RO. So assume someone who pre-setup 433 * these mappings are more intelligent. 434 */ 435 if (!pte_none(*pte)) { 436 if (!after_bootmem) 437 pages++; 438 continue; 439 } 440 441 if (0) 442 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, 443 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); 444 pages++; 445 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 446 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; 447 } 448 449 update_page_count(PG_LEVEL_4K, pages); 450 451 return paddr_last; 452 } 453 454 /* 455 * Create PMD level page table mapping for physical addresses. The virtual 456 * and physical address have to be aligned at this level. 457 * It returns the last physical address mapped. 458 */ 459 static unsigned long __meminit 460 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, 461 unsigned long page_size_mask, pgprot_t prot) 462 { 463 unsigned long pages = 0, paddr_next; 464 unsigned long paddr_last = paddr_end; 465 466 int i = pmd_index(paddr); 467 468 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { 469 pmd_t *pmd = pmd_page + pmd_index(paddr); 470 pte_t *pte; 471 pgprot_t new_prot = prot; 472 473 paddr_next = (paddr & PMD_MASK) + PMD_SIZE; 474 if (paddr >= paddr_end) { 475 if (!after_bootmem && 476 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 477 E820_TYPE_RAM) && 478 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 479 E820_TYPE_RESERVED_KERN)) 480 set_pmd(pmd, __pmd(0)); 481 continue; 482 } 483 484 if (!pmd_none(*pmd)) { 485 if (!pmd_large(*pmd)) { 486 spin_lock(&init_mm.page_table_lock); 487 pte = (pte_t *)pmd_page_vaddr(*pmd); 488 paddr_last = phys_pte_init(pte, paddr, 489 paddr_end, prot); 490 spin_unlock(&init_mm.page_table_lock); 491 continue; 492 } 493 /* 494 * If we are ok with PG_LEVEL_2M mapping, then we will 495 * use the existing mapping, 496 * 497 * Otherwise, we will split the large page mapping but 498 * use the same existing protection bits except for 499 * large page, so that we don't violate Intel's TLB 500 * Application note (317080) which says, while changing 501 * the page sizes, new and old translations should 502 * not differ with respect to page frame and 503 * attributes. 504 */ 505 if (page_size_mask & (1 << PG_LEVEL_2M)) { 506 if (!after_bootmem) 507 pages++; 508 paddr_last = paddr_next; 509 continue; 510 } 511 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 512 } 513 514 if (page_size_mask & (1<<PG_LEVEL_2M)) { 515 pages++; 516 spin_lock(&init_mm.page_table_lock); 517 set_pte((pte_t *)pmd, 518 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, 519 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 520 spin_unlock(&init_mm.page_table_lock); 521 paddr_last = paddr_next; 522 continue; 523 } 524 525 pte = alloc_low_page(); 526 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot); 527 528 spin_lock(&init_mm.page_table_lock); 529 pmd_populate_kernel(&init_mm, pmd, pte); 530 spin_unlock(&init_mm.page_table_lock); 531 } 532 update_page_count(PG_LEVEL_2M, pages); 533 return paddr_last; 534 } 535 536 /* 537 * Create PUD level page table mapping for physical addresses. The virtual 538 * and physical address do not have to be aligned at this level. KASLR can 539 * randomize virtual addresses up to this level. 540 * It returns the last physical address mapped. 541 */ 542 static unsigned long __meminit 543 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, 544 unsigned long page_size_mask) 545 { 546 unsigned long pages = 0, paddr_next; 547 unsigned long paddr_last = paddr_end; 548 unsigned long vaddr = (unsigned long)__va(paddr); 549 int i = pud_index(vaddr); 550 551 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { 552 pud_t *pud; 553 pmd_t *pmd; 554 pgprot_t prot = PAGE_KERNEL; 555 556 vaddr = (unsigned long)__va(paddr); 557 pud = pud_page + pud_index(vaddr); 558 paddr_next = (paddr & PUD_MASK) + PUD_SIZE; 559 560 if (paddr >= paddr_end) { 561 if (!after_bootmem && 562 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 563 E820_TYPE_RAM) && 564 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 565 E820_TYPE_RESERVED_KERN)) 566 set_pud(pud, __pud(0)); 567 continue; 568 } 569 570 if (!pud_none(*pud)) { 571 if (!pud_large(*pud)) { 572 pmd = pmd_offset(pud, 0); 573 paddr_last = phys_pmd_init(pmd, paddr, 574 paddr_end, 575 page_size_mask, 576 prot); 577 __flush_tlb_all(); 578 continue; 579 } 580 /* 581 * If we are ok with PG_LEVEL_1G mapping, then we will 582 * use the existing mapping. 583 * 584 * Otherwise, we will split the gbpage mapping but use 585 * the same existing protection bits except for large 586 * page, so that we don't violate Intel's TLB 587 * Application note (317080) which says, while changing 588 * the page sizes, new and old translations should 589 * not differ with respect to page frame and 590 * attributes. 591 */ 592 if (page_size_mask & (1 << PG_LEVEL_1G)) { 593 if (!after_bootmem) 594 pages++; 595 paddr_last = paddr_next; 596 continue; 597 } 598 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 599 } 600 601 if (page_size_mask & (1<<PG_LEVEL_1G)) { 602 pages++; 603 spin_lock(&init_mm.page_table_lock); 604 set_pte((pte_t *)pud, 605 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, 606 PAGE_KERNEL_LARGE)); 607 spin_unlock(&init_mm.page_table_lock); 608 paddr_last = paddr_next; 609 continue; 610 } 611 612 pmd = alloc_low_page(); 613 paddr_last = phys_pmd_init(pmd, paddr, paddr_end, 614 page_size_mask, prot); 615 616 spin_lock(&init_mm.page_table_lock); 617 pud_populate(&init_mm, pud, pmd); 618 spin_unlock(&init_mm.page_table_lock); 619 } 620 __flush_tlb_all(); 621 622 update_page_count(PG_LEVEL_1G, pages); 623 624 return paddr_last; 625 } 626 627 static unsigned long __meminit 628 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, 629 unsigned long page_size_mask) 630 { 631 unsigned long paddr_next, paddr_last = paddr_end; 632 unsigned long vaddr = (unsigned long)__va(paddr); 633 int i = p4d_index(vaddr); 634 635 if (!IS_ENABLED(CONFIG_X86_5LEVEL)) 636 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask); 637 638 for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) { 639 p4d_t *p4d; 640 pud_t *pud; 641 642 vaddr = (unsigned long)__va(paddr); 643 p4d = p4d_page + p4d_index(vaddr); 644 paddr_next = (paddr & P4D_MASK) + P4D_SIZE; 645 646 if (paddr >= paddr_end) { 647 if (!after_bootmem && 648 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 649 E820_TYPE_RAM) && 650 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 651 E820_TYPE_RESERVED_KERN)) 652 set_p4d(p4d, __p4d(0)); 653 continue; 654 } 655 656 if (!p4d_none(*p4d)) { 657 pud = pud_offset(p4d, 0); 658 paddr_last = phys_pud_init(pud, paddr, 659 paddr_end, 660 page_size_mask); 661 __flush_tlb_all(); 662 continue; 663 } 664 665 pud = alloc_low_page(); 666 paddr_last = phys_pud_init(pud, paddr, paddr_end, 667 page_size_mask); 668 669 spin_lock(&init_mm.page_table_lock); 670 p4d_populate(&init_mm, p4d, pud); 671 spin_unlock(&init_mm.page_table_lock); 672 } 673 __flush_tlb_all(); 674 675 return paddr_last; 676 } 677 678 /* 679 * Create page table mapping for the physical memory for specific physical 680 * addresses. The virtual and physical addresses have to be aligned on PMD level 681 * down. It returns the last physical address mapped. 682 */ 683 unsigned long __meminit 684 kernel_physical_mapping_init(unsigned long paddr_start, 685 unsigned long paddr_end, 686 unsigned long page_size_mask) 687 { 688 bool pgd_changed = false; 689 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; 690 691 paddr_last = paddr_end; 692 vaddr = (unsigned long)__va(paddr_start); 693 vaddr_end = (unsigned long)__va(paddr_end); 694 vaddr_start = vaddr; 695 696 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 697 pgd_t *pgd = pgd_offset_k(vaddr); 698 p4d_t *p4d; 699 700 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; 701 702 if (pgd_val(*pgd)) { 703 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 704 paddr_last = phys_p4d_init(p4d, __pa(vaddr), 705 __pa(vaddr_end), 706 page_size_mask); 707 continue; 708 } 709 710 p4d = alloc_low_page(); 711 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), 712 page_size_mask); 713 714 spin_lock(&init_mm.page_table_lock); 715 if (IS_ENABLED(CONFIG_X86_5LEVEL)) 716 pgd_populate(&init_mm, pgd, p4d); 717 else 718 p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d); 719 spin_unlock(&init_mm.page_table_lock); 720 pgd_changed = true; 721 } 722 723 if (pgd_changed) 724 sync_global_pgds(vaddr_start, vaddr_end - 1); 725 726 __flush_tlb_all(); 727 728 return paddr_last; 729 } 730 731 #ifndef CONFIG_NUMA 732 void __init initmem_init(void) 733 { 734 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 735 } 736 #endif 737 738 void __init paging_init(void) 739 { 740 sparse_memory_present_with_active_regions(MAX_NUMNODES); 741 sparse_init(); 742 743 /* 744 * clear the default setting with node 0 745 * note: don't use nodes_clear here, that is really clearing when 746 * numa support is not compiled in, and later node_set_state 747 * will not set it back. 748 */ 749 node_clear_state(0, N_MEMORY); 750 if (N_MEMORY != N_NORMAL_MEMORY) 751 node_clear_state(0, N_NORMAL_MEMORY); 752 753 zone_sizes_init(); 754 } 755 756 /* 757 * Memory hotplug specific functions 758 */ 759 #ifdef CONFIG_MEMORY_HOTPLUG 760 /* 761 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 762 * updating. 763 */ 764 static void update_end_of_memory_vars(u64 start, u64 size) 765 { 766 unsigned long end_pfn = PFN_UP(start + size); 767 768 if (end_pfn > max_pfn) { 769 max_pfn = end_pfn; 770 max_low_pfn = end_pfn; 771 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 772 } 773 } 774 775 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, 776 struct vmem_altmap *altmap, bool want_memblock) 777 { 778 int ret; 779 780 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); 781 WARN_ON_ONCE(ret); 782 783 /* update max_pfn, max_low_pfn and high_memory */ 784 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, 785 nr_pages << PAGE_SHIFT); 786 787 return ret; 788 } 789 790 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap, 791 bool want_memblock) 792 { 793 unsigned long start_pfn = start >> PAGE_SHIFT; 794 unsigned long nr_pages = size >> PAGE_SHIFT; 795 796 init_memory_mapping(start, start + size); 797 798 return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); 799 } 800 801 #define PAGE_INUSE 0xFD 802 803 static void __meminit free_pagetable(struct page *page, int order, 804 struct vmem_altmap *altmap) 805 { 806 unsigned long magic; 807 unsigned int nr_pages = 1 << order; 808 809 if (altmap) { 810 vmem_altmap_free(altmap, nr_pages); 811 return; 812 } 813 814 /* bootmem page has reserved flag */ 815 if (PageReserved(page)) { 816 __ClearPageReserved(page); 817 818 magic = (unsigned long)page->freelist; 819 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 820 while (nr_pages--) 821 put_page_bootmem(page++); 822 } else 823 while (nr_pages--) 824 free_reserved_page(page++); 825 } else 826 free_pages((unsigned long)page_address(page), order); 827 } 828 829 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd, 830 struct vmem_altmap *altmap) 831 { 832 pte_t *pte; 833 int i; 834 835 for (i = 0; i < PTRS_PER_PTE; i++) { 836 pte = pte_start + i; 837 if (!pte_none(*pte)) 838 return; 839 } 840 841 /* free a pte talbe */ 842 free_pagetable(pmd_page(*pmd), 0, altmap); 843 spin_lock(&init_mm.page_table_lock); 844 pmd_clear(pmd); 845 spin_unlock(&init_mm.page_table_lock); 846 } 847 848 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, 849 struct vmem_altmap *altmap) 850 { 851 pmd_t *pmd; 852 int i; 853 854 for (i = 0; i < PTRS_PER_PMD; i++) { 855 pmd = pmd_start + i; 856 if (!pmd_none(*pmd)) 857 return; 858 } 859 860 /* free a pmd talbe */ 861 free_pagetable(pud_page(*pud), 0, altmap); 862 spin_lock(&init_mm.page_table_lock); 863 pud_clear(pud); 864 spin_unlock(&init_mm.page_table_lock); 865 } 866 867 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d, 868 struct vmem_altmap *altmap) 869 { 870 pud_t *pud; 871 int i; 872 873 for (i = 0; i < PTRS_PER_PUD; i++) { 874 pud = pud_start + i; 875 if (!pud_none(*pud)) 876 return; 877 } 878 879 /* free a pud talbe */ 880 free_pagetable(p4d_page(*p4d), 0, altmap); 881 spin_lock(&init_mm.page_table_lock); 882 p4d_clear(p4d); 883 spin_unlock(&init_mm.page_table_lock); 884 } 885 886 static void __meminit 887 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 888 struct vmem_altmap *altmap, bool direct) 889 { 890 unsigned long next, pages = 0; 891 pte_t *pte; 892 void *page_addr; 893 phys_addr_t phys_addr; 894 895 pte = pte_start + pte_index(addr); 896 for (; addr < end; addr = next, pte++) { 897 next = (addr + PAGE_SIZE) & PAGE_MASK; 898 if (next > end) 899 next = end; 900 901 if (!pte_present(*pte)) 902 continue; 903 904 /* 905 * We mapped [0,1G) memory as identity mapping when 906 * initializing, in arch/x86/kernel/head_64.S. These 907 * pagetables cannot be removed. 908 */ 909 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 910 if (phys_addr < (phys_addr_t)0x40000000) 911 return; 912 913 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 914 /* 915 * Do not free direct mapping pages since they were 916 * freed when offlining, or simplely not in use. 917 */ 918 if (!direct) 919 free_pagetable(pte_page(*pte), 0, altmap); 920 921 spin_lock(&init_mm.page_table_lock); 922 pte_clear(&init_mm, addr, pte); 923 spin_unlock(&init_mm.page_table_lock); 924 925 /* For non-direct mapping, pages means nothing. */ 926 pages++; 927 } else { 928 /* 929 * If we are here, we are freeing vmemmap pages since 930 * direct mapped memory ranges to be freed are aligned. 931 * 932 * If we are not removing the whole page, it means 933 * other page structs in this page are being used and 934 * we canot remove them. So fill the unused page_structs 935 * with 0xFD, and remove the page when it is wholly 936 * filled with 0xFD. 937 */ 938 memset((void *)addr, PAGE_INUSE, next - addr); 939 940 page_addr = page_address(pte_page(*pte)); 941 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 942 free_pagetable(pte_page(*pte), 0, altmap); 943 944 spin_lock(&init_mm.page_table_lock); 945 pte_clear(&init_mm, addr, pte); 946 spin_unlock(&init_mm.page_table_lock); 947 } 948 } 949 } 950 951 /* Call free_pte_table() in remove_pmd_table(). */ 952 flush_tlb_all(); 953 if (direct) 954 update_page_count(PG_LEVEL_4K, -pages); 955 } 956 957 static void __meminit 958 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 959 bool direct, struct vmem_altmap *altmap) 960 { 961 unsigned long next, pages = 0; 962 pte_t *pte_base; 963 pmd_t *pmd; 964 void *page_addr; 965 966 pmd = pmd_start + pmd_index(addr); 967 for (; addr < end; addr = next, pmd++) { 968 next = pmd_addr_end(addr, end); 969 970 if (!pmd_present(*pmd)) 971 continue; 972 973 if (pmd_large(*pmd)) { 974 if (IS_ALIGNED(addr, PMD_SIZE) && 975 IS_ALIGNED(next, PMD_SIZE)) { 976 if (!direct) 977 free_pagetable(pmd_page(*pmd), 978 get_order(PMD_SIZE), 979 altmap); 980 981 spin_lock(&init_mm.page_table_lock); 982 pmd_clear(pmd); 983 spin_unlock(&init_mm.page_table_lock); 984 pages++; 985 } else { 986 /* If here, we are freeing vmemmap pages. */ 987 memset((void *)addr, PAGE_INUSE, next - addr); 988 989 page_addr = page_address(pmd_page(*pmd)); 990 if (!memchr_inv(page_addr, PAGE_INUSE, 991 PMD_SIZE)) { 992 free_pagetable(pmd_page(*pmd), 993 get_order(PMD_SIZE), 994 altmap); 995 996 spin_lock(&init_mm.page_table_lock); 997 pmd_clear(pmd); 998 spin_unlock(&init_mm.page_table_lock); 999 } 1000 } 1001 1002 continue; 1003 } 1004 1005 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 1006 remove_pte_table(pte_base, addr, next, altmap, direct); 1007 free_pte_table(pte_base, pmd, altmap); 1008 } 1009 1010 /* Call free_pmd_table() in remove_pud_table(). */ 1011 if (direct) 1012 update_page_count(PG_LEVEL_2M, -pages); 1013 } 1014 1015 static void __meminit 1016 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 1017 struct vmem_altmap *altmap, bool direct) 1018 { 1019 unsigned long next, pages = 0; 1020 pmd_t *pmd_base; 1021 pud_t *pud; 1022 void *page_addr; 1023 1024 pud = pud_start + pud_index(addr); 1025 for (; addr < end; addr = next, pud++) { 1026 next = pud_addr_end(addr, end); 1027 1028 if (!pud_present(*pud)) 1029 continue; 1030 1031 if (pud_large(*pud)) { 1032 if (IS_ALIGNED(addr, PUD_SIZE) && 1033 IS_ALIGNED(next, PUD_SIZE)) { 1034 if (!direct) 1035 free_pagetable(pud_page(*pud), 1036 get_order(PUD_SIZE), 1037 altmap); 1038 1039 spin_lock(&init_mm.page_table_lock); 1040 pud_clear(pud); 1041 spin_unlock(&init_mm.page_table_lock); 1042 pages++; 1043 } else { 1044 /* If here, we are freeing vmemmap pages. */ 1045 memset((void *)addr, PAGE_INUSE, next - addr); 1046 1047 page_addr = page_address(pud_page(*pud)); 1048 if (!memchr_inv(page_addr, PAGE_INUSE, 1049 PUD_SIZE)) { 1050 free_pagetable(pud_page(*pud), 1051 get_order(PUD_SIZE), 1052 altmap); 1053 1054 spin_lock(&init_mm.page_table_lock); 1055 pud_clear(pud); 1056 spin_unlock(&init_mm.page_table_lock); 1057 } 1058 } 1059 1060 continue; 1061 } 1062 1063 pmd_base = pmd_offset(pud, 0); 1064 remove_pmd_table(pmd_base, addr, next, direct, altmap); 1065 free_pmd_table(pmd_base, pud, altmap); 1066 } 1067 1068 if (direct) 1069 update_page_count(PG_LEVEL_1G, -pages); 1070 } 1071 1072 static void __meminit 1073 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, 1074 struct vmem_altmap *altmap, bool direct) 1075 { 1076 unsigned long next, pages = 0; 1077 pud_t *pud_base; 1078 p4d_t *p4d; 1079 1080 p4d = p4d_start + p4d_index(addr); 1081 for (; addr < end; addr = next, p4d++) { 1082 next = p4d_addr_end(addr, end); 1083 1084 if (!p4d_present(*p4d)) 1085 continue; 1086 1087 BUILD_BUG_ON(p4d_large(*p4d)); 1088 1089 pud_base = pud_offset(p4d, 0); 1090 remove_pud_table(pud_base, addr, next, altmap, direct); 1091 /* 1092 * For 4-level page tables we do not want to free PUDs, but in the 1093 * 5-level case we should free them. This code will have to change 1094 * to adapt for boot-time switching between 4 and 5 level page tables. 1095 */ 1096 if (CONFIG_PGTABLE_LEVELS == 5) 1097 free_pud_table(pud_base, p4d, altmap); 1098 } 1099 1100 if (direct) 1101 update_page_count(PG_LEVEL_512G, -pages); 1102 } 1103 1104 /* start and end are both virtual address. */ 1105 static void __meminit 1106 remove_pagetable(unsigned long start, unsigned long end, bool direct, 1107 struct vmem_altmap *altmap) 1108 { 1109 unsigned long next; 1110 unsigned long addr; 1111 pgd_t *pgd; 1112 p4d_t *p4d; 1113 1114 for (addr = start; addr < end; addr = next) { 1115 next = pgd_addr_end(addr, end); 1116 1117 pgd = pgd_offset_k(addr); 1118 if (!pgd_present(*pgd)) 1119 continue; 1120 1121 p4d = p4d_offset(pgd, 0); 1122 remove_p4d_table(p4d, addr, next, altmap, direct); 1123 } 1124 1125 flush_tlb_all(); 1126 } 1127 1128 void __ref vmemmap_free(unsigned long start, unsigned long end, 1129 struct vmem_altmap *altmap) 1130 { 1131 remove_pagetable(start, end, false, altmap); 1132 } 1133 1134 #ifdef CONFIG_MEMORY_HOTREMOVE 1135 static void __meminit 1136 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1137 { 1138 start = (unsigned long)__va(start); 1139 end = (unsigned long)__va(end); 1140 1141 remove_pagetable(start, end, true, NULL); 1142 } 1143 1144 int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1145 { 1146 unsigned long start_pfn = start >> PAGE_SHIFT; 1147 unsigned long nr_pages = size >> PAGE_SHIFT; 1148 struct page *page = pfn_to_page(start_pfn); 1149 struct zone *zone; 1150 int ret; 1151 1152 /* With altmap the first mapped page is offset from @start */ 1153 if (altmap) 1154 page += vmem_altmap_offset(altmap); 1155 zone = page_zone(page); 1156 ret = __remove_pages(zone, start_pfn, nr_pages, altmap); 1157 WARN_ON_ONCE(ret); 1158 kernel_physical_mapping_remove(start, start + size); 1159 1160 return ret; 1161 } 1162 #endif 1163 #endif /* CONFIG_MEMORY_HOTPLUG */ 1164 1165 static struct kcore_list kcore_vsyscall; 1166 1167 static void __init register_page_bootmem_info(void) 1168 { 1169 #ifdef CONFIG_NUMA 1170 int i; 1171 1172 for_each_online_node(i) 1173 register_page_bootmem_info_node(NODE_DATA(i)); 1174 #endif 1175 } 1176 1177 void __init mem_init(void) 1178 { 1179 pci_iommu_alloc(); 1180 1181 /* clear_bss() already clear the empty_zero_page */ 1182 1183 /* this will put all memory onto the freelists */ 1184 free_all_bootmem(); 1185 after_bootmem = 1; 1186 1187 /* 1188 * Must be done after boot memory is put on freelist, because here we 1189 * might set fields in deferred struct pages that have not yet been 1190 * initialized, and free_all_bootmem() initializes all the reserved 1191 * deferred pages for us. 1192 */ 1193 register_page_bootmem_info(); 1194 1195 /* Register memory areas for /proc/kcore */ 1196 if (get_gate_vma(&init_mm)) 1197 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); 1198 1199 mem_init_print_info(NULL); 1200 } 1201 1202 int kernel_set_to_readonly; 1203 1204 void set_kernel_text_rw(void) 1205 { 1206 unsigned long start = PFN_ALIGN(_text); 1207 unsigned long end = PFN_ALIGN(__stop___ex_table); 1208 1209 if (!kernel_set_to_readonly) 1210 return; 1211 1212 pr_debug("Set kernel text: %lx - %lx for read write\n", 1213 start, end); 1214 1215 /* 1216 * Make the kernel identity mapping for text RW. Kernel text 1217 * mapping will always be RO. Refer to the comment in 1218 * static_protections() in pageattr.c 1219 */ 1220 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1221 } 1222 1223 void set_kernel_text_ro(void) 1224 { 1225 unsigned long start = PFN_ALIGN(_text); 1226 unsigned long end = PFN_ALIGN(__stop___ex_table); 1227 1228 if (!kernel_set_to_readonly) 1229 return; 1230 1231 pr_debug("Set kernel text: %lx - %lx for read only\n", 1232 start, end); 1233 1234 /* 1235 * Set the kernel identity mapping for text RO. 1236 */ 1237 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1238 } 1239 1240 void mark_rodata_ro(void) 1241 { 1242 unsigned long start = PFN_ALIGN(_text); 1243 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1244 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1245 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1246 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1247 unsigned long all_end; 1248 1249 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1250 (end - start) >> 10); 1251 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1252 1253 kernel_set_to_readonly = 1; 1254 1255 /* 1256 * The rodata/data/bss/brk section (but not the kernel text!) 1257 * should also be not-executable. 1258 * 1259 * We align all_end to PMD_SIZE because the existing mapping 1260 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1261 * split the PMD and the reminder between _brk_end and the end 1262 * of the PMD will remain mapped executable. 1263 * 1264 * Any PMD which was setup after the one which covers _brk_end 1265 * has been zapped already via cleanup_highmem(). 1266 */ 1267 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1268 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1269 1270 #ifdef CONFIG_CPA_DEBUG 1271 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1272 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1273 1274 printk(KERN_INFO "Testing CPA: again\n"); 1275 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1276 #endif 1277 1278 free_init_pages("unused kernel", 1279 (unsigned long) __va(__pa_symbol(text_end)), 1280 (unsigned long) __va(__pa_symbol(rodata_start))); 1281 free_init_pages("unused kernel", 1282 (unsigned long) __va(__pa_symbol(rodata_end)), 1283 (unsigned long) __va(__pa_symbol(_sdata))); 1284 1285 debug_checkwx(); 1286 } 1287 1288 int kern_addr_valid(unsigned long addr) 1289 { 1290 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1291 pgd_t *pgd; 1292 p4d_t *p4d; 1293 pud_t *pud; 1294 pmd_t *pmd; 1295 pte_t *pte; 1296 1297 if (above != 0 && above != -1UL) 1298 return 0; 1299 1300 pgd = pgd_offset_k(addr); 1301 if (pgd_none(*pgd)) 1302 return 0; 1303 1304 p4d = p4d_offset(pgd, addr); 1305 if (p4d_none(*p4d)) 1306 return 0; 1307 1308 pud = pud_offset(p4d, addr); 1309 if (pud_none(*pud)) 1310 return 0; 1311 1312 if (pud_large(*pud)) 1313 return pfn_valid(pud_pfn(*pud)); 1314 1315 pmd = pmd_offset(pud, addr); 1316 if (pmd_none(*pmd)) 1317 return 0; 1318 1319 if (pmd_large(*pmd)) 1320 return pfn_valid(pmd_pfn(*pmd)); 1321 1322 pte = pte_offset_kernel(pmd, addr); 1323 if (pte_none(*pte)) 1324 return 0; 1325 1326 return pfn_valid(pte_pfn(*pte)); 1327 } 1328 1329 static unsigned long probe_memory_block_size(void) 1330 { 1331 unsigned long bz = MIN_MEMORY_BLOCK_SIZE; 1332 1333 /* if system is UV or has 64GB of RAM or more, use large blocks */ 1334 if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30))) 1335 bz = 2UL << 30; /* 2GB */ 1336 1337 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); 1338 1339 return bz; 1340 } 1341 1342 static unsigned long memory_block_size_probed; 1343 unsigned long memory_block_size_bytes(void) 1344 { 1345 if (!memory_block_size_probed) 1346 memory_block_size_probed = probe_memory_block_size(); 1347 1348 return memory_block_size_probed; 1349 } 1350 1351 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1352 /* 1353 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1354 */ 1355 static long __meminitdata addr_start, addr_end; 1356 static void __meminitdata *p_start, *p_end; 1357 static int __meminitdata node_start; 1358 1359 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1360 unsigned long end, int node, struct vmem_altmap *altmap) 1361 { 1362 unsigned long addr; 1363 unsigned long next; 1364 pgd_t *pgd; 1365 p4d_t *p4d; 1366 pud_t *pud; 1367 pmd_t *pmd; 1368 1369 for (addr = start; addr < end; addr = next) { 1370 next = pmd_addr_end(addr, end); 1371 1372 pgd = vmemmap_pgd_populate(addr, node); 1373 if (!pgd) 1374 return -ENOMEM; 1375 1376 p4d = vmemmap_p4d_populate(pgd, addr, node); 1377 if (!p4d) 1378 return -ENOMEM; 1379 1380 pud = vmemmap_pud_populate(p4d, addr, node); 1381 if (!pud) 1382 return -ENOMEM; 1383 1384 pmd = pmd_offset(pud, addr); 1385 if (pmd_none(*pmd)) { 1386 void *p; 1387 1388 if (altmap) 1389 p = altmap_alloc_block_buf(PMD_SIZE, altmap); 1390 else 1391 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1392 if (p) { 1393 pte_t entry; 1394 1395 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1396 PAGE_KERNEL_LARGE); 1397 set_pmd(pmd, __pmd(pte_val(entry))); 1398 1399 /* check to see if we have contiguous blocks */ 1400 if (p_end != p || node_start != node) { 1401 if (p_start) 1402 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1403 addr_start, addr_end-1, p_start, p_end-1, node_start); 1404 addr_start = addr; 1405 node_start = node; 1406 p_start = p; 1407 } 1408 1409 addr_end = addr + PMD_SIZE; 1410 p_end = p + PMD_SIZE; 1411 continue; 1412 } else if (altmap) 1413 return -ENOMEM; /* no fallback */ 1414 } else if (pmd_large(*pmd)) { 1415 vmemmap_verify((pte_t *)pmd, node, addr, next); 1416 continue; 1417 } 1418 if (vmemmap_populate_basepages(addr, next, node)) 1419 return -ENOMEM; 1420 } 1421 return 0; 1422 } 1423 1424 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1425 struct vmem_altmap *altmap) 1426 { 1427 int err; 1428 1429 if (boot_cpu_has(X86_FEATURE_PSE)) 1430 err = vmemmap_populate_hugepages(start, end, node, altmap); 1431 else if (altmap) { 1432 pr_err_once("%s: no cpu support for altmap allocations\n", 1433 __func__); 1434 err = -ENOMEM; 1435 } else 1436 err = vmemmap_populate_basepages(start, end, node); 1437 if (!err) 1438 sync_global_pgds(start, end - 1); 1439 return err; 1440 } 1441 1442 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1443 void register_page_bootmem_memmap(unsigned long section_nr, 1444 struct page *start_page, unsigned long nr_pages) 1445 { 1446 unsigned long addr = (unsigned long)start_page; 1447 unsigned long end = (unsigned long)(start_page + nr_pages); 1448 unsigned long next; 1449 pgd_t *pgd; 1450 p4d_t *p4d; 1451 pud_t *pud; 1452 pmd_t *pmd; 1453 unsigned int nr_pmd_pages; 1454 struct page *page; 1455 1456 for (; addr < end; addr = next) { 1457 pte_t *pte = NULL; 1458 1459 pgd = pgd_offset_k(addr); 1460 if (pgd_none(*pgd)) { 1461 next = (addr + PAGE_SIZE) & PAGE_MASK; 1462 continue; 1463 } 1464 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1465 1466 p4d = p4d_offset(pgd, addr); 1467 if (p4d_none(*p4d)) { 1468 next = (addr + PAGE_SIZE) & PAGE_MASK; 1469 continue; 1470 } 1471 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); 1472 1473 pud = pud_offset(p4d, addr); 1474 if (pud_none(*pud)) { 1475 next = (addr + PAGE_SIZE) & PAGE_MASK; 1476 continue; 1477 } 1478 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1479 1480 if (!boot_cpu_has(X86_FEATURE_PSE)) { 1481 next = (addr + PAGE_SIZE) & PAGE_MASK; 1482 pmd = pmd_offset(pud, addr); 1483 if (pmd_none(*pmd)) 1484 continue; 1485 get_page_bootmem(section_nr, pmd_page(*pmd), 1486 MIX_SECTION_INFO); 1487 1488 pte = pte_offset_kernel(pmd, addr); 1489 if (pte_none(*pte)) 1490 continue; 1491 get_page_bootmem(section_nr, pte_page(*pte), 1492 SECTION_INFO); 1493 } else { 1494 next = pmd_addr_end(addr, end); 1495 1496 pmd = pmd_offset(pud, addr); 1497 if (pmd_none(*pmd)) 1498 continue; 1499 1500 nr_pmd_pages = 1 << get_order(PMD_SIZE); 1501 page = pmd_page(*pmd); 1502 while (nr_pmd_pages--) 1503 get_page_bootmem(section_nr, page++, 1504 SECTION_INFO); 1505 } 1506 } 1507 } 1508 #endif 1509 1510 void __meminit vmemmap_populate_print_last(void) 1511 { 1512 if (p_start) { 1513 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1514 addr_start, addr_end-1, p_start, p_end-1, node_start); 1515 p_start = NULL; 1516 p_end = NULL; 1517 node_start = 0; 1518 } 1519 } 1520 #endif 1521