xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 6774def6)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 
58 #include "mm_internal.h"
59 
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 			   unsigned long addr, unsigned long end)
62 {
63 	addr &= PMD_MASK;
64 	for (; addr < end; addr += PMD_SIZE) {
65 		pmd_t *pmd = pmd_page + pmd_index(addr);
66 
67 		if (!pmd_present(*pmd))
68 			set_pmd(pmd, __pmd(addr | pmd_flag));
69 	}
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 			  unsigned long addr, unsigned long end)
73 {
74 	unsigned long next;
75 
76 	for (; addr < end; addr = next) {
77 		pud_t *pud = pud_page + pud_index(addr);
78 		pmd_t *pmd;
79 
80 		next = (addr & PUD_MASK) + PUD_SIZE;
81 		if (next > end)
82 			next = end;
83 
84 		if (pud_present(*pud)) {
85 			pmd = pmd_offset(pud, 0);
86 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
87 			continue;
88 		}
89 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90 		if (!pmd)
91 			return -ENOMEM;
92 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94 	}
95 
96 	return 0;
97 }
98 
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 			      unsigned long addr, unsigned long end)
101 {
102 	unsigned long next;
103 	int result;
104 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105 
106 	for (; addr < end; addr = next) {
107 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108 		pud_t *pud;
109 
110 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111 		if (next > end)
112 			next = end;
113 
114 		if (pgd_present(*pgd)) {
115 			pud = pud_offset(pgd, 0);
116 			result = ident_pud_init(info, pud, addr, next);
117 			if (result)
118 				return result;
119 			continue;
120 		}
121 
122 		pud = (pud_t *)info->alloc_pgt_page(info->context);
123 		if (!pud)
124 			return -ENOMEM;
125 		result = ident_pud_init(info, pud, addr, next);
126 		if (result)
127 			return result;
128 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129 	}
130 
131 	return 0;
132 }
133 
134 static int __init parse_direct_gbpages_off(char *arg)
135 {
136 	direct_gbpages = 0;
137 	return 0;
138 }
139 early_param("nogbpages", parse_direct_gbpages_off);
140 
141 static int __init parse_direct_gbpages_on(char *arg)
142 {
143 	direct_gbpages = 1;
144 	return 0;
145 }
146 early_param("gbpages", parse_direct_gbpages_on);
147 
148 /*
149  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150  * physical space so we can cache the place of the first one and move
151  * around without checking the pgd every time.
152  */
153 
154 pteval_t __supported_pte_mask __read_mostly = ~0;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
156 
157 int force_personality32;
158 
159 /*
160  * noexec32=on|off
161  * Control non executable heap for 32bit processes.
162  * To control the stack too use noexec=off
163  *
164  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165  * off	PROT_READ implies PROT_EXEC
166  */
167 static int __init nonx32_setup(char *str)
168 {
169 	if (!strcmp(str, "on"))
170 		force_personality32 &= ~READ_IMPLIES_EXEC;
171 	else if (!strcmp(str, "off"))
172 		force_personality32 |= READ_IMPLIES_EXEC;
173 	return 1;
174 }
175 __setup("noexec32=", nonx32_setup);
176 
177 /*
178  * When memory was added/removed make sure all the processes MM have
179  * suitable PGD entries in the local PGD level page.
180  */
181 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
182 {
183 	unsigned long address;
184 
185 	for (address = start; address <= end; address += PGDIR_SIZE) {
186 		const pgd_t *pgd_ref = pgd_offset_k(address);
187 		struct page *page;
188 
189 		/*
190 		 * When it is called after memory hot remove, pgd_none()
191 		 * returns true. In this case (removed == 1), we must clear
192 		 * the PGD entries in the local PGD level page.
193 		 */
194 		if (pgd_none(*pgd_ref) && !removed)
195 			continue;
196 
197 		spin_lock(&pgd_lock);
198 		list_for_each_entry(page, &pgd_list, lru) {
199 			pgd_t *pgd;
200 			spinlock_t *pgt_lock;
201 
202 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
203 			/* the pgt_lock only for Xen */
204 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
205 			spin_lock(pgt_lock);
206 
207 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
208 				BUG_ON(pgd_page_vaddr(*pgd)
209 				       != pgd_page_vaddr(*pgd_ref));
210 
211 			if (removed) {
212 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
213 					pgd_clear(pgd);
214 			} else {
215 				if (pgd_none(*pgd))
216 					set_pgd(pgd, *pgd_ref);
217 			}
218 
219 			spin_unlock(pgt_lock);
220 		}
221 		spin_unlock(&pgd_lock);
222 	}
223 }
224 
225 /*
226  * NOTE: This function is marked __ref because it calls __init function
227  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
228  */
229 static __ref void *spp_getpage(void)
230 {
231 	void *ptr;
232 
233 	if (after_bootmem)
234 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
235 	else
236 		ptr = alloc_bootmem_pages(PAGE_SIZE);
237 
238 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
239 		panic("set_pte_phys: cannot allocate page data %s\n",
240 			after_bootmem ? "after bootmem" : "");
241 	}
242 
243 	pr_debug("spp_getpage %p\n", ptr);
244 
245 	return ptr;
246 }
247 
248 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
249 {
250 	if (pgd_none(*pgd)) {
251 		pud_t *pud = (pud_t *)spp_getpage();
252 		pgd_populate(&init_mm, pgd, pud);
253 		if (pud != pud_offset(pgd, 0))
254 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
255 			       pud, pud_offset(pgd, 0));
256 	}
257 	return pud_offset(pgd, vaddr);
258 }
259 
260 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
261 {
262 	if (pud_none(*pud)) {
263 		pmd_t *pmd = (pmd_t *) spp_getpage();
264 		pud_populate(&init_mm, pud, pmd);
265 		if (pmd != pmd_offset(pud, 0))
266 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
267 			       pmd, pmd_offset(pud, 0));
268 	}
269 	return pmd_offset(pud, vaddr);
270 }
271 
272 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
273 {
274 	if (pmd_none(*pmd)) {
275 		pte_t *pte = (pte_t *) spp_getpage();
276 		pmd_populate_kernel(&init_mm, pmd, pte);
277 		if (pte != pte_offset_kernel(pmd, 0))
278 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
279 	}
280 	return pte_offset_kernel(pmd, vaddr);
281 }
282 
283 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
284 {
285 	pud_t *pud;
286 	pmd_t *pmd;
287 	pte_t *pte;
288 
289 	pud = pud_page + pud_index(vaddr);
290 	pmd = fill_pmd(pud, vaddr);
291 	pte = fill_pte(pmd, vaddr);
292 
293 	set_pte(pte, new_pte);
294 
295 	/*
296 	 * It's enough to flush this one mapping.
297 	 * (PGE mappings get flushed as well)
298 	 */
299 	__flush_tlb_one(vaddr);
300 }
301 
302 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
303 {
304 	pgd_t *pgd;
305 	pud_t *pud_page;
306 
307 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
308 
309 	pgd = pgd_offset_k(vaddr);
310 	if (pgd_none(*pgd)) {
311 		printk(KERN_ERR
312 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
313 		return;
314 	}
315 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
316 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
317 }
318 
319 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
320 {
321 	pgd_t *pgd;
322 	pud_t *pud;
323 
324 	pgd = pgd_offset_k(vaddr);
325 	pud = fill_pud(pgd, vaddr);
326 	return fill_pmd(pud, vaddr);
327 }
328 
329 pte_t * __init populate_extra_pte(unsigned long vaddr)
330 {
331 	pmd_t *pmd;
332 
333 	pmd = populate_extra_pmd(vaddr);
334 	return fill_pte(pmd, vaddr);
335 }
336 
337 /*
338  * Create large page table mappings for a range of physical addresses.
339  */
340 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
341 						pgprot_t prot)
342 {
343 	pgd_t *pgd;
344 	pud_t *pud;
345 	pmd_t *pmd;
346 
347 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
348 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
349 		pgd = pgd_offset_k((unsigned long)__va(phys));
350 		if (pgd_none(*pgd)) {
351 			pud = (pud_t *) spp_getpage();
352 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
353 						_PAGE_USER));
354 		}
355 		pud = pud_offset(pgd, (unsigned long)__va(phys));
356 		if (pud_none(*pud)) {
357 			pmd = (pmd_t *) spp_getpage();
358 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
359 						_PAGE_USER));
360 		}
361 		pmd = pmd_offset(pud, phys);
362 		BUG_ON(!pmd_none(*pmd));
363 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
364 	}
365 }
366 
367 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
368 {
369 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
370 }
371 
372 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
373 {
374 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
375 }
376 
377 /*
378  * The head.S code sets up the kernel high mapping:
379  *
380  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
381  *
382  * phys_base holds the negative offset to the kernel, which is added
383  * to the compile time generated pmds. This results in invalid pmds up
384  * to the point where we hit the physaddr 0 mapping.
385  *
386  * We limit the mappings to the region from _text to _brk_end.  _brk_end
387  * is rounded up to the 2MB boundary. This catches the invalid pmds as
388  * well, as they are located before _text:
389  */
390 void __init cleanup_highmap(void)
391 {
392 	unsigned long vaddr = __START_KERNEL_map;
393 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
394 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
395 	pmd_t *pmd = level2_kernel_pgt;
396 
397 	/*
398 	 * Native path, max_pfn_mapped is not set yet.
399 	 * Xen has valid max_pfn_mapped set in
400 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
401 	 */
402 	if (max_pfn_mapped)
403 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
404 
405 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
406 		if (pmd_none(*pmd))
407 			continue;
408 		if (vaddr < (unsigned long) _text || vaddr > end)
409 			set_pmd(pmd, __pmd(0));
410 	}
411 }
412 
413 static unsigned long __meminit
414 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
415 	      pgprot_t prot)
416 {
417 	unsigned long pages = 0, next;
418 	unsigned long last_map_addr = end;
419 	int i;
420 
421 	pte_t *pte = pte_page + pte_index(addr);
422 
423 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
424 		next = (addr & PAGE_MASK) + PAGE_SIZE;
425 		if (addr >= end) {
426 			if (!after_bootmem &&
427 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
428 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
429 				set_pte(pte, __pte(0));
430 			continue;
431 		}
432 
433 		/*
434 		 * We will re-use the existing mapping.
435 		 * Xen for example has some special requirements, like mapping
436 		 * pagetable pages as RO. So assume someone who pre-setup
437 		 * these mappings are more intelligent.
438 		 */
439 		if (pte_val(*pte)) {
440 			if (!after_bootmem)
441 				pages++;
442 			continue;
443 		}
444 
445 		if (0)
446 			printk("   pte=%p addr=%lx pte=%016lx\n",
447 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
448 		pages++;
449 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
450 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
451 	}
452 
453 	update_page_count(PG_LEVEL_4K, pages);
454 
455 	return last_map_addr;
456 }
457 
458 static unsigned long __meminit
459 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
460 	      unsigned long page_size_mask, pgprot_t prot)
461 {
462 	unsigned long pages = 0, next;
463 	unsigned long last_map_addr = end;
464 
465 	int i = pmd_index(address);
466 
467 	for (; i < PTRS_PER_PMD; i++, address = next) {
468 		pmd_t *pmd = pmd_page + pmd_index(address);
469 		pte_t *pte;
470 		pgprot_t new_prot = prot;
471 
472 		next = (address & PMD_MASK) + PMD_SIZE;
473 		if (address >= end) {
474 			if (!after_bootmem &&
475 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
476 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
477 				set_pmd(pmd, __pmd(0));
478 			continue;
479 		}
480 
481 		if (pmd_val(*pmd)) {
482 			if (!pmd_large(*pmd)) {
483 				spin_lock(&init_mm.page_table_lock);
484 				pte = (pte_t *)pmd_page_vaddr(*pmd);
485 				last_map_addr = phys_pte_init(pte, address,
486 								end, prot);
487 				spin_unlock(&init_mm.page_table_lock);
488 				continue;
489 			}
490 			/*
491 			 * If we are ok with PG_LEVEL_2M mapping, then we will
492 			 * use the existing mapping,
493 			 *
494 			 * Otherwise, we will split the large page mapping but
495 			 * use the same existing protection bits except for
496 			 * large page, so that we don't violate Intel's TLB
497 			 * Application note (317080) which says, while changing
498 			 * the page sizes, new and old translations should
499 			 * not differ with respect to page frame and
500 			 * attributes.
501 			 */
502 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
503 				if (!after_bootmem)
504 					pages++;
505 				last_map_addr = next;
506 				continue;
507 			}
508 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
509 		}
510 
511 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
512 			pages++;
513 			spin_lock(&init_mm.page_table_lock);
514 			set_pte((pte_t *)pmd,
515 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
516 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
517 			spin_unlock(&init_mm.page_table_lock);
518 			last_map_addr = next;
519 			continue;
520 		}
521 
522 		pte = alloc_low_page();
523 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
524 
525 		spin_lock(&init_mm.page_table_lock);
526 		pmd_populate_kernel(&init_mm, pmd, pte);
527 		spin_unlock(&init_mm.page_table_lock);
528 	}
529 	update_page_count(PG_LEVEL_2M, pages);
530 	return last_map_addr;
531 }
532 
533 static unsigned long __meminit
534 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
535 			 unsigned long page_size_mask)
536 {
537 	unsigned long pages = 0, next;
538 	unsigned long last_map_addr = end;
539 	int i = pud_index(addr);
540 
541 	for (; i < PTRS_PER_PUD; i++, addr = next) {
542 		pud_t *pud = pud_page + pud_index(addr);
543 		pmd_t *pmd;
544 		pgprot_t prot = PAGE_KERNEL;
545 
546 		next = (addr & PUD_MASK) + PUD_SIZE;
547 		if (addr >= end) {
548 			if (!after_bootmem &&
549 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
550 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
551 				set_pud(pud, __pud(0));
552 			continue;
553 		}
554 
555 		if (pud_val(*pud)) {
556 			if (!pud_large(*pud)) {
557 				pmd = pmd_offset(pud, 0);
558 				last_map_addr = phys_pmd_init(pmd, addr, end,
559 							 page_size_mask, prot);
560 				__flush_tlb_all();
561 				continue;
562 			}
563 			/*
564 			 * If we are ok with PG_LEVEL_1G mapping, then we will
565 			 * use the existing mapping.
566 			 *
567 			 * Otherwise, we will split the gbpage mapping but use
568 			 * the same existing protection  bits except for large
569 			 * page, so that we don't violate Intel's TLB
570 			 * Application note (317080) which says, while changing
571 			 * the page sizes, new and old translations should
572 			 * not differ with respect to page frame and
573 			 * attributes.
574 			 */
575 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
576 				if (!after_bootmem)
577 					pages++;
578 				last_map_addr = next;
579 				continue;
580 			}
581 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
582 		}
583 
584 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
585 			pages++;
586 			spin_lock(&init_mm.page_table_lock);
587 			set_pte((pte_t *)pud,
588 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
589 					PAGE_KERNEL_LARGE));
590 			spin_unlock(&init_mm.page_table_lock);
591 			last_map_addr = next;
592 			continue;
593 		}
594 
595 		pmd = alloc_low_page();
596 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
597 					      prot);
598 
599 		spin_lock(&init_mm.page_table_lock);
600 		pud_populate(&init_mm, pud, pmd);
601 		spin_unlock(&init_mm.page_table_lock);
602 	}
603 	__flush_tlb_all();
604 
605 	update_page_count(PG_LEVEL_1G, pages);
606 
607 	return last_map_addr;
608 }
609 
610 unsigned long __meminit
611 kernel_physical_mapping_init(unsigned long start,
612 			     unsigned long end,
613 			     unsigned long page_size_mask)
614 {
615 	bool pgd_changed = false;
616 	unsigned long next, last_map_addr = end;
617 	unsigned long addr;
618 
619 	start = (unsigned long)__va(start);
620 	end = (unsigned long)__va(end);
621 	addr = start;
622 
623 	for (; start < end; start = next) {
624 		pgd_t *pgd = pgd_offset_k(start);
625 		pud_t *pud;
626 
627 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
628 
629 		if (pgd_val(*pgd)) {
630 			pud = (pud_t *)pgd_page_vaddr(*pgd);
631 			last_map_addr = phys_pud_init(pud, __pa(start),
632 						 __pa(end), page_size_mask);
633 			continue;
634 		}
635 
636 		pud = alloc_low_page();
637 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
638 						 page_size_mask);
639 
640 		spin_lock(&init_mm.page_table_lock);
641 		pgd_populate(&init_mm, pgd, pud);
642 		spin_unlock(&init_mm.page_table_lock);
643 		pgd_changed = true;
644 	}
645 
646 	if (pgd_changed)
647 		sync_global_pgds(addr, end - 1, 0);
648 
649 	__flush_tlb_all();
650 
651 	return last_map_addr;
652 }
653 
654 #ifndef CONFIG_NUMA
655 void __init initmem_init(void)
656 {
657 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
658 }
659 #endif
660 
661 void __init paging_init(void)
662 {
663 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
664 	sparse_init();
665 
666 	/*
667 	 * clear the default setting with node 0
668 	 * note: don't use nodes_clear here, that is really clearing when
669 	 *	 numa support is not compiled in, and later node_set_state
670 	 *	 will not set it back.
671 	 */
672 	node_clear_state(0, N_MEMORY);
673 	if (N_MEMORY != N_NORMAL_MEMORY)
674 		node_clear_state(0, N_NORMAL_MEMORY);
675 
676 	zone_sizes_init();
677 }
678 
679 /*
680  * Memory hotplug specific functions
681  */
682 #ifdef CONFIG_MEMORY_HOTPLUG
683 /*
684  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
685  * updating.
686  */
687 static void  update_end_of_memory_vars(u64 start, u64 size)
688 {
689 	unsigned long end_pfn = PFN_UP(start + size);
690 
691 	if (end_pfn > max_pfn) {
692 		max_pfn = end_pfn;
693 		max_low_pfn = end_pfn;
694 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
695 	}
696 }
697 
698 /*
699  * Memory is added always to NORMAL zone. This means you will never get
700  * additional DMA/DMA32 memory.
701  */
702 int arch_add_memory(int nid, u64 start, u64 size)
703 {
704 	struct pglist_data *pgdat = NODE_DATA(nid);
705 	struct zone *zone = pgdat->node_zones +
706 		zone_for_memory(nid, start, size, ZONE_NORMAL);
707 	unsigned long start_pfn = start >> PAGE_SHIFT;
708 	unsigned long nr_pages = size >> PAGE_SHIFT;
709 	int ret;
710 
711 	init_memory_mapping(start, start + size);
712 
713 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
714 	WARN_ON_ONCE(ret);
715 
716 	/* update max_pfn, max_low_pfn and high_memory */
717 	update_end_of_memory_vars(start, size);
718 
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(arch_add_memory);
722 
723 #define PAGE_INUSE 0xFD
724 
725 static void __meminit free_pagetable(struct page *page, int order)
726 {
727 	unsigned long magic;
728 	unsigned int nr_pages = 1 << order;
729 
730 	/* bootmem page has reserved flag */
731 	if (PageReserved(page)) {
732 		__ClearPageReserved(page);
733 
734 		magic = (unsigned long)page->lru.next;
735 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
736 			while (nr_pages--)
737 				put_page_bootmem(page++);
738 		} else
739 			while (nr_pages--)
740 				free_reserved_page(page++);
741 	} else
742 		free_pages((unsigned long)page_address(page), order);
743 }
744 
745 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
746 {
747 	pte_t *pte;
748 	int i;
749 
750 	for (i = 0; i < PTRS_PER_PTE; i++) {
751 		pte = pte_start + i;
752 		if (pte_val(*pte))
753 			return;
754 	}
755 
756 	/* free a pte talbe */
757 	free_pagetable(pmd_page(*pmd), 0);
758 	spin_lock(&init_mm.page_table_lock);
759 	pmd_clear(pmd);
760 	spin_unlock(&init_mm.page_table_lock);
761 }
762 
763 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
764 {
765 	pmd_t *pmd;
766 	int i;
767 
768 	for (i = 0; i < PTRS_PER_PMD; i++) {
769 		pmd = pmd_start + i;
770 		if (pmd_val(*pmd))
771 			return;
772 	}
773 
774 	/* free a pmd talbe */
775 	free_pagetable(pud_page(*pud), 0);
776 	spin_lock(&init_mm.page_table_lock);
777 	pud_clear(pud);
778 	spin_unlock(&init_mm.page_table_lock);
779 }
780 
781 /* Return true if pgd is changed, otherwise return false. */
782 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
783 {
784 	pud_t *pud;
785 	int i;
786 
787 	for (i = 0; i < PTRS_PER_PUD; i++) {
788 		pud = pud_start + i;
789 		if (pud_val(*pud))
790 			return false;
791 	}
792 
793 	/* free a pud table */
794 	free_pagetable(pgd_page(*pgd), 0);
795 	spin_lock(&init_mm.page_table_lock);
796 	pgd_clear(pgd);
797 	spin_unlock(&init_mm.page_table_lock);
798 
799 	return true;
800 }
801 
802 static void __meminit
803 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
804 		 bool direct)
805 {
806 	unsigned long next, pages = 0;
807 	pte_t *pte;
808 	void *page_addr;
809 	phys_addr_t phys_addr;
810 
811 	pte = pte_start + pte_index(addr);
812 	for (; addr < end; addr = next, pte++) {
813 		next = (addr + PAGE_SIZE) & PAGE_MASK;
814 		if (next > end)
815 			next = end;
816 
817 		if (!pte_present(*pte))
818 			continue;
819 
820 		/*
821 		 * We mapped [0,1G) memory as identity mapping when
822 		 * initializing, in arch/x86/kernel/head_64.S. These
823 		 * pagetables cannot be removed.
824 		 */
825 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
826 		if (phys_addr < (phys_addr_t)0x40000000)
827 			return;
828 
829 		if (IS_ALIGNED(addr, PAGE_SIZE) &&
830 		    IS_ALIGNED(next, PAGE_SIZE)) {
831 			/*
832 			 * Do not free direct mapping pages since they were
833 			 * freed when offlining, or simplely not in use.
834 			 */
835 			if (!direct)
836 				free_pagetable(pte_page(*pte), 0);
837 
838 			spin_lock(&init_mm.page_table_lock);
839 			pte_clear(&init_mm, addr, pte);
840 			spin_unlock(&init_mm.page_table_lock);
841 
842 			/* For non-direct mapping, pages means nothing. */
843 			pages++;
844 		} else {
845 			/*
846 			 * If we are here, we are freeing vmemmap pages since
847 			 * direct mapped memory ranges to be freed are aligned.
848 			 *
849 			 * If we are not removing the whole page, it means
850 			 * other page structs in this page are being used and
851 			 * we canot remove them. So fill the unused page_structs
852 			 * with 0xFD, and remove the page when it is wholly
853 			 * filled with 0xFD.
854 			 */
855 			memset((void *)addr, PAGE_INUSE, next - addr);
856 
857 			page_addr = page_address(pte_page(*pte));
858 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
859 				free_pagetable(pte_page(*pte), 0);
860 
861 				spin_lock(&init_mm.page_table_lock);
862 				pte_clear(&init_mm, addr, pte);
863 				spin_unlock(&init_mm.page_table_lock);
864 			}
865 		}
866 	}
867 
868 	/* Call free_pte_table() in remove_pmd_table(). */
869 	flush_tlb_all();
870 	if (direct)
871 		update_page_count(PG_LEVEL_4K, -pages);
872 }
873 
874 static void __meminit
875 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
876 		 bool direct)
877 {
878 	unsigned long next, pages = 0;
879 	pte_t *pte_base;
880 	pmd_t *pmd;
881 	void *page_addr;
882 
883 	pmd = pmd_start + pmd_index(addr);
884 	for (; addr < end; addr = next, pmd++) {
885 		next = pmd_addr_end(addr, end);
886 
887 		if (!pmd_present(*pmd))
888 			continue;
889 
890 		if (pmd_large(*pmd)) {
891 			if (IS_ALIGNED(addr, PMD_SIZE) &&
892 			    IS_ALIGNED(next, PMD_SIZE)) {
893 				if (!direct)
894 					free_pagetable(pmd_page(*pmd),
895 						       get_order(PMD_SIZE));
896 
897 				spin_lock(&init_mm.page_table_lock);
898 				pmd_clear(pmd);
899 				spin_unlock(&init_mm.page_table_lock);
900 				pages++;
901 			} else {
902 				/* If here, we are freeing vmemmap pages. */
903 				memset((void *)addr, PAGE_INUSE, next - addr);
904 
905 				page_addr = page_address(pmd_page(*pmd));
906 				if (!memchr_inv(page_addr, PAGE_INUSE,
907 						PMD_SIZE)) {
908 					free_pagetable(pmd_page(*pmd),
909 						       get_order(PMD_SIZE));
910 
911 					spin_lock(&init_mm.page_table_lock);
912 					pmd_clear(pmd);
913 					spin_unlock(&init_mm.page_table_lock);
914 				}
915 			}
916 
917 			continue;
918 		}
919 
920 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
921 		remove_pte_table(pte_base, addr, next, direct);
922 		free_pte_table(pte_base, pmd);
923 	}
924 
925 	/* Call free_pmd_table() in remove_pud_table(). */
926 	if (direct)
927 		update_page_count(PG_LEVEL_2M, -pages);
928 }
929 
930 static void __meminit
931 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
932 		 bool direct)
933 {
934 	unsigned long next, pages = 0;
935 	pmd_t *pmd_base;
936 	pud_t *pud;
937 	void *page_addr;
938 
939 	pud = pud_start + pud_index(addr);
940 	for (; addr < end; addr = next, pud++) {
941 		next = pud_addr_end(addr, end);
942 
943 		if (!pud_present(*pud))
944 			continue;
945 
946 		if (pud_large(*pud)) {
947 			if (IS_ALIGNED(addr, PUD_SIZE) &&
948 			    IS_ALIGNED(next, PUD_SIZE)) {
949 				if (!direct)
950 					free_pagetable(pud_page(*pud),
951 						       get_order(PUD_SIZE));
952 
953 				spin_lock(&init_mm.page_table_lock);
954 				pud_clear(pud);
955 				spin_unlock(&init_mm.page_table_lock);
956 				pages++;
957 			} else {
958 				/* If here, we are freeing vmemmap pages. */
959 				memset((void *)addr, PAGE_INUSE, next - addr);
960 
961 				page_addr = page_address(pud_page(*pud));
962 				if (!memchr_inv(page_addr, PAGE_INUSE,
963 						PUD_SIZE)) {
964 					free_pagetable(pud_page(*pud),
965 						       get_order(PUD_SIZE));
966 
967 					spin_lock(&init_mm.page_table_lock);
968 					pud_clear(pud);
969 					spin_unlock(&init_mm.page_table_lock);
970 				}
971 			}
972 
973 			continue;
974 		}
975 
976 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
977 		remove_pmd_table(pmd_base, addr, next, direct);
978 		free_pmd_table(pmd_base, pud);
979 	}
980 
981 	if (direct)
982 		update_page_count(PG_LEVEL_1G, -pages);
983 }
984 
985 /* start and end are both virtual address. */
986 static void __meminit
987 remove_pagetable(unsigned long start, unsigned long end, bool direct)
988 {
989 	unsigned long next;
990 	unsigned long addr;
991 	pgd_t *pgd;
992 	pud_t *pud;
993 	bool pgd_changed = false;
994 
995 	for (addr = start; addr < end; addr = next) {
996 		next = pgd_addr_end(addr, end);
997 
998 		pgd = pgd_offset_k(addr);
999 		if (!pgd_present(*pgd))
1000 			continue;
1001 
1002 		pud = (pud_t *)pgd_page_vaddr(*pgd);
1003 		remove_pud_table(pud, addr, next, direct);
1004 		if (free_pud_table(pud, pgd))
1005 			pgd_changed = true;
1006 	}
1007 
1008 	if (pgd_changed)
1009 		sync_global_pgds(start, end - 1, 1);
1010 
1011 	flush_tlb_all();
1012 }
1013 
1014 void __ref vmemmap_free(unsigned long start, unsigned long end)
1015 {
1016 	remove_pagetable(start, end, false);
1017 }
1018 
1019 #ifdef CONFIG_MEMORY_HOTREMOVE
1020 static void __meminit
1021 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1022 {
1023 	start = (unsigned long)__va(start);
1024 	end = (unsigned long)__va(end);
1025 
1026 	remove_pagetable(start, end, true);
1027 }
1028 
1029 int __ref arch_remove_memory(u64 start, u64 size)
1030 {
1031 	unsigned long start_pfn = start >> PAGE_SHIFT;
1032 	unsigned long nr_pages = size >> PAGE_SHIFT;
1033 	struct zone *zone;
1034 	int ret;
1035 
1036 	zone = page_zone(pfn_to_page(start_pfn));
1037 	kernel_physical_mapping_remove(start, start + size);
1038 	ret = __remove_pages(zone, start_pfn, nr_pages);
1039 	WARN_ON_ONCE(ret);
1040 
1041 	return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045 
1046 static struct kcore_list kcore_vsyscall;
1047 
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051 	int i;
1052 
1053 	for_each_online_node(i)
1054 		register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057 
1058 void __init mem_init(void)
1059 {
1060 	pci_iommu_alloc();
1061 
1062 	/* clear_bss() already clear the empty_zero_page */
1063 
1064 	register_page_bootmem_info();
1065 
1066 	/* this will put all memory onto the freelists */
1067 	free_all_bootmem();
1068 	after_bootmem = 1;
1069 
1070 	/* Register memory areas for /proc/kcore */
1071 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1072 			 PAGE_SIZE, KCORE_OTHER);
1073 
1074 	mem_init_print_info(NULL);
1075 }
1076 
1077 #ifdef CONFIG_DEBUG_RODATA
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080 
1081 int kernel_set_to_readonly;
1082 
1083 void set_kernel_text_rw(void)
1084 {
1085 	unsigned long start = PFN_ALIGN(_text);
1086 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1087 
1088 	if (!kernel_set_to_readonly)
1089 		return;
1090 
1091 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1092 		 start, end);
1093 
1094 	/*
1095 	 * Make the kernel identity mapping for text RW. Kernel text
1096 	 * mapping will always be RO. Refer to the comment in
1097 	 * static_protections() in pageattr.c
1098 	 */
1099 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101 
1102 void set_kernel_text_ro(void)
1103 {
1104 	unsigned long start = PFN_ALIGN(_text);
1105 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1106 
1107 	if (!kernel_set_to_readonly)
1108 		return;
1109 
1110 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1111 		 start, end);
1112 
1113 	/*
1114 	 * Set the kernel identity mapping for text RO.
1115 	 */
1116 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118 
1119 void mark_rodata_ro(void)
1120 {
1121 	unsigned long start = PFN_ALIGN(_text);
1122 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126 	unsigned long all_end = PFN_ALIGN(&_end);
1127 
1128 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129 	       (end - start) >> 10);
1130 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131 
1132 	kernel_set_to_readonly = 1;
1133 
1134 	/*
1135 	 * The rodata/data/bss/brk section (but not the kernel text!)
1136 	 * should also be not-executable.
1137 	 */
1138 	set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1139 
1140 	rodata_test();
1141 
1142 #ifdef CONFIG_CPA_DEBUG
1143 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1144 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1145 
1146 	printk(KERN_INFO "Testing CPA: again\n");
1147 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1148 #endif
1149 
1150 	free_init_pages("unused kernel",
1151 			(unsigned long) __va(__pa_symbol(text_end)),
1152 			(unsigned long) __va(__pa_symbol(rodata_start)));
1153 	free_init_pages("unused kernel",
1154 			(unsigned long) __va(__pa_symbol(rodata_end)),
1155 			(unsigned long) __va(__pa_symbol(_sdata)));
1156 }
1157 
1158 #endif
1159 
1160 int kern_addr_valid(unsigned long addr)
1161 {
1162 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1163 	pgd_t *pgd;
1164 	pud_t *pud;
1165 	pmd_t *pmd;
1166 	pte_t *pte;
1167 
1168 	if (above != 0 && above != -1UL)
1169 		return 0;
1170 
1171 	pgd = pgd_offset_k(addr);
1172 	if (pgd_none(*pgd))
1173 		return 0;
1174 
1175 	pud = pud_offset(pgd, addr);
1176 	if (pud_none(*pud))
1177 		return 0;
1178 
1179 	if (pud_large(*pud))
1180 		return pfn_valid(pud_pfn(*pud));
1181 
1182 	pmd = pmd_offset(pud, addr);
1183 	if (pmd_none(*pmd))
1184 		return 0;
1185 
1186 	if (pmd_large(*pmd))
1187 		return pfn_valid(pmd_pfn(*pmd));
1188 
1189 	pte = pte_offset_kernel(pmd, addr);
1190 	if (pte_none(*pte))
1191 		return 0;
1192 
1193 	return pfn_valid(pte_pfn(*pte));
1194 }
1195 
1196 /*
1197  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1198  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1199  * not need special handling anymore:
1200  */
1201 static const char *gate_vma_name(struct vm_area_struct *vma)
1202 {
1203 	return "[vsyscall]";
1204 }
1205 static struct vm_operations_struct gate_vma_ops = {
1206 	.name = gate_vma_name,
1207 };
1208 static struct vm_area_struct gate_vma = {
1209 	.vm_start	= VSYSCALL_ADDR,
1210 	.vm_end		= VSYSCALL_ADDR + PAGE_SIZE,
1211 	.vm_page_prot	= PAGE_READONLY_EXEC,
1212 	.vm_flags	= VM_READ | VM_EXEC,
1213 	.vm_ops		= &gate_vma_ops,
1214 };
1215 
1216 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1217 {
1218 #ifdef CONFIG_IA32_EMULATION
1219 	if (!mm || mm->context.ia32_compat)
1220 		return NULL;
1221 #endif
1222 	return &gate_vma;
1223 }
1224 
1225 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1226 {
1227 	struct vm_area_struct *vma = get_gate_vma(mm);
1228 
1229 	if (!vma)
1230 		return 0;
1231 
1232 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1233 }
1234 
1235 /*
1236  * Use this when you have no reliable mm, typically from interrupt
1237  * context. It is less reliable than using a task's mm and may give
1238  * false positives.
1239  */
1240 int in_gate_area_no_mm(unsigned long addr)
1241 {
1242 	return (addr & PAGE_MASK) == VSYSCALL_ADDR;
1243 }
1244 
1245 static unsigned long probe_memory_block_size(void)
1246 {
1247 	/* start from 2g */
1248 	unsigned long bz = 1UL<<31;
1249 
1250 #ifdef CONFIG_X86_UV
1251 	if (is_uv_system()) {
1252 		printk(KERN_INFO "UV: memory block size 2GB\n");
1253 		return 2UL * 1024 * 1024 * 1024;
1254 	}
1255 #endif
1256 
1257 	/* less than 64g installed */
1258 	if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1259 		return MIN_MEMORY_BLOCK_SIZE;
1260 
1261 	/* get the tail size */
1262 	while (bz > MIN_MEMORY_BLOCK_SIZE) {
1263 		if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1264 			break;
1265 		bz >>= 1;
1266 	}
1267 
1268 	printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1269 
1270 	return bz;
1271 }
1272 
1273 static unsigned long memory_block_size_probed;
1274 unsigned long memory_block_size_bytes(void)
1275 {
1276 	if (!memory_block_size_probed)
1277 		memory_block_size_probed = probe_memory_block_size();
1278 
1279 	return memory_block_size_probed;
1280 }
1281 
1282 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1283 /*
1284  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1285  */
1286 static long __meminitdata addr_start, addr_end;
1287 static void __meminitdata *p_start, *p_end;
1288 static int __meminitdata node_start;
1289 
1290 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1291 						unsigned long end, int node)
1292 {
1293 	unsigned long addr;
1294 	unsigned long next;
1295 	pgd_t *pgd;
1296 	pud_t *pud;
1297 	pmd_t *pmd;
1298 
1299 	for (addr = start; addr < end; addr = next) {
1300 		next = pmd_addr_end(addr, end);
1301 
1302 		pgd = vmemmap_pgd_populate(addr, node);
1303 		if (!pgd)
1304 			return -ENOMEM;
1305 
1306 		pud = vmemmap_pud_populate(pgd, addr, node);
1307 		if (!pud)
1308 			return -ENOMEM;
1309 
1310 		pmd = pmd_offset(pud, addr);
1311 		if (pmd_none(*pmd)) {
1312 			void *p;
1313 
1314 			p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1315 			if (p) {
1316 				pte_t entry;
1317 
1318 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1319 						PAGE_KERNEL_LARGE);
1320 				set_pmd(pmd, __pmd(pte_val(entry)));
1321 
1322 				/* check to see if we have contiguous blocks */
1323 				if (p_end != p || node_start != node) {
1324 					if (p_start)
1325 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1326 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1327 					addr_start = addr;
1328 					node_start = node;
1329 					p_start = p;
1330 				}
1331 
1332 				addr_end = addr + PMD_SIZE;
1333 				p_end = p + PMD_SIZE;
1334 				continue;
1335 			}
1336 		} else if (pmd_large(*pmd)) {
1337 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1338 			continue;
1339 		}
1340 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1341 		if (vmemmap_populate_basepages(addr, next, node))
1342 			return -ENOMEM;
1343 	}
1344 	return 0;
1345 }
1346 
1347 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1348 {
1349 	int err;
1350 
1351 	if (cpu_has_pse)
1352 		err = vmemmap_populate_hugepages(start, end, node);
1353 	else
1354 		err = vmemmap_populate_basepages(start, end, node);
1355 	if (!err)
1356 		sync_global_pgds(start, end - 1, 0);
1357 	return err;
1358 }
1359 
1360 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1361 void register_page_bootmem_memmap(unsigned long section_nr,
1362 				  struct page *start_page, unsigned long size)
1363 {
1364 	unsigned long addr = (unsigned long)start_page;
1365 	unsigned long end = (unsigned long)(start_page + size);
1366 	unsigned long next;
1367 	pgd_t *pgd;
1368 	pud_t *pud;
1369 	pmd_t *pmd;
1370 	unsigned int nr_pages;
1371 	struct page *page;
1372 
1373 	for (; addr < end; addr = next) {
1374 		pte_t *pte = NULL;
1375 
1376 		pgd = pgd_offset_k(addr);
1377 		if (pgd_none(*pgd)) {
1378 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1379 			continue;
1380 		}
1381 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1382 
1383 		pud = pud_offset(pgd, addr);
1384 		if (pud_none(*pud)) {
1385 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1386 			continue;
1387 		}
1388 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1389 
1390 		if (!cpu_has_pse) {
1391 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1392 			pmd = pmd_offset(pud, addr);
1393 			if (pmd_none(*pmd))
1394 				continue;
1395 			get_page_bootmem(section_nr, pmd_page(*pmd),
1396 					 MIX_SECTION_INFO);
1397 
1398 			pte = pte_offset_kernel(pmd, addr);
1399 			if (pte_none(*pte))
1400 				continue;
1401 			get_page_bootmem(section_nr, pte_page(*pte),
1402 					 SECTION_INFO);
1403 		} else {
1404 			next = pmd_addr_end(addr, end);
1405 
1406 			pmd = pmd_offset(pud, addr);
1407 			if (pmd_none(*pmd))
1408 				continue;
1409 
1410 			nr_pages = 1 << (get_order(PMD_SIZE));
1411 			page = pmd_page(*pmd);
1412 			while (nr_pages--)
1413 				get_page_bootmem(section_nr, page++,
1414 						 SECTION_INFO);
1415 		}
1416 	}
1417 }
1418 #endif
1419 
1420 void __meminit vmemmap_populate_print_last(void)
1421 {
1422 	if (p_start) {
1423 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1424 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1425 		p_start = NULL;
1426 		p_end = NULL;
1427 		node_start = 0;
1428 	}
1429 }
1430 #endif
1431