1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/module.h> 31 #include <linux/memory.h> 32 #include <linux/memory_hotplug.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 37 #include <asm/processor.h> 38 #include <asm/bios_ebda.h> 39 #include <asm/uaccess.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/dma.h> 43 #include <asm/fixmap.h> 44 #include <asm/e820.h> 45 #include <asm/apic.h> 46 #include <asm/tlb.h> 47 #include <asm/mmu_context.h> 48 #include <asm/proto.h> 49 #include <asm/smp.h> 50 #include <asm/sections.h> 51 #include <asm/kdebug.h> 52 #include <asm/numa.h> 53 #include <asm/cacheflush.h> 54 #include <asm/init.h> 55 #include <asm/uv/uv.h> 56 #include <asm/setup.h> 57 58 #include "mm_internal.h" 59 60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page, 61 unsigned long addr, unsigned long end) 62 { 63 addr &= PMD_MASK; 64 for (; addr < end; addr += PMD_SIZE) { 65 pmd_t *pmd = pmd_page + pmd_index(addr); 66 67 if (!pmd_present(*pmd)) 68 set_pmd(pmd, __pmd(addr | pmd_flag)); 69 } 70 } 71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, 72 unsigned long addr, unsigned long end) 73 { 74 unsigned long next; 75 76 for (; addr < end; addr = next) { 77 pud_t *pud = pud_page + pud_index(addr); 78 pmd_t *pmd; 79 80 next = (addr & PUD_MASK) + PUD_SIZE; 81 if (next > end) 82 next = end; 83 84 if (pud_present(*pud)) { 85 pmd = pmd_offset(pud, 0); 86 ident_pmd_init(info->pmd_flag, pmd, addr, next); 87 continue; 88 } 89 pmd = (pmd_t *)info->alloc_pgt_page(info->context); 90 if (!pmd) 91 return -ENOMEM; 92 ident_pmd_init(info->pmd_flag, pmd, addr, next); 93 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 94 } 95 96 return 0; 97 } 98 99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, 100 unsigned long addr, unsigned long end) 101 { 102 unsigned long next; 103 int result; 104 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0; 105 106 for (; addr < end; addr = next) { 107 pgd_t *pgd = pgd_page + pgd_index(addr) + off; 108 pud_t *pud; 109 110 next = (addr & PGDIR_MASK) + PGDIR_SIZE; 111 if (next > end) 112 next = end; 113 114 if (pgd_present(*pgd)) { 115 pud = pud_offset(pgd, 0); 116 result = ident_pud_init(info, pud, addr, next); 117 if (result) 118 return result; 119 continue; 120 } 121 122 pud = (pud_t *)info->alloc_pgt_page(info->context); 123 if (!pud) 124 return -ENOMEM; 125 result = ident_pud_init(info, pud, addr, next); 126 if (result) 127 return result; 128 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 129 } 130 131 return 0; 132 } 133 134 static int __init parse_direct_gbpages_off(char *arg) 135 { 136 direct_gbpages = 0; 137 return 0; 138 } 139 early_param("nogbpages", parse_direct_gbpages_off); 140 141 static int __init parse_direct_gbpages_on(char *arg) 142 { 143 direct_gbpages = 1; 144 return 0; 145 } 146 early_param("gbpages", parse_direct_gbpages_on); 147 148 /* 149 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 150 * physical space so we can cache the place of the first one and move 151 * around without checking the pgd every time. 152 */ 153 154 pteval_t __supported_pte_mask __read_mostly = ~0; 155 EXPORT_SYMBOL_GPL(__supported_pte_mask); 156 157 int force_personality32; 158 159 /* 160 * noexec32=on|off 161 * Control non executable heap for 32bit processes. 162 * To control the stack too use noexec=off 163 * 164 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 165 * off PROT_READ implies PROT_EXEC 166 */ 167 static int __init nonx32_setup(char *str) 168 { 169 if (!strcmp(str, "on")) 170 force_personality32 &= ~READ_IMPLIES_EXEC; 171 else if (!strcmp(str, "off")) 172 force_personality32 |= READ_IMPLIES_EXEC; 173 return 1; 174 } 175 __setup("noexec32=", nonx32_setup); 176 177 /* 178 * When memory was added/removed make sure all the processes MM have 179 * suitable PGD entries in the local PGD level page. 180 */ 181 void sync_global_pgds(unsigned long start, unsigned long end, int removed) 182 { 183 unsigned long address; 184 185 for (address = start; address <= end; address += PGDIR_SIZE) { 186 const pgd_t *pgd_ref = pgd_offset_k(address); 187 struct page *page; 188 189 /* 190 * When it is called after memory hot remove, pgd_none() 191 * returns true. In this case (removed == 1), we must clear 192 * the PGD entries in the local PGD level page. 193 */ 194 if (pgd_none(*pgd_ref) && !removed) 195 continue; 196 197 spin_lock(&pgd_lock); 198 list_for_each_entry(page, &pgd_list, lru) { 199 pgd_t *pgd; 200 spinlock_t *pgt_lock; 201 202 pgd = (pgd_t *)page_address(page) + pgd_index(address); 203 /* the pgt_lock only for Xen */ 204 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 205 spin_lock(pgt_lock); 206 207 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 208 BUG_ON(pgd_page_vaddr(*pgd) 209 != pgd_page_vaddr(*pgd_ref)); 210 211 if (removed) { 212 if (pgd_none(*pgd_ref) && !pgd_none(*pgd)) 213 pgd_clear(pgd); 214 } else { 215 if (pgd_none(*pgd)) 216 set_pgd(pgd, *pgd_ref); 217 } 218 219 spin_unlock(pgt_lock); 220 } 221 spin_unlock(&pgd_lock); 222 } 223 } 224 225 /* 226 * NOTE: This function is marked __ref because it calls __init function 227 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 228 */ 229 static __ref void *spp_getpage(void) 230 { 231 void *ptr; 232 233 if (after_bootmem) 234 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); 235 else 236 ptr = alloc_bootmem_pages(PAGE_SIZE); 237 238 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 239 panic("set_pte_phys: cannot allocate page data %s\n", 240 after_bootmem ? "after bootmem" : ""); 241 } 242 243 pr_debug("spp_getpage %p\n", ptr); 244 245 return ptr; 246 } 247 248 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) 249 { 250 if (pgd_none(*pgd)) { 251 pud_t *pud = (pud_t *)spp_getpage(); 252 pgd_populate(&init_mm, pgd, pud); 253 if (pud != pud_offset(pgd, 0)) 254 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 255 pud, pud_offset(pgd, 0)); 256 } 257 return pud_offset(pgd, vaddr); 258 } 259 260 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 261 { 262 if (pud_none(*pud)) { 263 pmd_t *pmd = (pmd_t *) spp_getpage(); 264 pud_populate(&init_mm, pud, pmd); 265 if (pmd != pmd_offset(pud, 0)) 266 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 267 pmd, pmd_offset(pud, 0)); 268 } 269 return pmd_offset(pud, vaddr); 270 } 271 272 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 273 { 274 if (pmd_none(*pmd)) { 275 pte_t *pte = (pte_t *) spp_getpage(); 276 pmd_populate_kernel(&init_mm, pmd, pte); 277 if (pte != pte_offset_kernel(pmd, 0)) 278 printk(KERN_ERR "PAGETABLE BUG #02!\n"); 279 } 280 return pte_offset_kernel(pmd, vaddr); 281 } 282 283 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 284 { 285 pud_t *pud; 286 pmd_t *pmd; 287 pte_t *pte; 288 289 pud = pud_page + pud_index(vaddr); 290 pmd = fill_pmd(pud, vaddr); 291 pte = fill_pte(pmd, vaddr); 292 293 set_pte(pte, new_pte); 294 295 /* 296 * It's enough to flush this one mapping. 297 * (PGE mappings get flushed as well) 298 */ 299 __flush_tlb_one(vaddr); 300 } 301 302 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 303 { 304 pgd_t *pgd; 305 pud_t *pud_page; 306 307 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 308 309 pgd = pgd_offset_k(vaddr); 310 if (pgd_none(*pgd)) { 311 printk(KERN_ERR 312 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 313 return; 314 } 315 pud_page = (pud_t*)pgd_page_vaddr(*pgd); 316 set_pte_vaddr_pud(pud_page, vaddr, pteval); 317 } 318 319 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 320 { 321 pgd_t *pgd; 322 pud_t *pud; 323 324 pgd = pgd_offset_k(vaddr); 325 pud = fill_pud(pgd, vaddr); 326 return fill_pmd(pud, vaddr); 327 } 328 329 pte_t * __init populate_extra_pte(unsigned long vaddr) 330 { 331 pmd_t *pmd; 332 333 pmd = populate_extra_pmd(vaddr); 334 return fill_pte(pmd, vaddr); 335 } 336 337 /* 338 * Create large page table mappings for a range of physical addresses. 339 */ 340 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 341 pgprot_t prot) 342 { 343 pgd_t *pgd; 344 pud_t *pud; 345 pmd_t *pmd; 346 347 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 348 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 349 pgd = pgd_offset_k((unsigned long)__va(phys)); 350 if (pgd_none(*pgd)) { 351 pud = (pud_t *) spp_getpage(); 352 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | 353 _PAGE_USER)); 354 } 355 pud = pud_offset(pgd, (unsigned long)__va(phys)); 356 if (pud_none(*pud)) { 357 pmd = (pmd_t *) spp_getpage(); 358 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 359 _PAGE_USER)); 360 } 361 pmd = pmd_offset(pud, phys); 362 BUG_ON(!pmd_none(*pmd)); 363 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 364 } 365 } 366 367 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 368 { 369 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); 370 } 371 372 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 373 { 374 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); 375 } 376 377 /* 378 * The head.S code sets up the kernel high mapping: 379 * 380 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 381 * 382 * phys_base holds the negative offset to the kernel, which is added 383 * to the compile time generated pmds. This results in invalid pmds up 384 * to the point where we hit the physaddr 0 mapping. 385 * 386 * We limit the mappings to the region from _text to _brk_end. _brk_end 387 * is rounded up to the 2MB boundary. This catches the invalid pmds as 388 * well, as they are located before _text: 389 */ 390 void __init cleanup_highmap(void) 391 { 392 unsigned long vaddr = __START_KERNEL_map; 393 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 394 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 395 pmd_t *pmd = level2_kernel_pgt; 396 397 /* 398 * Native path, max_pfn_mapped is not set yet. 399 * Xen has valid max_pfn_mapped set in 400 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 401 */ 402 if (max_pfn_mapped) 403 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 404 405 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 406 if (pmd_none(*pmd)) 407 continue; 408 if (vaddr < (unsigned long) _text || vaddr > end) 409 set_pmd(pmd, __pmd(0)); 410 } 411 } 412 413 static unsigned long __meminit 414 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, 415 pgprot_t prot) 416 { 417 unsigned long pages = 0, next; 418 unsigned long last_map_addr = end; 419 int i; 420 421 pte_t *pte = pte_page + pte_index(addr); 422 423 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) { 424 next = (addr & PAGE_MASK) + PAGE_SIZE; 425 if (addr >= end) { 426 if (!after_bootmem && 427 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) && 428 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN)) 429 set_pte(pte, __pte(0)); 430 continue; 431 } 432 433 /* 434 * We will re-use the existing mapping. 435 * Xen for example has some special requirements, like mapping 436 * pagetable pages as RO. So assume someone who pre-setup 437 * these mappings are more intelligent. 438 */ 439 if (pte_val(*pte)) { 440 if (!after_bootmem) 441 pages++; 442 continue; 443 } 444 445 if (0) 446 printk(" pte=%p addr=%lx pte=%016lx\n", 447 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); 448 pages++; 449 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); 450 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; 451 } 452 453 update_page_count(PG_LEVEL_4K, pages); 454 455 return last_map_addr; 456 } 457 458 static unsigned long __meminit 459 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, 460 unsigned long page_size_mask, pgprot_t prot) 461 { 462 unsigned long pages = 0, next; 463 unsigned long last_map_addr = end; 464 465 int i = pmd_index(address); 466 467 for (; i < PTRS_PER_PMD; i++, address = next) { 468 pmd_t *pmd = pmd_page + pmd_index(address); 469 pte_t *pte; 470 pgprot_t new_prot = prot; 471 472 next = (address & PMD_MASK) + PMD_SIZE; 473 if (address >= end) { 474 if (!after_bootmem && 475 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) && 476 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN)) 477 set_pmd(pmd, __pmd(0)); 478 continue; 479 } 480 481 if (pmd_val(*pmd)) { 482 if (!pmd_large(*pmd)) { 483 spin_lock(&init_mm.page_table_lock); 484 pte = (pte_t *)pmd_page_vaddr(*pmd); 485 last_map_addr = phys_pte_init(pte, address, 486 end, prot); 487 spin_unlock(&init_mm.page_table_lock); 488 continue; 489 } 490 /* 491 * If we are ok with PG_LEVEL_2M mapping, then we will 492 * use the existing mapping, 493 * 494 * Otherwise, we will split the large page mapping but 495 * use the same existing protection bits except for 496 * large page, so that we don't violate Intel's TLB 497 * Application note (317080) which says, while changing 498 * the page sizes, new and old translations should 499 * not differ with respect to page frame and 500 * attributes. 501 */ 502 if (page_size_mask & (1 << PG_LEVEL_2M)) { 503 if (!after_bootmem) 504 pages++; 505 last_map_addr = next; 506 continue; 507 } 508 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 509 } 510 511 if (page_size_mask & (1<<PG_LEVEL_2M)) { 512 pages++; 513 spin_lock(&init_mm.page_table_lock); 514 set_pte((pte_t *)pmd, 515 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT, 516 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 517 spin_unlock(&init_mm.page_table_lock); 518 last_map_addr = next; 519 continue; 520 } 521 522 pte = alloc_low_page(); 523 last_map_addr = phys_pte_init(pte, address, end, new_prot); 524 525 spin_lock(&init_mm.page_table_lock); 526 pmd_populate_kernel(&init_mm, pmd, pte); 527 spin_unlock(&init_mm.page_table_lock); 528 } 529 update_page_count(PG_LEVEL_2M, pages); 530 return last_map_addr; 531 } 532 533 static unsigned long __meminit 534 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, 535 unsigned long page_size_mask) 536 { 537 unsigned long pages = 0, next; 538 unsigned long last_map_addr = end; 539 int i = pud_index(addr); 540 541 for (; i < PTRS_PER_PUD; i++, addr = next) { 542 pud_t *pud = pud_page + pud_index(addr); 543 pmd_t *pmd; 544 pgprot_t prot = PAGE_KERNEL; 545 546 next = (addr & PUD_MASK) + PUD_SIZE; 547 if (addr >= end) { 548 if (!after_bootmem && 549 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) && 550 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN)) 551 set_pud(pud, __pud(0)); 552 continue; 553 } 554 555 if (pud_val(*pud)) { 556 if (!pud_large(*pud)) { 557 pmd = pmd_offset(pud, 0); 558 last_map_addr = phys_pmd_init(pmd, addr, end, 559 page_size_mask, prot); 560 __flush_tlb_all(); 561 continue; 562 } 563 /* 564 * If we are ok with PG_LEVEL_1G mapping, then we will 565 * use the existing mapping. 566 * 567 * Otherwise, we will split the gbpage mapping but use 568 * the same existing protection bits except for large 569 * page, so that we don't violate Intel's TLB 570 * Application note (317080) which says, while changing 571 * the page sizes, new and old translations should 572 * not differ with respect to page frame and 573 * attributes. 574 */ 575 if (page_size_mask & (1 << PG_LEVEL_1G)) { 576 if (!after_bootmem) 577 pages++; 578 last_map_addr = next; 579 continue; 580 } 581 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 582 } 583 584 if (page_size_mask & (1<<PG_LEVEL_1G)) { 585 pages++; 586 spin_lock(&init_mm.page_table_lock); 587 set_pte((pte_t *)pud, 588 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT, 589 PAGE_KERNEL_LARGE)); 590 spin_unlock(&init_mm.page_table_lock); 591 last_map_addr = next; 592 continue; 593 } 594 595 pmd = alloc_low_page(); 596 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, 597 prot); 598 599 spin_lock(&init_mm.page_table_lock); 600 pud_populate(&init_mm, pud, pmd); 601 spin_unlock(&init_mm.page_table_lock); 602 } 603 __flush_tlb_all(); 604 605 update_page_count(PG_LEVEL_1G, pages); 606 607 return last_map_addr; 608 } 609 610 unsigned long __meminit 611 kernel_physical_mapping_init(unsigned long start, 612 unsigned long end, 613 unsigned long page_size_mask) 614 { 615 bool pgd_changed = false; 616 unsigned long next, last_map_addr = end; 617 unsigned long addr; 618 619 start = (unsigned long)__va(start); 620 end = (unsigned long)__va(end); 621 addr = start; 622 623 for (; start < end; start = next) { 624 pgd_t *pgd = pgd_offset_k(start); 625 pud_t *pud; 626 627 next = (start & PGDIR_MASK) + PGDIR_SIZE; 628 629 if (pgd_val(*pgd)) { 630 pud = (pud_t *)pgd_page_vaddr(*pgd); 631 last_map_addr = phys_pud_init(pud, __pa(start), 632 __pa(end), page_size_mask); 633 continue; 634 } 635 636 pud = alloc_low_page(); 637 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end), 638 page_size_mask); 639 640 spin_lock(&init_mm.page_table_lock); 641 pgd_populate(&init_mm, pgd, pud); 642 spin_unlock(&init_mm.page_table_lock); 643 pgd_changed = true; 644 } 645 646 if (pgd_changed) 647 sync_global_pgds(addr, end - 1, 0); 648 649 __flush_tlb_all(); 650 651 return last_map_addr; 652 } 653 654 #ifndef CONFIG_NUMA 655 void __init initmem_init(void) 656 { 657 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 658 } 659 #endif 660 661 void __init paging_init(void) 662 { 663 sparse_memory_present_with_active_regions(MAX_NUMNODES); 664 sparse_init(); 665 666 /* 667 * clear the default setting with node 0 668 * note: don't use nodes_clear here, that is really clearing when 669 * numa support is not compiled in, and later node_set_state 670 * will not set it back. 671 */ 672 node_clear_state(0, N_MEMORY); 673 if (N_MEMORY != N_NORMAL_MEMORY) 674 node_clear_state(0, N_NORMAL_MEMORY); 675 676 zone_sizes_init(); 677 } 678 679 /* 680 * Memory hotplug specific functions 681 */ 682 #ifdef CONFIG_MEMORY_HOTPLUG 683 /* 684 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 685 * updating. 686 */ 687 static void update_end_of_memory_vars(u64 start, u64 size) 688 { 689 unsigned long end_pfn = PFN_UP(start + size); 690 691 if (end_pfn > max_pfn) { 692 max_pfn = end_pfn; 693 max_low_pfn = end_pfn; 694 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 695 } 696 } 697 698 /* 699 * Memory is added always to NORMAL zone. This means you will never get 700 * additional DMA/DMA32 memory. 701 */ 702 int arch_add_memory(int nid, u64 start, u64 size) 703 { 704 struct pglist_data *pgdat = NODE_DATA(nid); 705 struct zone *zone = pgdat->node_zones + 706 zone_for_memory(nid, start, size, ZONE_NORMAL); 707 unsigned long start_pfn = start >> PAGE_SHIFT; 708 unsigned long nr_pages = size >> PAGE_SHIFT; 709 int ret; 710 711 init_memory_mapping(start, start + size); 712 713 ret = __add_pages(nid, zone, start_pfn, nr_pages); 714 WARN_ON_ONCE(ret); 715 716 /* update max_pfn, max_low_pfn and high_memory */ 717 update_end_of_memory_vars(start, size); 718 719 return ret; 720 } 721 EXPORT_SYMBOL_GPL(arch_add_memory); 722 723 #define PAGE_INUSE 0xFD 724 725 static void __meminit free_pagetable(struct page *page, int order) 726 { 727 unsigned long magic; 728 unsigned int nr_pages = 1 << order; 729 730 /* bootmem page has reserved flag */ 731 if (PageReserved(page)) { 732 __ClearPageReserved(page); 733 734 magic = (unsigned long)page->lru.next; 735 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 736 while (nr_pages--) 737 put_page_bootmem(page++); 738 } else 739 while (nr_pages--) 740 free_reserved_page(page++); 741 } else 742 free_pages((unsigned long)page_address(page), order); 743 } 744 745 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 746 { 747 pte_t *pte; 748 int i; 749 750 for (i = 0; i < PTRS_PER_PTE; i++) { 751 pte = pte_start + i; 752 if (pte_val(*pte)) 753 return; 754 } 755 756 /* free a pte talbe */ 757 free_pagetable(pmd_page(*pmd), 0); 758 spin_lock(&init_mm.page_table_lock); 759 pmd_clear(pmd); 760 spin_unlock(&init_mm.page_table_lock); 761 } 762 763 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 764 { 765 pmd_t *pmd; 766 int i; 767 768 for (i = 0; i < PTRS_PER_PMD; i++) { 769 pmd = pmd_start + i; 770 if (pmd_val(*pmd)) 771 return; 772 } 773 774 /* free a pmd talbe */ 775 free_pagetable(pud_page(*pud), 0); 776 spin_lock(&init_mm.page_table_lock); 777 pud_clear(pud); 778 spin_unlock(&init_mm.page_table_lock); 779 } 780 781 /* Return true if pgd is changed, otherwise return false. */ 782 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd) 783 { 784 pud_t *pud; 785 int i; 786 787 for (i = 0; i < PTRS_PER_PUD; i++) { 788 pud = pud_start + i; 789 if (pud_val(*pud)) 790 return false; 791 } 792 793 /* free a pud table */ 794 free_pagetable(pgd_page(*pgd), 0); 795 spin_lock(&init_mm.page_table_lock); 796 pgd_clear(pgd); 797 spin_unlock(&init_mm.page_table_lock); 798 799 return true; 800 } 801 802 static void __meminit 803 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 804 bool direct) 805 { 806 unsigned long next, pages = 0; 807 pte_t *pte; 808 void *page_addr; 809 phys_addr_t phys_addr; 810 811 pte = pte_start + pte_index(addr); 812 for (; addr < end; addr = next, pte++) { 813 next = (addr + PAGE_SIZE) & PAGE_MASK; 814 if (next > end) 815 next = end; 816 817 if (!pte_present(*pte)) 818 continue; 819 820 /* 821 * We mapped [0,1G) memory as identity mapping when 822 * initializing, in arch/x86/kernel/head_64.S. These 823 * pagetables cannot be removed. 824 */ 825 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 826 if (phys_addr < (phys_addr_t)0x40000000) 827 return; 828 829 if (IS_ALIGNED(addr, PAGE_SIZE) && 830 IS_ALIGNED(next, PAGE_SIZE)) { 831 /* 832 * Do not free direct mapping pages since they were 833 * freed when offlining, or simplely not in use. 834 */ 835 if (!direct) 836 free_pagetable(pte_page(*pte), 0); 837 838 spin_lock(&init_mm.page_table_lock); 839 pte_clear(&init_mm, addr, pte); 840 spin_unlock(&init_mm.page_table_lock); 841 842 /* For non-direct mapping, pages means nothing. */ 843 pages++; 844 } else { 845 /* 846 * If we are here, we are freeing vmemmap pages since 847 * direct mapped memory ranges to be freed are aligned. 848 * 849 * If we are not removing the whole page, it means 850 * other page structs in this page are being used and 851 * we canot remove them. So fill the unused page_structs 852 * with 0xFD, and remove the page when it is wholly 853 * filled with 0xFD. 854 */ 855 memset((void *)addr, PAGE_INUSE, next - addr); 856 857 page_addr = page_address(pte_page(*pte)); 858 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 859 free_pagetable(pte_page(*pte), 0); 860 861 spin_lock(&init_mm.page_table_lock); 862 pte_clear(&init_mm, addr, pte); 863 spin_unlock(&init_mm.page_table_lock); 864 } 865 } 866 } 867 868 /* Call free_pte_table() in remove_pmd_table(). */ 869 flush_tlb_all(); 870 if (direct) 871 update_page_count(PG_LEVEL_4K, -pages); 872 } 873 874 static void __meminit 875 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 876 bool direct) 877 { 878 unsigned long next, pages = 0; 879 pte_t *pte_base; 880 pmd_t *pmd; 881 void *page_addr; 882 883 pmd = pmd_start + pmd_index(addr); 884 for (; addr < end; addr = next, pmd++) { 885 next = pmd_addr_end(addr, end); 886 887 if (!pmd_present(*pmd)) 888 continue; 889 890 if (pmd_large(*pmd)) { 891 if (IS_ALIGNED(addr, PMD_SIZE) && 892 IS_ALIGNED(next, PMD_SIZE)) { 893 if (!direct) 894 free_pagetable(pmd_page(*pmd), 895 get_order(PMD_SIZE)); 896 897 spin_lock(&init_mm.page_table_lock); 898 pmd_clear(pmd); 899 spin_unlock(&init_mm.page_table_lock); 900 pages++; 901 } else { 902 /* If here, we are freeing vmemmap pages. */ 903 memset((void *)addr, PAGE_INUSE, next - addr); 904 905 page_addr = page_address(pmd_page(*pmd)); 906 if (!memchr_inv(page_addr, PAGE_INUSE, 907 PMD_SIZE)) { 908 free_pagetable(pmd_page(*pmd), 909 get_order(PMD_SIZE)); 910 911 spin_lock(&init_mm.page_table_lock); 912 pmd_clear(pmd); 913 spin_unlock(&init_mm.page_table_lock); 914 } 915 } 916 917 continue; 918 } 919 920 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 921 remove_pte_table(pte_base, addr, next, direct); 922 free_pte_table(pte_base, pmd); 923 } 924 925 /* Call free_pmd_table() in remove_pud_table(). */ 926 if (direct) 927 update_page_count(PG_LEVEL_2M, -pages); 928 } 929 930 static void __meminit 931 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 932 bool direct) 933 { 934 unsigned long next, pages = 0; 935 pmd_t *pmd_base; 936 pud_t *pud; 937 void *page_addr; 938 939 pud = pud_start + pud_index(addr); 940 for (; addr < end; addr = next, pud++) { 941 next = pud_addr_end(addr, end); 942 943 if (!pud_present(*pud)) 944 continue; 945 946 if (pud_large(*pud)) { 947 if (IS_ALIGNED(addr, PUD_SIZE) && 948 IS_ALIGNED(next, PUD_SIZE)) { 949 if (!direct) 950 free_pagetable(pud_page(*pud), 951 get_order(PUD_SIZE)); 952 953 spin_lock(&init_mm.page_table_lock); 954 pud_clear(pud); 955 spin_unlock(&init_mm.page_table_lock); 956 pages++; 957 } else { 958 /* If here, we are freeing vmemmap pages. */ 959 memset((void *)addr, PAGE_INUSE, next - addr); 960 961 page_addr = page_address(pud_page(*pud)); 962 if (!memchr_inv(page_addr, PAGE_INUSE, 963 PUD_SIZE)) { 964 free_pagetable(pud_page(*pud), 965 get_order(PUD_SIZE)); 966 967 spin_lock(&init_mm.page_table_lock); 968 pud_clear(pud); 969 spin_unlock(&init_mm.page_table_lock); 970 } 971 } 972 973 continue; 974 } 975 976 pmd_base = (pmd_t *)pud_page_vaddr(*pud); 977 remove_pmd_table(pmd_base, addr, next, direct); 978 free_pmd_table(pmd_base, pud); 979 } 980 981 if (direct) 982 update_page_count(PG_LEVEL_1G, -pages); 983 } 984 985 /* start and end are both virtual address. */ 986 static void __meminit 987 remove_pagetable(unsigned long start, unsigned long end, bool direct) 988 { 989 unsigned long next; 990 unsigned long addr; 991 pgd_t *pgd; 992 pud_t *pud; 993 bool pgd_changed = false; 994 995 for (addr = start; addr < end; addr = next) { 996 next = pgd_addr_end(addr, end); 997 998 pgd = pgd_offset_k(addr); 999 if (!pgd_present(*pgd)) 1000 continue; 1001 1002 pud = (pud_t *)pgd_page_vaddr(*pgd); 1003 remove_pud_table(pud, addr, next, direct); 1004 if (free_pud_table(pud, pgd)) 1005 pgd_changed = true; 1006 } 1007 1008 if (pgd_changed) 1009 sync_global_pgds(start, end - 1, 1); 1010 1011 flush_tlb_all(); 1012 } 1013 1014 void __ref vmemmap_free(unsigned long start, unsigned long end) 1015 { 1016 remove_pagetable(start, end, false); 1017 } 1018 1019 #ifdef CONFIG_MEMORY_HOTREMOVE 1020 static void __meminit 1021 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1022 { 1023 start = (unsigned long)__va(start); 1024 end = (unsigned long)__va(end); 1025 1026 remove_pagetable(start, end, true); 1027 } 1028 1029 int __ref arch_remove_memory(u64 start, u64 size) 1030 { 1031 unsigned long start_pfn = start >> PAGE_SHIFT; 1032 unsigned long nr_pages = size >> PAGE_SHIFT; 1033 struct zone *zone; 1034 int ret; 1035 1036 zone = page_zone(pfn_to_page(start_pfn)); 1037 kernel_physical_mapping_remove(start, start + size); 1038 ret = __remove_pages(zone, start_pfn, nr_pages); 1039 WARN_ON_ONCE(ret); 1040 1041 return ret; 1042 } 1043 #endif 1044 #endif /* CONFIG_MEMORY_HOTPLUG */ 1045 1046 static struct kcore_list kcore_vsyscall; 1047 1048 static void __init register_page_bootmem_info(void) 1049 { 1050 #ifdef CONFIG_NUMA 1051 int i; 1052 1053 for_each_online_node(i) 1054 register_page_bootmem_info_node(NODE_DATA(i)); 1055 #endif 1056 } 1057 1058 void __init mem_init(void) 1059 { 1060 pci_iommu_alloc(); 1061 1062 /* clear_bss() already clear the empty_zero_page */ 1063 1064 register_page_bootmem_info(); 1065 1066 /* this will put all memory onto the freelists */ 1067 free_all_bootmem(); 1068 after_bootmem = 1; 1069 1070 /* Register memory areas for /proc/kcore */ 1071 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, 1072 PAGE_SIZE, KCORE_OTHER); 1073 1074 mem_init_print_info(NULL); 1075 } 1076 1077 #ifdef CONFIG_DEBUG_RODATA 1078 const int rodata_test_data = 0xC3; 1079 EXPORT_SYMBOL_GPL(rodata_test_data); 1080 1081 int kernel_set_to_readonly; 1082 1083 void set_kernel_text_rw(void) 1084 { 1085 unsigned long start = PFN_ALIGN(_text); 1086 unsigned long end = PFN_ALIGN(__stop___ex_table); 1087 1088 if (!kernel_set_to_readonly) 1089 return; 1090 1091 pr_debug("Set kernel text: %lx - %lx for read write\n", 1092 start, end); 1093 1094 /* 1095 * Make the kernel identity mapping for text RW. Kernel text 1096 * mapping will always be RO. Refer to the comment in 1097 * static_protections() in pageattr.c 1098 */ 1099 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1100 } 1101 1102 void set_kernel_text_ro(void) 1103 { 1104 unsigned long start = PFN_ALIGN(_text); 1105 unsigned long end = PFN_ALIGN(__stop___ex_table); 1106 1107 if (!kernel_set_to_readonly) 1108 return; 1109 1110 pr_debug("Set kernel text: %lx - %lx for read only\n", 1111 start, end); 1112 1113 /* 1114 * Set the kernel identity mapping for text RO. 1115 */ 1116 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1117 } 1118 1119 void mark_rodata_ro(void) 1120 { 1121 unsigned long start = PFN_ALIGN(_text); 1122 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1123 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1124 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1125 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1126 unsigned long all_end = PFN_ALIGN(&_end); 1127 1128 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1129 (end - start) >> 10); 1130 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1131 1132 kernel_set_to_readonly = 1; 1133 1134 /* 1135 * The rodata/data/bss/brk section (but not the kernel text!) 1136 * should also be not-executable. 1137 */ 1138 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT); 1139 1140 rodata_test(); 1141 1142 #ifdef CONFIG_CPA_DEBUG 1143 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1144 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1145 1146 printk(KERN_INFO "Testing CPA: again\n"); 1147 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1148 #endif 1149 1150 free_init_pages("unused kernel", 1151 (unsigned long) __va(__pa_symbol(text_end)), 1152 (unsigned long) __va(__pa_symbol(rodata_start))); 1153 free_init_pages("unused kernel", 1154 (unsigned long) __va(__pa_symbol(rodata_end)), 1155 (unsigned long) __va(__pa_symbol(_sdata))); 1156 } 1157 1158 #endif 1159 1160 int kern_addr_valid(unsigned long addr) 1161 { 1162 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1163 pgd_t *pgd; 1164 pud_t *pud; 1165 pmd_t *pmd; 1166 pte_t *pte; 1167 1168 if (above != 0 && above != -1UL) 1169 return 0; 1170 1171 pgd = pgd_offset_k(addr); 1172 if (pgd_none(*pgd)) 1173 return 0; 1174 1175 pud = pud_offset(pgd, addr); 1176 if (pud_none(*pud)) 1177 return 0; 1178 1179 if (pud_large(*pud)) 1180 return pfn_valid(pud_pfn(*pud)); 1181 1182 pmd = pmd_offset(pud, addr); 1183 if (pmd_none(*pmd)) 1184 return 0; 1185 1186 if (pmd_large(*pmd)) 1187 return pfn_valid(pmd_pfn(*pmd)); 1188 1189 pte = pte_offset_kernel(pmd, addr); 1190 if (pte_none(*pte)) 1191 return 0; 1192 1193 return pfn_valid(pte_pfn(*pte)); 1194 } 1195 1196 /* 1197 * A pseudo VMA to allow ptrace access for the vsyscall page. This only 1198 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does 1199 * not need special handling anymore: 1200 */ 1201 static const char *gate_vma_name(struct vm_area_struct *vma) 1202 { 1203 return "[vsyscall]"; 1204 } 1205 static struct vm_operations_struct gate_vma_ops = { 1206 .name = gate_vma_name, 1207 }; 1208 static struct vm_area_struct gate_vma = { 1209 .vm_start = VSYSCALL_ADDR, 1210 .vm_end = VSYSCALL_ADDR + PAGE_SIZE, 1211 .vm_page_prot = PAGE_READONLY_EXEC, 1212 .vm_flags = VM_READ | VM_EXEC, 1213 .vm_ops = &gate_vma_ops, 1214 }; 1215 1216 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 1217 { 1218 #ifdef CONFIG_IA32_EMULATION 1219 if (!mm || mm->context.ia32_compat) 1220 return NULL; 1221 #endif 1222 return &gate_vma; 1223 } 1224 1225 int in_gate_area(struct mm_struct *mm, unsigned long addr) 1226 { 1227 struct vm_area_struct *vma = get_gate_vma(mm); 1228 1229 if (!vma) 1230 return 0; 1231 1232 return (addr >= vma->vm_start) && (addr < vma->vm_end); 1233 } 1234 1235 /* 1236 * Use this when you have no reliable mm, typically from interrupt 1237 * context. It is less reliable than using a task's mm and may give 1238 * false positives. 1239 */ 1240 int in_gate_area_no_mm(unsigned long addr) 1241 { 1242 return (addr & PAGE_MASK) == VSYSCALL_ADDR; 1243 } 1244 1245 static unsigned long probe_memory_block_size(void) 1246 { 1247 /* start from 2g */ 1248 unsigned long bz = 1UL<<31; 1249 1250 #ifdef CONFIG_X86_UV 1251 if (is_uv_system()) { 1252 printk(KERN_INFO "UV: memory block size 2GB\n"); 1253 return 2UL * 1024 * 1024 * 1024; 1254 } 1255 #endif 1256 1257 /* less than 64g installed */ 1258 if ((max_pfn << PAGE_SHIFT) < (16UL << 32)) 1259 return MIN_MEMORY_BLOCK_SIZE; 1260 1261 /* get the tail size */ 1262 while (bz > MIN_MEMORY_BLOCK_SIZE) { 1263 if (!((max_pfn << PAGE_SHIFT) & (bz - 1))) 1264 break; 1265 bz >>= 1; 1266 } 1267 1268 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20); 1269 1270 return bz; 1271 } 1272 1273 static unsigned long memory_block_size_probed; 1274 unsigned long memory_block_size_bytes(void) 1275 { 1276 if (!memory_block_size_probed) 1277 memory_block_size_probed = probe_memory_block_size(); 1278 1279 return memory_block_size_probed; 1280 } 1281 1282 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1283 /* 1284 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1285 */ 1286 static long __meminitdata addr_start, addr_end; 1287 static void __meminitdata *p_start, *p_end; 1288 static int __meminitdata node_start; 1289 1290 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1291 unsigned long end, int node) 1292 { 1293 unsigned long addr; 1294 unsigned long next; 1295 pgd_t *pgd; 1296 pud_t *pud; 1297 pmd_t *pmd; 1298 1299 for (addr = start; addr < end; addr = next) { 1300 next = pmd_addr_end(addr, end); 1301 1302 pgd = vmemmap_pgd_populate(addr, node); 1303 if (!pgd) 1304 return -ENOMEM; 1305 1306 pud = vmemmap_pud_populate(pgd, addr, node); 1307 if (!pud) 1308 return -ENOMEM; 1309 1310 pmd = pmd_offset(pud, addr); 1311 if (pmd_none(*pmd)) { 1312 void *p; 1313 1314 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1315 if (p) { 1316 pte_t entry; 1317 1318 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1319 PAGE_KERNEL_LARGE); 1320 set_pmd(pmd, __pmd(pte_val(entry))); 1321 1322 /* check to see if we have contiguous blocks */ 1323 if (p_end != p || node_start != node) { 1324 if (p_start) 1325 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1326 addr_start, addr_end-1, p_start, p_end-1, node_start); 1327 addr_start = addr; 1328 node_start = node; 1329 p_start = p; 1330 } 1331 1332 addr_end = addr + PMD_SIZE; 1333 p_end = p + PMD_SIZE; 1334 continue; 1335 } 1336 } else if (pmd_large(*pmd)) { 1337 vmemmap_verify((pte_t *)pmd, node, addr, next); 1338 continue; 1339 } 1340 pr_warn_once("vmemmap: falling back to regular page backing\n"); 1341 if (vmemmap_populate_basepages(addr, next, node)) 1342 return -ENOMEM; 1343 } 1344 return 0; 1345 } 1346 1347 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) 1348 { 1349 int err; 1350 1351 if (cpu_has_pse) 1352 err = vmemmap_populate_hugepages(start, end, node); 1353 else 1354 err = vmemmap_populate_basepages(start, end, node); 1355 if (!err) 1356 sync_global_pgds(start, end - 1, 0); 1357 return err; 1358 } 1359 1360 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1361 void register_page_bootmem_memmap(unsigned long section_nr, 1362 struct page *start_page, unsigned long size) 1363 { 1364 unsigned long addr = (unsigned long)start_page; 1365 unsigned long end = (unsigned long)(start_page + size); 1366 unsigned long next; 1367 pgd_t *pgd; 1368 pud_t *pud; 1369 pmd_t *pmd; 1370 unsigned int nr_pages; 1371 struct page *page; 1372 1373 for (; addr < end; addr = next) { 1374 pte_t *pte = NULL; 1375 1376 pgd = pgd_offset_k(addr); 1377 if (pgd_none(*pgd)) { 1378 next = (addr + PAGE_SIZE) & PAGE_MASK; 1379 continue; 1380 } 1381 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1382 1383 pud = pud_offset(pgd, addr); 1384 if (pud_none(*pud)) { 1385 next = (addr + PAGE_SIZE) & PAGE_MASK; 1386 continue; 1387 } 1388 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1389 1390 if (!cpu_has_pse) { 1391 next = (addr + PAGE_SIZE) & PAGE_MASK; 1392 pmd = pmd_offset(pud, addr); 1393 if (pmd_none(*pmd)) 1394 continue; 1395 get_page_bootmem(section_nr, pmd_page(*pmd), 1396 MIX_SECTION_INFO); 1397 1398 pte = pte_offset_kernel(pmd, addr); 1399 if (pte_none(*pte)) 1400 continue; 1401 get_page_bootmem(section_nr, pte_page(*pte), 1402 SECTION_INFO); 1403 } else { 1404 next = pmd_addr_end(addr, end); 1405 1406 pmd = pmd_offset(pud, addr); 1407 if (pmd_none(*pmd)) 1408 continue; 1409 1410 nr_pages = 1 << (get_order(PMD_SIZE)); 1411 page = pmd_page(*pmd); 1412 while (nr_pages--) 1413 get_page_bootmem(section_nr, page++, 1414 SECTION_INFO); 1415 } 1416 } 1417 } 1418 #endif 1419 1420 void __meminit vmemmap_populate_print_last(void) 1421 { 1422 if (p_start) { 1423 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1424 addr_start, addr_end-1, p_start, p_end-1, node_start); 1425 p_start = NULL; 1426 p_end = NULL; 1427 node_start = 0; 1428 } 1429 } 1430 #endif 1431