xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 56d06fa2)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/memremap.h>
34 #include <linux/nmi.h>
35 #include <linux/gfp.h>
36 #include <linux/kcore.h>
37 
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/e820.h>
46 #include <asm/apic.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
50 #include <asm/smp.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
53 #include <asm/numa.h>
54 #include <asm/cacheflush.h>
55 #include <asm/init.h>
56 #include <asm/uv/uv.h>
57 #include <asm/setup.h>
58 
59 #include "mm_internal.h"
60 
61 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
62 			   unsigned long addr, unsigned long end)
63 {
64 	addr &= PMD_MASK;
65 	for (; addr < end; addr += PMD_SIZE) {
66 		pmd_t *pmd = pmd_page + pmd_index(addr);
67 
68 		if (!pmd_present(*pmd))
69 			set_pmd(pmd, __pmd(addr | pmd_flag));
70 	}
71 }
72 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
73 			  unsigned long addr, unsigned long end)
74 {
75 	unsigned long next;
76 
77 	for (; addr < end; addr = next) {
78 		pud_t *pud = pud_page + pud_index(addr);
79 		pmd_t *pmd;
80 
81 		next = (addr & PUD_MASK) + PUD_SIZE;
82 		if (next > end)
83 			next = end;
84 
85 		if (pud_present(*pud)) {
86 			pmd = pmd_offset(pud, 0);
87 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
88 			continue;
89 		}
90 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
91 		if (!pmd)
92 			return -ENOMEM;
93 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
94 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
95 	}
96 
97 	return 0;
98 }
99 
100 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
101 			      unsigned long addr, unsigned long end)
102 {
103 	unsigned long next;
104 	int result;
105 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
106 
107 	for (; addr < end; addr = next) {
108 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
109 		pud_t *pud;
110 
111 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
112 		if (next > end)
113 			next = end;
114 
115 		if (pgd_present(*pgd)) {
116 			pud = pud_offset(pgd, 0);
117 			result = ident_pud_init(info, pud, addr, next);
118 			if (result)
119 				return result;
120 			continue;
121 		}
122 
123 		pud = (pud_t *)info->alloc_pgt_page(info->context);
124 		if (!pud)
125 			return -ENOMEM;
126 		result = ident_pud_init(info, pud, addr, next);
127 		if (result)
128 			return result;
129 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
130 	}
131 
132 	return 0;
133 }
134 
135 /*
136  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
137  * physical space so we can cache the place of the first one and move
138  * around without checking the pgd every time.
139  */
140 
141 pteval_t __supported_pte_mask __read_mostly = ~0;
142 EXPORT_SYMBOL_GPL(__supported_pte_mask);
143 
144 int force_personality32;
145 
146 /*
147  * noexec32=on|off
148  * Control non executable heap for 32bit processes.
149  * To control the stack too use noexec=off
150  *
151  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
152  * off	PROT_READ implies PROT_EXEC
153  */
154 static int __init nonx32_setup(char *str)
155 {
156 	if (!strcmp(str, "on"))
157 		force_personality32 &= ~READ_IMPLIES_EXEC;
158 	else if (!strcmp(str, "off"))
159 		force_personality32 |= READ_IMPLIES_EXEC;
160 	return 1;
161 }
162 __setup("noexec32=", nonx32_setup);
163 
164 /*
165  * When memory was added/removed make sure all the processes MM have
166  * suitable PGD entries in the local PGD level page.
167  */
168 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
169 {
170 	unsigned long address;
171 
172 	for (address = start; address <= end; address += PGDIR_SIZE) {
173 		const pgd_t *pgd_ref = pgd_offset_k(address);
174 		struct page *page;
175 
176 		/*
177 		 * When it is called after memory hot remove, pgd_none()
178 		 * returns true. In this case (removed == 1), we must clear
179 		 * the PGD entries in the local PGD level page.
180 		 */
181 		if (pgd_none(*pgd_ref) && !removed)
182 			continue;
183 
184 		spin_lock(&pgd_lock);
185 		list_for_each_entry(page, &pgd_list, lru) {
186 			pgd_t *pgd;
187 			spinlock_t *pgt_lock;
188 
189 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
190 			/* the pgt_lock only for Xen */
191 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
192 			spin_lock(pgt_lock);
193 
194 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
195 				BUG_ON(pgd_page_vaddr(*pgd)
196 				       != pgd_page_vaddr(*pgd_ref));
197 
198 			if (removed) {
199 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
200 					pgd_clear(pgd);
201 			} else {
202 				if (pgd_none(*pgd))
203 					set_pgd(pgd, *pgd_ref);
204 			}
205 
206 			spin_unlock(pgt_lock);
207 		}
208 		spin_unlock(&pgd_lock);
209 	}
210 }
211 
212 /*
213  * NOTE: This function is marked __ref because it calls __init function
214  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
215  */
216 static __ref void *spp_getpage(void)
217 {
218 	void *ptr;
219 
220 	if (after_bootmem)
221 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
222 	else
223 		ptr = alloc_bootmem_pages(PAGE_SIZE);
224 
225 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
226 		panic("set_pte_phys: cannot allocate page data %s\n",
227 			after_bootmem ? "after bootmem" : "");
228 	}
229 
230 	pr_debug("spp_getpage %p\n", ptr);
231 
232 	return ptr;
233 }
234 
235 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
236 {
237 	if (pgd_none(*pgd)) {
238 		pud_t *pud = (pud_t *)spp_getpage();
239 		pgd_populate(&init_mm, pgd, pud);
240 		if (pud != pud_offset(pgd, 0))
241 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
242 			       pud, pud_offset(pgd, 0));
243 	}
244 	return pud_offset(pgd, vaddr);
245 }
246 
247 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
248 {
249 	if (pud_none(*pud)) {
250 		pmd_t *pmd = (pmd_t *) spp_getpage();
251 		pud_populate(&init_mm, pud, pmd);
252 		if (pmd != pmd_offset(pud, 0))
253 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
254 			       pmd, pmd_offset(pud, 0));
255 	}
256 	return pmd_offset(pud, vaddr);
257 }
258 
259 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
260 {
261 	if (pmd_none(*pmd)) {
262 		pte_t *pte = (pte_t *) spp_getpage();
263 		pmd_populate_kernel(&init_mm, pmd, pte);
264 		if (pte != pte_offset_kernel(pmd, 0))
265 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
266 	}
267 	return pte_offset_kernel(pmd, vaddr);
268 }
269 
270 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
271 {
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *pte;
275 
276 	pud = pud_page + pud_index(vaddr);
277 	pmd = fill_pmd(pud, vaddr);
278 	pte = fill_pte(pmd, vaddr);
279 
280 	set_pte(pte, new_pte);
281 
282 	/*
283 	 * It's enough to flush this one mapping.
284 	 * (PGE mappings get flushed as well)
285 	 */
286 	__flush_tlb_one(vaddr);
287 }
288 
289 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
290 {
291 	pgd_t *pgd;
292 	pud_t *pud_page;
293 
294 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
295 
296 	pgd = pgd_offset_k(vaddr);
297 	if (pgd_none(*pgd)) {
298 		printk(KERN_ERR
299 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
300 		return;
301 	}
302 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
303 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
304 }
305 
306 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
307 {
308 	pgd_t *pgd;
309 	pud_t *pud;
310 
311 	pgd = pgd_offset_k(vaddr);
312 	pud = fill_pud(pgd, vaddr);
313 	return fill_pmd(pud, vaddr);
314 }
315 
316 pte_t * __init populate_extra_pte(unsigned long vaddr)
317 {
318 	pmd_t *pmd;
319 
320 	pmd = populate_extra_pmd(vaddr);
321 	return fill_pte(pmd, vaddr);
322 }
323 
324 /*
325  * Create large page table mappings for a range of physical addresses.
326  */
327 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
328 					enum page_cache_mode cache)
329 {
330 	pgd_t *pgd;
331 	pud_t *pud;
332 	pmd_t *pmd;
333 	pgprot_t prot;
334 
335 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
336 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
337 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
338 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
339 		pgd = pgd_offset_k((unsigned long)__va(phys));
340 		if (pgd_none(*pgd)) {
341 			pud = (pud_t *) spp_getpage();
342 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
343 						_PAGE_USER));
344 		}
345 		pud = pud_offset(pgd, (unsigned long)__va(phys));
346 		if (pud_none(*pud)) {
347 			pmd = (pmd_t *) spp_getpage();
348 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
349 						_PAGE_USER));
350 		}
351 		pmd = pmd_offset(pud, phys);
352 		BUG_ON(!pmd_none(*pmd));
353 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
354 	}
355 }
356 
357 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
358 {
359 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
360 }
361 
362 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
363 {
364 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
365 }
366 
367 /*
368  * The head.S code sets up the kernel high mapping:
369  *
370  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
371  *
372  * phys_base holds the negative offset to the kernel, which is added
373  * to the compile time generated pmds. This results in invalid pmds up
374  * to the point where we hit the physaddr 0 mapping.
375  *
376  * We limit the mappings to the region from _text to _brk_end.  _brk_end
377  * is rounded up to the 2MB boundary. This catches the invalid pmds as
378  * well, as they are located before _text:
379  */
380 void __init cleanup_highmap(void)
381 {
382 	unsigned long vaddr = __START_KERNEL_map;
383 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
384 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
385 	pmd_t *pmd = level2_kernel_pgt;
386 
387 	/*
388 	 * Native path, max_pfn_mapped is not set yet.
389 	 * Xen has valid max_pfn_mapped set in
390 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
391 	 */
392 	if (max_pfn_mapped)
393 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
394 
395 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
396 		if (pmd_none(*pmd))
397 			continue;
398 		if (vaddr < (unsigned long) _text || vaddr > end)
399 			set_pmd(pmd, __pmd(0));
400 	}
401 }
402 
403 static unsigned long __meminit
404 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
405 	      pgprot_t prot)
406 {
407 	unsigned long pages = 0, next;
408 	unsigned long last_map_addr = end;
409 	int i;
410 
411 	pte_t *pte = pte_page + pte_index(addr);
412 
413 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
414 		next = (addr & PAGE_MASK) + PAGE_SIZE;
415 		if (addr >= end) {
416 			if (!after_bootmem &&
417 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
418 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
419 				set_pte(pte, __pte(0));
420 			continue;
421 		}
422 
423 		/*
424 		 * We will re-use the existing mapping.
425 		 * Xen for example has some special requirements, like mapping
426 		 * pagetable pages as RO. So assume someone who pre-setup
427 		 * these mappings are more intelligent.
428 		 */
429 		if (pte_val(*pte)) {
430 			if (!after_bootmem)
431 				pages++;
432 			continue;
433 		}
434 
435 		if (0)
436 			printk("   pte=%p addr=%lx pte=%016lx\n",
437 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
438 		pages++;
439 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
440 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
441 	}
442 
443 	update_page_count(PG_LEVEL_4K, pages);
444 
445 	return last_map_addr;
446 }
447 
448 static unsigned long __meminit
449 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
450 	      unsigned long page_size_mask, pgprot_t prot)
451 {
452 	unsigned long pages = 0, next;
453 	unsigned long last_map_addr = end;
454 
455 	int i = pmd_index(address);
456 
457 	for (; i < PTRS_PER_PMD; i++, address = next) {
458 		pmd_t *pmd = pmd_page + pmd_index(address);
459 		pte_t *pte;
460 		pgprot_t new_prot = prot;
461 
462 		next = (address & PMD_MASK) + PMD_SIZE;
463 		if (address >= end) {
464 			if (!after_bootmem &&
465 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
466 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
467 				set_pmd(pmd, __pmd(0));
468 			continue;
469 		}
470 
471 		if (pmd_val(*pmd)) {
472 			if (!pmd_large(*pmd)) {
473 				spin_lock(&init_mm.page_table_lock);
474 				pte = (pte_t *)pmd_page_vaddr(*pmd);
475 				last_map_addr = phys_pte_init(pte, address,
476 								end, prot);
477 				spin_unlock(&init_mm.page_table_lock);
478 				continue;
479 			}
480 			/*
481 			 * If we are ok with PG_LEVEL_2M mapping, then we will
482 			 * use the existing mapping,
483 			 *
484 			 * Otherwise, we will split the large page mapping but
485 			 * use the same existing protection bits except for
486 			 * large page, so that we don't violate Intel's TLB
487 			 * Application note (317080) which says, while changing
488 			 * the page sizes, new and old translations should
489 			 * not differ with respect to page frame and
490 			 * attributes.
491 			 */
492 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
493 				if (!after_bootmem)
494 					pages++;
495 				last_map_addr = next;
496 				continue;
497 			}
498 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
499 		}
500 
501 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
502 			pages++;
503 			spin_lock(&init_mm.page_table_lock);
504 			set_pte((pte_t *)pmd,
505 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
506 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
507 			spin_unlock(&init_mm.page_table_lock);
508 			last_map_addr = next;
509 			continue;
510 		}
511 
512 		pte = alloc_low_page();
513 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
514 
515 		spin_lock(&init_mm.page_table_lock);
516 		pmd_populate_kernel(&init_mm, pmd, pte);
517 		spin_unlock(&init_mm.page_table_lock);
518 	}
519 	update_page_count(PG_LEVEL_2M, pages);
520 	return last_map_addr;
521 }
522 
523 static unsigned long __meminit
524 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
525 			 unsigned long page_size_mask)
526 {
527 	unsigned long pages = 0, next;
528 	unsigned long last_map_addr = end;
529 	int i = pud_index(addr);
530 
531 	for (; i < PTRS_PER_PUD; i++, addr = next) {
532 		pud_t *pud = pud_page + pud_index(addr);
533 		pmd_t *pmd;
534 		pgprot_t prot = PAGE_KERNEL;
535 
536 		next = (addr & PUD_MASK) + PUD_SIZE;
537 		if (addr >= end) {
538 			if (!after_bootmem &&
539 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
540 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
541 				set_pud(pud, __pud(0));
542 			continue;
543 		}
544 
545 		if (pud_val(*pud)) {
546 			if (!pud_large(*pud)) {
547 				pmd = pmd_offset(pud, 0);
548 				last_map_addr = phys_pmd_init(pmd, addr, end,
549 							 page_size_mask, prot);
550 				__flush_tlb_all();
551 				continue;
552 			}
553 			/*
554 			 * If we are ok with PG_LEVEL_1G mapping, then we will
555 			 * use the existing mapping.
556 			 *
557 			 * Otherwise, we will split the gbpage mapping but use
558 			 * the same existing protection  bits except for large
559 			 * page, so that we don't violate Intel's TLB
560 			 * Application note (317080) which says, while changing
561 			 * the page sizes, new and old translations should
562 			 * not differ with respect to page frame and
563 			 * attributes.
564 			 */
565 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
566 				if (!after_bootmem)
567 					pages++;
568 				last_map_addr = next;
569 				continue;
570 			}
571 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
572 		}
573 
574 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
575 			pages++;
576 			spin_lock(&init_mm.page_table_lock);
577 			set_pte((pte_t *)pud,
578 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
579 					PAGE_KERNEL_LARGE));
580 			spin_unlock(&init_mm.page_table_lock);
581 			last_map_addr = next;
582 			continue;
583 		}
584 
585 		pmd = alloc_low_page();
586 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
587 					      prot);
588 
589 		spin_lock(&init_mm.page_table_lock);
590 		pud_populate(&init_mm, pud, pmd);
591 		spin_unlock(&init_mm.page_table_lock);
592 	}
593 	__flush_tlb_all();
594 
595 	update_page_count(PG_LEVEL_1G, pages);
596 
597 	return last_map_addr;
598 }
599 
600 unsigned long __meminit
601 kernel_physical_mapping_init(unsigned long start,
602 			     unsigned long end,
603 			     unsigned long page_size_mask)
604 {
605 	bool pgd_changed = false;
606 	unsigned long next, last_map_addr = end;
607 	unsigned long addr;
608 
609 	start = (unsigned long)__va(start);
610 	end = (unsigned long)__va(end);
611 	addr = start;
612 
613 	for (; start < end; start = next) {
614 		pgd_t *pgd = pgd_offset_k(start);
615 		pud_t *pud;
616 
617 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
618 
619 		if (pgd_val(*pgd)) {
620 			pud = (pud_t *)pgd_page_vaddr(*pgd);
621 			last_map_addr = phys_pud_init(pud, __pa(start),
622 						 __pa(end), page_size_mask);
623 			continue;
624 		}
625 
626 		pud = alloc_low_page();
627 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
628 						 page_size_mask);
629 
630 		spin_lock(&init_mm.page_table_lock);
631 		pgd_populate(&init_mm, pgd, pud);
632 		spin_unlock(&init_mm.page_table_lock);
633 		pgd_changed = true;
634 	}
635 
636 	if (pgd_changed)
637 		sync_global_pgds(addr, end - 1, 0);
638 
639 	__flush_tlb_all();
640 
641 	return last_map_addr;
642 }
643 
644 #ifndef CONFIG_NUMA
645 void __init initmem_init(void)
646 {
647 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
648 }
649 #endif
650 
651 void __init paging_init(void)
652 {
653 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
654 	sparse_init();
655 
656 	/*
657 	 * clear the default setting with node 0
658 	 * note: don't use nodes_clear here, that is really clearing when
659 	 *	 numa support is not compiled in, and later node_set_state
660 	 *	 will not set it back.
661 	 */
662 	node_clear_state(0, N_MEMORY);
663 	if (N_MEMORY != N_NORMAL_MEMORY)
664 		node_clear_state(0, N_NORMAL_MEMORY);
665 
666 	zone_sizes_init();
667 }
668 
669 /*
670  * Memory hotplug specific functions
671  */
672 #ifdef CONFIG_MEMORY_HOTPLUG
673 /*
674  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
675  * updating.
676  */
677 static void  update_end_of_memory_vars(u64 start, u64 size)
678 {
679 	unsigned long end_pfn = PFN_UP(start + size);
680 
681 	if (end_pfn > max_pfn) {
682 		max_pfn = end_pfn;
683 		max_low_pfn = end_pfn;
684 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
685 	}
686 }
687 
688 /*
689  * Memory is added always to NORMAL zone. This means you will never get
690  * additional DMA/DMA32 memory.
691  */
692 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
693 {
694 	struct pglist_data *pgdat = NODE_DATA(nid);
695 	struct zone *zone = pgdat->node_zones +
696 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
697 	unsigned long start_pfn = start >> PAGE_SHIFT;
698 	unsigned long nr_pages = size >> PAGE_SHIFT;
699 	int ret;
700 
701 	init_memory_mapping(start, start + size);
702 
703 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
704 	WARN_ON_ONCE(ret);
705 
706 	/* update max_pfn, max_low_pfn and high_memory */
707 	update_end_of_memory_vars(start, size);
708 
709 	return ret;
710 }
711 EXPORT_SYMBOL_GPL(arch_add_memory);
712 
713 #define PAGE_INUSE 0xFD
714 
715 static void __meminit free_pagetable(struct page *page, int order)
716 {
717 	unsigned long magic;
718 	unsigned int nr_pages = 1 << order;
719 	struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
720 
721 	if (altmap) {
722 		vmem_altmap_free(altmap, nr_pages);
723 		return;
724 	}
725 
726 	/* bootmem page has reserved flag */
727 	if (PageReserved(page)) {
728 		__ClearPageReserved(page);
729 
730 		magic = (unsigned long)page->lru.next;
731 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
732 			while (nr_pages--)
733 				put_page_bootmem(page++);
734 		} else
735 			while (nr_pages--)
736 				free_reserved_page(page++);
737 	} else
738 		free_pages((unsigned long)page_address(page), order);
739 }
740 
741 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
742 {
743 	pte_t *pte;
744 	int i;
745 
746 	for (i = 0; i < PTRS_PER_PTE; i++) {
747 		pte = pte_start + i;
748 		if (pte_val(*pte))
749 			return;
750 	}
751 
752 	/* free a pte talbe */
753 	free_pagetable(pmd_page(*pmd), 0);
754 	spin_lock(&init_mm.page_table_lock);
755 	pmd_clear(pmd);
756 	spin_unlock(&init_mm.page_table_lock);
757 }
758 
759 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
760 {
761 	pmd_t *pmd;
762 	int i;
763 
764 	for (i = 0; i < PTRS_PER_PMD; i++) {
765 		pmd = pmd_start + i;
766 		if (pmd_val(*pmd))
767 			return;
768 	}
769 
770 	/* free a pmd talbe */
771 	free_pagetable(pud_page(*pud), 0);
772 	spin_lock(&init_mm.page_table_lock);
773 	pud_clear(pud);
774 	spin_unlock(&init_mm.page_table_lock);
775 }
776 
777 /* Return true if pgd is changed, otherwise return false. */
778 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
779 {
780 	pud_t *pud;
781 	int i;
782 
783 	for (i = 0; i < PTRS_PER_PUD; i++) {
784 		pud = pud_start + i;
785 		if (pud_val(*pud))
786 			return false;
787 	}
788 
789 	/* free a pud table */
790 	free_pagetable(pgd_page(*pgd), 0);
791 	spin_lock(&init_mm.page_table_lock);
792 	pgd_clear(pgd);
793 	spin_unlock(&init_mm.page_table_lock);
794 
795 	return true;
796 }
797 
798 static void __meminit
799 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
800 		 bool direct)
801 {
802 	unsigned long next, pages = 0;
803 	pte_t *pte;
804 	void *page_addr;
805 	phys_addr_t phys_addr;
806 
807 	pte = pte_start + pte_index(addr);
808 	for (; addr < end; addr = next, pte++) {
809 		next = (addr + PAGE_SIZE) & PAGE_MASK;
810 		if (next > end)
811 			next = end;
812 
813 		if (!pte_present(*pte))
814 			continue;
815 
816 		/*
817 		 * We mapped [0,1G) memory as identity mapping when
818 		 * initializing, in arch/x86/kernel/head_64.S. These
819 		 * pagetables cannot be removed.
820 		 */
821 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
822 		if (phys_addr < (phys_addr_t)0x40000000)
823 			return;
824 
825 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
826 			/*
827 			 * Do not free direct mapping pages since they were
828 			 * freed when offlining, or simplely not in use.
829 			 */
830 			if (!direct)
831 				free_pagetable(pte_page(*pte), 0);
832 
833 			spin_lock(&init_mm.page_table_lock);
834 			pte_clear(&init_mm, addr, pte);
835 			spin_unlock(&init_mm.page_table_lock);
836 
837 			/* For non-direct mapping, pages means nothing. */
838 			pages++;
839 		} else {
840 			/*
841 			 * If we are here, we are freeing vmemmap pages since
842 			 * direct mapped memory ranges to be freed are aligned.
843 			 *
844 			 * If we are not removing the whole page, it means
845 			 * other page structs in this page are being used and
846 			 * we canot remove them. So fill the unused page_structs
847 			 * with 0xFD, and remove the page when it is wholly
848 			 * filled with 0xFD.
849 			 */
850 			memset((void *)addr, PAGE_INUSE, next - addr);
851 
852 			page_addr = page_address(pte_page(*pte));
853 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
854 				free_pagetable(pte_page(*pte), 0);
855 
856 				spin_lock(&init_mm.page_table_lock);
857 				pte_clear(&init_mm, addr, pte);
858 				spin_unlock(&init_mm.page_table_lock);
859 			}
860 		}
861 	}
862 
863 	/* Call free_pte_table() in remove_pmd_table(). */
864 	flush_tlb_all();
865 	if (direct)
866 		update_page_count(PG_LEVEL_4K, -pages);
867 }
868 
869 static void __meminit
870 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
871 		 bool direct)
872 {
873 	unsigned long next, pages = 0;
874 	pte_t *pte_base;
875 	pmd_t *pmd;
876 	void *page_addr;
877 
878 	pmd = pmd_start + pmd_index(addr);
879 	for (; addr < end; addr = next, pmd++) {
880 		next = pmd_addr_end(addr, end);
881 
882 		if (!pmd_present(*pmd))
883 			continue;
884 
885 		if (pmd_large(*pmd)) {
886 			if (IS_ALIGNED(addr, PMD_SIZE) &&
887 			    IS_ALIGNED(next, PMD_SIZE)) {
888 				if (!direct)
889 					free_pagetable(pmd_page(*pmd),
890 						       get_order(PMD_SIZE));
891 
892 				spin_lock(&init_mm.page_table_lock);
893 				pmd_clear(pmd);
894 				spin_unlock(&init_mm.page_table_lock);
895 				pages++;
896 			} else {
897 				/* If here, we are freeing vmemmap pages. */
898 				memset((void *)addr, PAGE_INUSE, next - addr);
899 
900 				page_addr = page_address(pmd_page(*pmd));
901 				if (!memchr_inv(page_addr, PAGE_INUSE,
902 						PMD_SIZE)) {
903 					free_pagetable(pmd_page(*pmd),
904 						       get_order(PMD_SIZE));
905 
906 					spin_lock(&init_mm.page_table_lock);
907 					pmd_clear(pmd);
908 					spin_unlock(&init_mm.page_table_lock);
909 				}
910 			}
911 
912 			continue;
913 		}
914 
915 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
916 		remove_pte_table(pte_base, addr, next, direct);
917 		free_pte_table(pte_base, pmd);
918 	}
919 
920 	/* Call free_pmd_table() in remove_pud_table(). */
921 	if (direct)
922 		update_page_count(PG_LEVEL_2M, -pages);
923 }
924 
925 static void __meminit
926 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
927 		 bool direct)
928 {
929 	unsigned long next, pages = 0;
930 	pmd_t *pmd_base;
931 	pud_t *pud;
932 	void *page_addr;
933 
934 	pud = pud_start + pud_index(addr);
935 	for (; addr < end; addr = next, pud++) {
936 		next = pud_addr_end(addr, end);
937 
938 		if (!pud_present(*pud))
939 			continue;
940 
941 		if (pud_large(*pud)) {
942 			if (IS_ALIGNED(addr, PUD_SIZE) &&
943 			    IS_ALIGNED(next, PUD_SIZE)) {
944 				if (!direct)
945 					free_pagetable(pud_page(*pud),
946 						       get_order(PUD_SIZE));
947 
948 				spin_lock(&init_mm.page_table_lock);
949 				pud_clear(pud);
950 				spin_unlock(&init_mm.page_table_lock);
951 				pages++;
952 			} else {
953 				/* If here, we are freeing vmemmap pages. */
954 				memset((void *)addr, PAGE_INUSE, next - addr);
955 
956 				page_addr = page_address(pud_page(*pud));
957 				if (!memchr_inv(page_addr, PAGE_INUSE,
958 						PUD_SIZE)) {
959 					free_pagetable(pud_page(*pud),
960 						       get_order(PUD_SIZE));
961 
962 					spin_lock(&init_mm.page_table_lock);
963 					pud_clear(pud);
964 					spin_unlock(&init_mm.page_table_lock);
965 				}
966 			}
967 
968 			continue;
969 		}
970 
971 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
972 		remove_pmd_table(pmd_base, addr, next, direct);
973 		free_pmd_table(pmd_base, pud);
974 	}
975 
976 	if (direct)
977 		update_page_count(PG_LEVEL_1G, -pages);
978 }
979 
980 /* start and end are both virtual address. */
981 static void __meminit
982 remove_pagetable(unsigned long start, unsigned long end, bool direct)
983 {
984 	unsigned long next;
985 	unsigned long addr;
986 	pgd_t *pgd;
987 	pud_t *pud;
988 	bool pgd_changed = false;
989 
990 	for (addr = start; addr < end; addr = next) {
991 		next = pgd_addr_end(addr, end);
992 
993 		pgd = pgd_offset_k(addr);
994 		if (!pgd_present(*pgd))
995 			continue;
996 
997 		pud = (pud_t *)pgd_page_vaddr(*pgd);
998 		remove_pud_table(pud, addr, next, direct);
999 		if (free_pud_table(pud, pgd))
1000 			pgd_changed = true;
1001 	}
1002 
1003 	if (pgd_changed)
1004 		sync_global_pgds(start, end - 1, 1);
1005 
1006 	flush_tlb_all();
1007 }
1008 
1009 void __ref vmemmap_free(unsigned long start, unsigned long end)
1010 {
1011 	remove_pagetable(start, end, false);
1012 }
1013 
1014 #ifdef CONFIG_MEMORY_HOTREMOVE
1015 static void __meminit
1016 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1017 {
1018 	start = (unsigned long)__va(start);
1019 	end = (unsigned long)__va(end);
1020 
1021 	remove_pagetable(start, end, true);
1022 }
1023 
1024 int __ref arch_remove_memory(u64 start, u64 size)
1025 {
1026 	unsigned long start_pfn = start >> PAGE_SHIFT;
1027 	unsigned long nr_pages = size >> PAGE_SHIFT;
1028 	struct page *page = pfn_to_page(start_pfn);
1029 	struct vmem_altmap *altmap;
1030 	struct zone *zone;
1031 	int ret;
1032 
1033 	/* With altmap the first mapped page is offset from @start */
1034 	altmap = to_vmem_altmap((unsigned long) page);
1035 	if (altmap)
1036 		page += vmem_altmap_offset(altmap);
1037 	zone = page_zone(page);
1038 	ret = __remove_pages(zone, start_pfn, nr_pages);
1039 	WARN_ON_ONCE(ret);
1040 	kernel_physical_mapping_remove(start, start + size);
1041 
1042 	return ret;
1043 }
1044 #endif
1045 #endif /* CONFIG_MEMORY_HOTPLUG */
1046 
1047 static struct kcore_list kcore_vsyscall;
1048 
1049 static void __init register_page_bootmem_info(void)
1050 {
1051 #ifdef CONFIG_NUMA
1052 	int i;
1053 
1054 	for_each_online_node(i)
1055 		register_page_bootmem_info_node(NODE_DATA(i));
1056 #endif
1057 }
1058 
1059 void __init mem_init(void)
1060 {
1061 	pci_iommu_alloc();
1062 
1063 	/* clear_bss() already clear the empty_zero_page */
1064 
1065 	register_page_bootmem_info();
1066 
1067 	/* this will put all memory onto the freelists */
1068 	free_all_bootmem();
1069 	after_bootmem = 1;
1070 
1071 	/* Register memory areas for /proc/kcore */
1072 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1073 			 PAGE_SIZE, KCORE_OTHER);
1074 
1075 	mem_init_print_info(NULL);
1076 }
1077 
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080 
1081 int kernel_set_to_readonly;
1082 
1083 void set_kernel_text_rw(void)
1084 {
1085 	unsigned long start = PFN_ALIGN(_text);
1086 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1087 
1088 	if (!kernel_set_to_readonly)
1089 		return;
1090 
1091 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1092 		 start, end);
1093 
1094 	/*
1095 	 * Make the kernel identity mapping for text RW. Kernel text
1096 	 * mapping will always be RO. Refer to the comment in
1097 	 * static_protections() in pageattr.c
1098 	 */
1099 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101 
1102 void set_kernel_text_ro(void)
1103 {
1104 	unsigned long start = PFN_ALIGN(_text);
1105 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1106 
1107 	if (!kernel_set_to_readonly)
1108 		return;
1109 
1110 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1111 		 start, end);
1112 
1113 	/*
1114 	 * Set the kernel identity mapping for text RO.
1115 	 */
1116 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118 
1119 void mark_rodata_ro(void)
1120 {
1121 	unsigned long start = PFN_ALIGN(_text);
1122 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126 	unsigned long all_end;
1127 
1128 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129 	       (end - start) >> 10);
1130 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131 
1132 	kernel_set_to_readonly = 1;
1133 
1134 	/*
1135 	 * The rodata/data/bss/brk section (but not the kernel text!)
1136 	 * should also be not-executable.
1137 	 *
1138 	 * We align all_end to PMD_SIZE because the existing mapping
1139 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140 	 * split the PMD and the reminder between _brk_end and the end
1141 	 * of the PMD will remain mapped executable.
1142 	 *
1143 	 * Any PMD which was setup after the one which covers _brk_end
1144 	 * has been zapped already via cleanup_highmem().
1145 	 */
1146 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1148 
1149 	rodata_test();
1150 
1151 #ifdef CONFIG_CPA_DEBUG
1152 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154 
1155 	printk(KERN_INFO "Testing CPA: again\n");
1156 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157 #endif
1158 
1159 	free_init_pages("unused kernel",
1160 			(unsigned long) __va(__pa_symbol(text_end)),
1161 			(unsigned long) __va(__pa_symbol(rodata_start)));
1162 	free_init_pages("unused kernel",
1163 			(unsigned long) __va(__pa_symbol(rodata_end)),
1164 			(unsigned long) __va(__pa_symbol(_sdata)));
1165 
1166 	debug_checkwx();
1167 }
1168 
1169 int kern_addr_valid(unsigned long addr)
1170 {
1171 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1172 	pgd_t *pgd;
1173 	pud_t *pud;
1174 	pmd_t *pmd;
1175 	pte_t *pte;
1176 
1177 	if (above != 0 && above != -1UL)
1178 		return 0;
1179 
1180 	pgd = pgd_offset_k(addr);
1181 	if (pgd_none(*pgd))
1182 		return 0;
1183 
1184 	pud = pud_offset(pgd, addr);
1185 	if (pud_none(*pud))
1186 		return 0;
1187 
1188 	if (pud_large(*pud))
1189 		return pfn_valid(pud_pfn(*pud));
1190 
1191 	pmd = pmd_offset(pud, addr);
1192 	if (pmd_none(*pmd))
1193 		return 0;
1194 
1195 	if (pmd_large(*pmd))
1196 		return pfn_valid(pmd_pfn(*pmd));
1197 
1198 	pte = pte_offset_kernel(pmd, addr);
1199 	if (pte_none(*pte))
1200 		return 0;
1201 
1202 	return pfn_valid(pte_pfn(*pte));
1203 }
1204 
1205 static unsigned long probe_memory_block_size(void)
1206 {
1207 	unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1208 
1209 	/* if system is UV or has 64GB of RAM or more, use large blocks */
1210 	if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1211 		bz = 2UL << 30; /* 2GB */
1212 
1213 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1214 
1215 	return bz;
1216 }
1217 
1218 static unsigned long memory_block_size_probed;
1219 unsigned long memory_block_size_bytes(void)
1220 {
1221 	if (!memory_block_size_probed)
1222 		memory_block_size_probed = probe_memory_block_size();
1223 
1224 	return memory_block_size_probed;
1225 }
1226 
1227 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1228 /*
1229  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1230  */
1231 static long __meminitdata addr_start, addr_end;
1232 static void __meminitdata *p_start, *p_end;
1233 static int __meminitdata node_start;
1234 
1235 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1236 		unsigned long end, int node, struct vmem_altmap *altmap)
1237 {
1238 	unsigned long addr;
1239 	unsigned long next;
1240 	pgd_t *pgd;
1241 	pud_t *pud;
1242 	pmd_t *pmd;
1243 
1244 	for (addr = start; addr < end; addr = next) {
1245 		next = pmd_addr_end(addr, end);
1246 
1247 		pgd = vmemmap_pgd_populate(addr, node);
1248 		if (!pgd)
1249 			return -ENOMEM;
1250 
1251 		pud = vmemmap_pud_populate(pgd, addr, node);
1252 		if (!pud)
1253 			return -ENOMEM;
1254 
1255 		pmd = pmd_offset(pud, addr);
1256 		if (pmd_none(*pmd)) {
1257 			void *p;
1258 
1259 			p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1260 			if (p) {
1261 				pte_t entry;
1262 
1263 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1264 						PAGE_KERNEL_LARGE);
1265 				set_pmd(pmd, __pmd(pte_val(entry)));
1266 
1267 				/* check to see if we have contiguous blocks */
1268 				if (p_end != p || node_start != node) {
1269 					if (p_start)
1270 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1271 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1272 					addr_start = addr;
1273 					node_start = node;
1274 					p_start = p;
1275 				}
1276 
1277 				addr_end = addr + PMD_SIZE;
1278 				p_end = p + PMD_SIZE;
1279 				continue;
1280 			} else if (altmap)
1281 				return -ENOMEM; /* no fallback */
1282 		} else if (pmd_large(*pmd)) {
1283 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1284 			continue;
1285 		}
1286 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1287 		if (vmemmap_populate_basepages(addr, next, node))
1288 			return -ENOMEM;
1289 	}
1290 	return 0;
1291 }
1292 
1293 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1294 {
1295 	struct vmem_altmap *altmap = to_vmem_altmap(start);
1296 	int err;
1297 
1298 	if (cpu_has_pse)
1299 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1300 	else if (altmap) {
1301 		pr_err_once("%s: no cpu support for altmap allocations\n",
1302 				__func__);
1303 		err = -ENOMEM;
1304 	} else
1305 		err = vmemmap_populate_basepages(start, end, node);
1306 	if (!err)
1307 		sync_global_pgds(start, end - 1, 0);
1308 	return err;
1309 }
1310 
1311 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1312 void register_page_bootmem_memmap(unsigned long section_nr,
1313 				  struct page *start_page, unsigned long size)
1314 {
1315 	unsigned long addr = (unsigned long)start_page;
1316 	unsigned long end = (unsigned long)(start_page + size);
1317 	unsigned long next;
1318 	pgd_t *pgd;
1319 	pud_t *pud;
1320 	pmd_t *pmd;
1321 	unsigned int nr_pages;
1322 	struct page *page;
1323 
1324 	for (; addr < end; addr = next) {
1325 		pte_t *pte = NULL;
1326 
1327 		pgd = pgd_offset_k(addr);
1328 		if (pgd_none(*pgd)) {
1329 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1330 			continue;
1331 		}
1332 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1333 
1334 		pud = pud_offset(pgd, addr);
1335 		if (pud_none(*pud)) {
1336 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1337 			continue;
1338 		}
1339 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1340 
1341 		if (!cpu_has_pse) {
1342 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1343 			pmd = pmd_offset(pud, addr);
1344 			if (pmd_none(*pmd))
1345 				continue;
1346 			get_page_bootmem(section_nr, pmd_page(*pmd),
1347 					 MIX_SECTION_INFO);
1348 
1349 			pte = pte_offset_kernel(pmd, addr);
1350 			if (pte_none(*pte))
1351 				continue;
1352 			get_page_bootmem(section_nr, pte_page(*pte),
1353 					 SECTION_INFO);
1354 		} else {
1355 			next = pmd_addr_end(addr, end);
1356 
1357 			pmd = pmd_offset(pud, addr);
1358 			if (pmd_none(*pmd))
1359 				continue;
1360 
1361 			nr_pages = 1 << (get_order(PMD_SIZE));
1362 			page = pmd_page(*pmd);
1363 			while (nr_pages--)
1364 				get_page_bootmem(section_nr, page++,
1365 						 SECTION_INFO);
1366 		}
1367 	}
1368 }
1369 #endif
1370 
1371 void __meminit vmemmap_populate_print_last(void)
1372 {
1373 	if (p_start) {
1374 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1375 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1376 		p_start = NULL;
1377 		p_end = NULL;
1378 		node_start = 0;
1379 	}
1380 }
1381 #endif
1382