xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 384740dc)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50 
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
58 
59 static unsigned long dma_reserve __initdata;
60 
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62 
63 int direct_gbpages
64 #ifdef CONFIG_DIRECT_GBPAGES
65 				= 1
66 #endif
67 ;
68 
69 static int __init parse_direct_gbpages_off(char *arg)
70 {
71 	direct_gbpages = 0;
72 	return 0;
73 }
74 early_param("nogbpages", parse_direct_gbpages_off);
75 
76 static int __init parse_direct_gbpages_on(char *arg)
77 {
78 	direct_gbpages = 1;
79 	return 0;
80 }
81 early_param("gbpages", parse_direct_gbpages_on);
82 
83 /*
84  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85  * physical space so we can cache the place of the first one and move
86  * around without checking the pgd every time.
87  */
88 
89 int after_bootmem;
90 
91 /*
92  * NOTE: This function is marked __ref because it calls __init function
93  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
94  */
95 static __ref void *spp_getpage(void)
96 {
97 	void *ptr;
98 
99 	if (after_bootmem)
100 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
101 	else
102 		ptr = alloc_bootmem_pages(PAGE_SIZE);
103 
104 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
105 		panic("set_pte_phys: cannot allocate page data %s\n",
106 			after_bootmem ? "after bootmem" : "");
107 	}
108 
109 	pr_debug("spp_getpage %p\n", ptr);
110 
111 	return ptr;
112 }
113 
114 void
115 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
116 {
117 	pud_t *pud;
118 	pmd_t *pmd;
119 	pte_t *pte;
120 
121 	pud = pud_page + pud_index(vaddr);
122 	if (pud_none(*pud)) {
123 		pmd = (pmd_t *) spp_getpage();
124 		pud_populate(&init_mm, pud, pmd);
125 		if (pmd != pmd_offset(pud, 0)) {
126 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
127 				pmd, pmd_offset(pud, 0));
128 			return;
129 		}
130 	}
131 	pmd = pmd_offset(pud, vaddr);
132 	if (pmd_none(*pmd)) {
133 		pte = (pte_t *) spp_getpage();
134 		pmd_populate_kernel(&init_mm, pmd, pte);
135 		if (pte != pte_offset_kernel(pmd, 0)) {
136 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
137 			return;
138 		}
139 	}
140 
141 	pte = pte_offset_kernel(pmd, vaddr);
142 	if (!pte_none(*pte) && pte_val(new_pte) &&
143 	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
144 		pte_ERROR(*pte);
145 	set_pte(pte, new_pte);
146 
147 	/*
148 	 * It's enough to flush this one mapping.
149 	 * (PGE mappings get flushed as well)
150 	 */
151 	__flush_tlb_one(vaddr);
152 }
153 
154 void
155 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
156 {
157 	pgd_t *pgd;
158 	pud_t *pud_page;
159 
160 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
161 
162 	pgd = pgd_offset_k(vaddr);
163 	if (pgd_none(*pgd)) {
164 		printk(KERN_ERR
165 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
166 		return;
167 	}
168 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
169 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
170 }
171 
172 /*
173  * Create large page table mappings for a range of physical addresses.
174  */
175 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
176 						pgprot_t prot)
177 {
178 	pgd_t *pgd;
179 	pud_t *pud;
180 	pmd_t *pmd;
181 
182 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
183 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
184 		pgd = pgd_offset_k((unsigned long)__va(phys));
185 		if (pgd_none(*pgd)) {
186 			pud = (pud_t *) spp_getpage();
187 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
188 						_PAGE_USER));
189 		}
190 		pud = pud_offset(pgd, (unsigned long)__va(phys));
191 		if (pud_none(*pud)) {
192 			pmd = (pmd_t *) spp_getpage();
193 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
194 						_PAGE_USER));
195 		}
196 		pmd = pmd_offset(pud, phys);
197 		BUG_ON(!pmd_none(*pmd));
198 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
199 	}
200 }
201 
202 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
203 {
204 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
205 }
206 
207 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
208 {
209 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
210 }
211 
212 /*
213  * The head.S code sets up the kernel high mapping:
214  *
215  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
216  *
217  * phys_addr holds the negative offset to the kernel, which is added
218  * to the compile time generated pmds. This results in invalid pmds up
219  * to the point where we hit the physaddr 0 mapping.
220  *
221  * We limit the mappings to the region from _text to _end.  _end is
222  * rounded up to the 2MB boundary. This catches the invalid pmds as
223  * well, as they are located before _text:
224  */
225 void __init cleanup_highmap(void)
226 {
227 	unsigned long vaddr = __START_KERNEL_map;
228 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
229 	pmd_t *pmd = level2_kernel_pgt;
230 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
231 
232 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
233 		if (pmd_none(*pmd))
234 			continue;
235 		if (vaddr < (unsigned long) _text || vaddr > end)
236 			set_pmd(pmd, __pmd(0));
237 	}
238 }
239 
240 static unsigned long __initdata table_start;
241 static unsigned long __meminitdata table_end;
242 static unsigned long __meminitdata table_top;
243 
244 static __ref void *alloc_low_page(unsigned long *phys)
245 {
246 	unsigned long pfn = table_end++;
247 	void *adr;
248 
249 	if (after_bootmem) {
250 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
251 		*phys = __pa(adr);
252 
253 		return adr;
254 	}
255 
256 	if (pfn >= table_top)
257 		panic("alloc_low_page: ran out of memory");
258 
259 	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260 	memset(adr, 0, PAGE_SIZE);
261 	*phys  = pfn * PAGE_SIZE;
262 	return adr;
263 }
264 
265 static __ref void unmap_low_page(void *adr)
266 {
267 	if (after_bootmem)
268 		return;
269 
270 	early_iounmap(adr, PAGE_SIZE);
271 }
272 
273 static unsigned long __meminit
274 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
275 {
276 	unsigned pages = 0;
277 	unsigned long last_map_addr = end;
278 	int i;
279 
280 	pte_t *pte = pte_page + pte_index(addr);
281 
282 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
283 
284 		if (addr >= end) {
285 			if (!after_bootmem) {
286 				for(; i < PTRS_PER_PTE; i++, pte++)
287 					set_pte(pte, __pte(0));
288 			}
289 			break;
290 		}
291 
292 		if (pte_val(*pte))
293 			continue;
294 
295 		if (0)
296 			printk("   pte=%p addr=%lx pte=%016lx\n",
297 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
298 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
299 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
300 		pages++;
301 	}
302 	update_page_count(PG_LEVEL_4K, pages);
303 
304 	return last_map_addr;
305 }
306 
307 static unsigned long __meminit
308 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
309 {
310 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
311 
312 	return phys_pte_init(pte, address, end);
313 }
314 
315 static unsigned long __meminit
316 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
317 			 unsigned long page_size_mask)
318 {
319 	unsigned long pages = 0;
320 	unsigned long last_map_addr = end;
321 	unsigned long start = address;
322 
323 	int i = pmd_index(address);
324 
325 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
326 		unsigned long pte_phys;
327 		pmd_t *pmd = pmd_page + pmd_index(address);
328 		pte_t *pte;
329 
330 		if (address >= end) {
331 			if (!after_bootmem) {
332 				for (; i < PTRS_PER_PMD; i++, pmd++)
333 					set_pmd(pmd, __pmd(0));
334 			}
335 			break;
336 		}
337 
338 		if (pmd_val(*pmd)) {
339 			if (!pmd_large(*pmd)) {
340 				spin_lock(&init_mm.page_table_lock);
341 				last_map_addr = phys_pte_update(pmd, address,
342 								end);
343 				spin_unlock(&init_mm.page_table_lock);
344 			}
345 			/* Count entries we're using from level2_ident_pgt */
346 			if (start == 0)
347 				pages++;
348 			continue;
349 		}
350 
351 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
352 			pages++;
353 			spin_lock(&init_mm.page_table_lock);
354 			set_pte((pte_t *)pmd,
355 				pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
356 			spin_unlock(&init_mm.page_table_lock);
357 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
358 			continue;
359 		}
360 
361 		pte = alloc_low_page(&pte_phys);
362 		last_map_addr = phys_pte_init(pte, address, end);
363 		unmap_low_page(pte);
364 
365 		spin_lock(&init_mm.page_table_lock);
366 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
367 		spin_unlock(&init_mm.page_table_lock);
368 	}
369 	update_page_count(PG_LEVEL_2M, pages);
370 	return last_map_addr;
371 }
372 
373 static unsigned long __meminit
374 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
375 			 unsigned long page_size_mask)
376 {
377 	pmd_t *pmd = pmd_offset(pud, 0);
378 	unsigned long last_map_addr;
379 
380 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
381 	__flush_tlb_all();
382 	return last_map_addr;
383 }
384 
385 static unsigned long __meminit
386 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
387 			 unsigned long page_size_mask)
388 {
389 	unsigned long pages = 0;
390 	unsigned long last_map_addr = end;
391 	int i = pud_index(addr);
392 
393 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
394 		unsigned long pmd_phys;
395 		pud_t *pud = pud_page + pud_index(addr);
396 		pmd_t *pmd;
397 
398 		if (addr >= end)
399 			break;
400 
401 		if (!after_bootmem &&
402 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
403 			set_pud(pud, __pud(0));
404 			continue;
405 		}
406 
407 		if (pud_val(*pud)) {
408 			if (!pud_large(*pud))
409 				last_map_addr = phys_pmd_update(pud, addr, end,
410 							 page_size_mask);
411 			continue;
412 		}
413 
414 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
415 			pages++;
416 			spin_lock(&init_mm.page_table_lock);
417 			set_pte((pte_t *)pud,
418 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
419 			spin_unlock(&init_mm.page_table_lock);
420 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
421 			continue;
422 		}
423 
424 		pmd = alloc_low_page(&pmd_phys);
425 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
426 		unmap_low_page(pmd);
427 
428 		spin_lock(&init_mm.page_table_lock);
429 		pud_populate(&init_mm, pud, __va(pmd_phys));
430 		spin_unlock(&init_mm.page_table_lock);
431 	}
432 	__flush_tlb_all();
433 	update_page_count(PG_LEVEL_1G, pages);
434 
435 	return last_map_addr;
436 }
437 
438 static unsigned long __meminit
439 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
440 		 unsigned long page_size_mask)
441 {
442 	pud_t *pud;
443 
444 	pud = (pud_t *)pgd_page_vaddr(*pgd);
445 
446 	return phys_pud_init(pud, addr, end, page_size_mask);
447 }
448 
449 static void __init find_early_table_space(unsigned long end)
450 {
451 	unsigned long puds, pmds, ptes, tables, start;
452 
453 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
454 	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
455 	if (direct_gbpages) {
456 		unsigned long extra;
457 		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
458 		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
459 	} else
460 		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
461 	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
462 
463 	if (cpu_has_pse) {
464 		unsigned long extra;
465 		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
466 		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
467 	} else
468 		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
470 
471 	/*
472 	 * RED-PEN putting page tables only on node 0 could
473 	 * cause a hotspot and fill up ZONE_DMA. The page tables
474 	 * need roughly 0.5KB per GB.
475 	 */
476 	start = 0x8000;
477 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
478 	if (table_start == -1UL)
479 		panic("Cannot find space for the kernel page tables");
480 
481 	table_start >>= PAGE_SHIFT;
482 	table_end = table_start;
483 	table_top = table_start + (tables >> PAGE_SHIFT);
484 
485 	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
486 		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
487 }
488 
489 static void __init init_gbpages(void)
490 {
491 	if (direct_gbpages && cpu_has_gbpages)
492 		printk(KERN_INFO "Using GB pages for direct mapping\n");
493 	else
494 		direct_gbpages = 0;
495 }
496 
497 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
498 						unsigned long end,
499 						unsigned long page_size_mask)
500 {
501 
502 	unsigned long next, last_map_addr = end;
503 
504 	start = (unsigned long)__va(start);
505 	end = (unsigned long)__va(end);
506 
507 	for (; start < end; start = next) {
508 		pgd_t *pgd = pgd_offset_k(start);
509 		unsigned long pud_phys;
510 		pud_t *pud;
511 
512 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
513 		if (next > end)
514 			next = end;
515 
516 		if (pgd_val(*pgd)) {
517 			last_map_addr = phys_pud_update(pgd, __pa(start),
518 						 __pa(end), page_size_mask);
519 			continue;
520 		}
521 
522 		pud = alloc_low_page(&pud_phys);
523 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
524 						 page_size_mask);
525 		unmap_low_page(pud);
526 
527 		spin_lock(&init_mm.page_table_lock);
528 		pgd_populate(&init_mm, pgd, __va(pud_phys));
529 		spin_unlock(&init_mm.page_table_lock);
530 	}
531 
532 	return last_map_addr;
533 }
534 
535 struct map_range {
536 	unsigned long start;
537 	unsigned long end;
538 	unsigned page_size_mask;
539 };
540 
541 #define NR_RANGE_MR 5
542 
543 static int save_mr(struct map_range *mr, int nr_range,
544 		   unsigned long start_pfn, unsigned long end_pfn,
545 		   unsigned long page_size_mask)
546 {
547 
548 	if (start_pfn < end_pfn) {
549 		if (nr_range >= NR_RANGE_MR)
550 			panic("run out of range for init_memory_mapping\n");
551 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
552 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
553 		mr[nr_range].page_size_mask = page_size_mask;
554 		nr_range++;
555 	}
556 
557 	return nr_range;
558 }
559 
560 /*
561  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
562  * This runs before bootmem is initialized and gets pages directly from
563  * the physical memory. To access them they are temporarily mapped.
564  */
565 unsigned long __init_refok init_memory_mapping(unsigned long start,
566 					       unsigned long end)
567 {
568 	unsigned long last_map_addr = 0;
569 	unsigned long page_size_mask = 0;
570 	unsigned long start_pfn, end_pfn;
571 
572 	struct map_range mr[NR_RANGE_MR];
573 	int nr_range, i;
574 
575 	printk(KERN_INFO "init_memory_mapping\n");
576 
577 	/*
578 	 * Find space for the kernel direct mapping tables.
579 	 *
580 	 * Later we should allocate these tables in the local node of the
581 	 * memory mapped. Unfortunately this is done currently before the
582 	 * nodes are discovered.
583 	 */
584 	if (!after_bootmem)
585 		init_gbpages();
586 
587 	if (direct_gbpages)
588 		page_size_mask |= 1 << PG_LEVEL_1G;
589 	if (cpu_has_pse)
590 		page_size_mask |= 1 << PG_LEVEL_2M;
591 
592 	memset(mr, 0, sizeof(mr));
593 	nr_range = 0;
594 
595 	/* head if not big page alignment ?*/
596 	start_pfn = start >> PAGE_SHIFT;
597 	end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
598 			<< (PMD_SHIFT - PAGE_SHIFT);
599 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
600 
601 	/* big page (2M) range*/
602 	start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
603 			 << (PMD_SHIFT - PAGE_SHIFT);
604 	end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
605 			 << (PUD_SHIFT - PAGE_SHIFT);
606 	if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
607 		end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
608 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
609 			page_size_mask & (1<<PG_LEVEL_2M));
610 
611 	/* big page (1G) range */
612 	start_pfn = end_pfn;
613 	end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
614 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
615 				page_size_mask &
616 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
617 
618 	/* tail is not big page (1G) alignment */
619 	start_pfn = end_pfn;
620 	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
621 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
622 			page_size_mask & (1<<PG_LEVEL_2M));
623 
624 	/* tail is not big page (2M) alignment */
625 	start_pfn = end_pfn;
626 	end_pfn = end>>PAGE_SHIFT;
627 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
628 
629 	/* try to merge same page size and continuous */
630 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
631 		unsigned long old_start;
632 		if (mr[i].end != mr[i+1].start ||
633 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
634 			continue;
635 		/* move it */
636 		old_start = mr[i].start;
637 		memmove(&mr[i], &mr[i+1],
638 			 (nr_range - 1 - i) * sizeof (struct map_range));
639 		mr[i].start = old_start;
640 		nr_range--;
641 	}
642 
643 	for (i = 0; i < nr_range; i++)
644 		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
645 				mr[i].start, mr[i].end,
646 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
647 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
648 
649 	if (!after_bootmem)
650 		find_early_table_space(end);
651 
652 	for (i = 0; i < nr_range; i++)
653 		last_map_addr = kernel_physical_mapping_init(
654 					mr[i].start, mr[i].end,
655 					mr[i].page_size_mask);
656 
657 	if (!after_bootmem)
658 		mmu_cr4_features = read_cr4();
659 	__flush_tlb_all();
660 
661 	if (!after_bootmem && table_end > table_start)
662 		reserve_early(table_start << PAGE_SHIFT,
663 				 table_end << PAGE_SHIFT, "PGTABLE");
664 
665 	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
666 			 last_map_addr, end);
667 
668 	if (!after_bootmem)
669 		early_memtest(start, end);
670 
671 	return last_map_addr >> PAGE_SHIFT;
672 }
673 
674 #ifndef CONFIG_NUMA
675 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
676 {
677 	unsigned long bootmap_size, bootmap;
678 
679 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
680 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
681 				 PAGE_SIZE);
682 	if (bootmap == -1L)
683 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
684 	/* don't touch min_low_pfn */
685 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
686 					 0, end_pfn);
687 	e820_register_active_regions(0, start_pfn, end_pfn);
688 	free_bootmem_with_active_regions(0, end_pfn);
689 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
690 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
691 }
692 
693 void __init paging_init(void)
694 {
695 	unsigned long max_zone_pfns[MAX_NR_ZONES];
696 
697 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
698 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
699 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
700 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
701 
702 	memory_present(0, 0, max_pfn);
703 	sparse_init();
704 	free_area_init_nodes(max_zone_pfns);
705 }
706 #endif
707 
708 /*
709  * Memory hotplug specific functions
710  */
711 #ifdef CONFIG_MEMORY_HOTPLUG
712 /*
713  * Memory is added always to NORMAL zone. This means you will never get
714  * additional DMA/DMA32 memory.
715  */
716 int arch_add_memory(int nid, u64 start, u64 size)
717 {
718 	struct pglist_data *pgdat = NODE_DATA(nid);
719 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
720 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
721 	unsigned long nr_pages = size >> PAGE_SHIFT;
722 	int ret;
723 
724 	last_mapped_pfn = init_memory_mapping(start, start + size-1);
725 	if (last_mapped_pfn > max_pfn_mapped)
726 		max_pfn_mapped = last_mapped_pfn;
727 
728 	ret = __add_pages(zone, start_pfn, nr_pages);
729 	WARN_ON(1);
730 
731 	return ret;
732 }
733 EXPORT_SYMBOL_GPL(arch_add_memory);
734 
735 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
736 int memory_add_physaddr_to_nid(u64 start)
737 {
738 	return 0;
739 }
740 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
741 #endif
742 
743 #endif /* CONFIG_MEMORY_HOTPLUG */
744 
745 /*
746  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
747  * is valid. The argument is a physical page number.
748  *
749  *
750  * On x86, access has to be given to the first megabyte of ram because that area
751  * contains bios code and data regions used by X and dosemu and similar apps.
752  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
753  * mmio resources as well as potential bios/acpi data regions.
754  */
755 int devmem_is_allowed(unsigned long pagenr)
756 {
757 	if (pagenr <= 256)
758 		return 1;
759 	if (!page_is_ram(pagenr))
760 		return 1;
761 	return 0;
762 }
763 
764 
765 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
766 			 kcore_modules, kcore_vsyscall;
767 
768 void __init mem_init(void)
769 {
770 	long codesize, reservedpages, datasize, initsize;
771 
772 	pci_iommu_alloc();
773 
774 	/* clear_bss() already clear the empty_zero_page */
775 
776 	reservedpages = 0;
777 
778 	/* this will put all low memory onto the freelists */
779 #ifdef CONFIG_NUMA
780 	totalram_pages = numa_free_all_bootmem();
781 #else
782 	totalram_pages = free_all_bootmem();
783 #endif
784 	reservedpages = max_pfn - totalram_pages -
785 					absent_pages_in_range(0, max_pfn);
786 	after_bootmem = 1;
787 
788 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
789 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
790 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
791 
792 	/* Register memory areas for /proc/kcore */
793 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
794 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
795 		   VMALLOC_END-VMALLOC_START);
796 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
797 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
798 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
799 				 VSYSCALL_END - VSYSCALL_START);
800 
801 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
802 				"%ldk reserved, %ldk data, %ldk init)\n",
803 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
804 		max_pfn << (PAGE_SHIFT-10),
805 		codesize >> 10,
806 		reservedpages << (PAGE_SHIFT-10),
807 		datasize >> 10,
808 		initsize >> 10);
809 
810 	cpa_init();
811 }
812 
813 void free_init_pages(char *what, unsigned long begin, unsigned long end)
814 {
815 	unsigned long addr = begin;
816 
817 	if (addr >= end)
818 		return;
819 
820 	/*
821 	 * If debugging page accesses then do not free this memory but
822 	 * mark them not present - any buggy init-section access will
823 	 * create a kernel page fault:
824 	 */
825 #ifdef CONFIG_DEBUG_PAGEALLOC
826 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
827 		begin, PAGE_ALIGN(end));
828 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
829 #else
830 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
831 
832 	for (; addr < end; addr += PAGE_SIZE) {
833 		ClearPageReserved(virt_to_page(addr));
834 		init_page_count(virt_to_page(addr));
835 		memset((void *)(addr & ~(PAGE_SIZE-1)),
836 			POISON_FREE_INITMEM, PAGE_SIZE);
837 		free_page(addr);
838 		totalram_pages++;
839 	}
840 #endif
841 }
842 
843 void free_initmem(void)
844 {
845 	free_init_pages("unused kernel memory",
846 			(unsigned long)(&__init_begin),
847 			(unsigned long)(&__init_end));
848 }
849 
850 #ifdef CONFIG_DEBUG_RODATA
851 const int rodata_test_data = 0xC3;
852 EXPORT_SYMBOL_GPL(rodata_test_data);
853 
854 void mark_rodata_ro(void)
855 {
856 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
857 	unsigned long rodata_start =
858 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
859 
860 #ifdef CONFIG_DYNAMIC_FTRACE
861 	/* Dynamic tracing modifies the kernel text section */
862 	start = rodata_start;
863 #endif
864 
865 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
866 	       (end - start) >> 10);
867 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
868 
869 	/*
870 	 * The rodata section (but not the kernel text!) should also be
871 	 * not-executable.
872 	 */
873 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
874 
875 	rodata_test();
876 
877 #ifdef CONFIG_CPA_DEBUG
878 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
879 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
880 
881 	printk(KERN_INFO "Testing CPA: again\n");
882 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
883 #endif
884 }
885 
886 #endif
887 
888 #ifdef CONFIG_BLK_DEV_INITRD
889 void free_initrd_mem(unsigned long start, unsigned long end)
890 {
891 	free_init_pages("initrd memory", start, end);
892 }
893 #endif
894 
895 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
896 				   int flags)
897 {
898 #ifdef CONFIG_NUMA
899 	int nid, next_nid;
900 	int ret;
901 #endif
902 	unsigned long pfn = phys >> PAGE_SHIFT;
903 
904 	if (pfn >= max_pfn) {
905 		/*
906 		 * This can happen with kdump kernels when accessing
907 		 * firmware tables:
908 		 */
909 		if (pfn < max_pfn_mapped)
910 			return -EFAULT;
911 
912 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
913 				phys, len);
914 		return -EFAULT;
915 	}
916 
917 	/* Should check here against the e820 map to avoid double free */
918 #ifdef CONFIG_NUMA
919 	nid = phys_to_nid(phys);
920 	next_nid = phys_to_nid(phys + len - 1);
921 	if (nid == next_nid)
922 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
923 	else
924 		ret = reserve_bootmem(phys, len, flags);
925 
926 	if (ret != 0)
927 		return ret;
928 
929 #else
930 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
931 #endif
932 
933 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
934 		dma_reserve += len / PAGE_SIZE;
935 		set_dma_reserve(dma_reserve);
936 	}
937 
938 	return 0;
939 }
940 
941 int kern_addr_valid(unsigned long addr)
942 {
943 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
944 	pgd_t *pgd;
945 	pud_t *pud;
946 	pmd_t *pmd;
947 	pte_t *pte;
948 
949 	if (above != 0 && above != -1UL)
950 		return 0;
951 
952 	pgd = pgd_offset_k(addr);
953 	if (pgd_none(*pgd))
954 		return 0;
955 
956 	pud = pud_offset(pgd, addr);
957 	if (pud_none(*pud))
958 		return 0;
959 
960 	pmd = pmd_offset(pud, addr);
961 	if (pmd_none(*pmd))
962 		return 0;
963 
964 	if (pmd_large(*pmd))
965 		return pfn_valid(pmd_pfn(*pmd));
966 
967 	pte = pte_offset_kernel(pmd, addr);
968 	if (pte_none(*pte))
969 		return 0;
970 
971 	return pfn_valid(pte_pfn(*pte));
972 }
973 
974 /*
975  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
976  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
977  * not need special handling anymore:
978  */
979 static struct vm_area_struct gate_vma = {
980 	.vm_start	= VSYSCALL_START,
981 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
982 	.vm_page_prot	= PAGE_READONLY_EXEC,
983 	.vm_flags	= VM_READ | VM_EXEC
984 };
985 
986 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
987 {
988 #ifdef CONFIG_IA32_EMULATION
989 	if (test_tsk_thread_flag(tsk, TIF_IA32))
990 		return NULL;
991 #endif
992 	return &gate_vma;
993 }
994 
995 int in_gate_area(struct task_struct *task, unsigned long addr)
996 {
997 	struct vm_area_struct *vma = get_gate_vma(task);
998 
999 	if (!vma)
1000 		return 0;
1001 
1002 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1003 }
1004 
1005 /*
1006  * Use this when you have no reliable task/vma, typically from interrupt
1007  * context. It is less reliable than using the task's vma and may give
1008  * false positives:
1009  */
1010 int in_gate_area_no_task(unsigned long addr)
1011 {
1012 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1013 }
1014 
1015 const char *arch_vma_name(struct vm_area_struct *vma)
1016 {
1017 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1018 		return "[vdso]";
1019 	if (vma == &gate_vma)
1020 		return "[vsyscall]";
1021 	return NULL;
1022 }
1023 
1024 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1025 /*
1026  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1027  */
1028 static long __meminitdata addr_start, addr_end;
1029 static void __meminitdata *p_start, *p_end;
1030 static int __meminitdata node_start;
1031 
1032 int __meminit
1033 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1034 {
1035 	unsigned long addr = (unsigned long)start_page;
1036 	unsigned long end = (unsigned long)(start_page + size);
1037 	unsigned long next;
1038 	pgd_t *pgd;
1039 	pud_t *pud;
1040 	pmd_t *pmd;
1041 
1042 	for (; addr < end; addr = next) {
1043 		void *p = NULL;
1044 
1045 		pgd = vmemmap_pgd_populate(addr, node);
1046 		if (!pgd)
1047 			return -ENOMEM;
1048 
1049 		pud = vmemmap_pud_populate(pgd, addr, node);
1050 		if (!pud)
1051 			return -ENOMEM;
1052 
1053 		if (!cpu_has_pse) {
1054 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1055 			pmd = vmemmap_pmd_populate(pud, addr, node);
1056 
1057 			if (!pmd)
1058 				return -ENOMEM;
1059 
1060 			p = vmemmap_pte_populate(pmd, addr, node);
1061 
1062 			if (!p)
1063 				return -ENOMEM;
1064 
1065 			addr_end = addr + PAGE_SIZE;
1066 			p_end = p + PAGE_SIZE;
1067 		} else {
1068 			next = pmd_addr_end(addr, end);
1069 
1070 			pmd = pmd_offset(pud, addr);
1071 			if (pmd_none(*pmd)) {
1072 				pte_t entry;
1073 
1074 				p = vmemmap_alloc_block(PMD_SIZE, node);
1075 				if (!p)
1076 					return -ENOMEM;
1077 
1078 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1079 						PAGE_KERNEL_LARGE);
1080 				set_pmd(pmd, __pmd(pte_val(entry)));
1081 
1082 				/* check to see if we have contiguous blocks */
1083 				if (p_end != p || node_start != node) {
1084 					if (p_start)
1085 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1086 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1087 					addr_start = addr;
1088 					node_start = node;
1089 					p_start = p;
1090 				}
1091 
1092 				addr_end = addr + PMD_SIZE;
1093 				p_end = p + PMD_SIZE;
1094 			} else
1095 				vmemmap_verify((pte_t *)pmd, node, addr, next);
1096 		}
1097 
1098 	}
1099 	return 0;
1100 }
1101 
1102 void __meminit vmemmap_populate_print_last(void)
1103 {
1104 	if (p_start) {
1105 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1106 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1107 		p_start = NULL;
1108 		p_end = NULL;
1109 		node_start = 0;
1110 	}
1111 }
1112 #endif
1113