xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 275876e2)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 
58 #include "mm_internal.h"
59 
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 			   unsigned long addr, unsigned long end)
62 {
63 	addr &= PMD_MASK;
64 	for (; addr < end; addr += PMD_SIZE) {
65 		pmd_t *pmd = pmd_page + pmd_index(addr);
66 
67 		if (!pmd_present(*pmd))
68 			set_pmd(pmd, __pmd(addr | pmd_flag));
69 	}
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 			  unsigned long addr, unsigned long end)
73 {
74 	unsigned long next;
75 
76 	for (; addr < end; addr = next) {
77 		pud_t *pud = pud_page + pud_index(addr);
78 		pmd_t *pmd;
79 
80 		next = (addr & PUD_MASK) + PUD_SIZE;
81 		if (next > end)
82 			next = end;
83 
84 		if (pud_present(*pud)) {
85 			pmd = pmd_offset(pud, 0);
86 			ident_pmd_init(info->pmd_flag, pmd, addr, next);
87 			continue;
88 		}
89 		pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90 		if (!pmd)
91 			return -ENOMEM;
92 		ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94 	}
95 
96 	return 0;
97 }
98 
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 			      unsigned long addr, unsigned long end)
101 {
102 	unsigned long next;
103 	int result;
104 	int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105 
106 	for (; addr < end; addr = next) {
107 		pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108 		pud_t *pud;
109 
110 		next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111 		if (next > end)
112 			next = end;
113 
114 		if (pgd_present(*pgd)) {
115 			pud = pud_offset(pgd, 0);
116 			result = ident_pud_init(info, pud, addr, next);
117 			if (result)
118 				return result;
119 			continue;
120 		}
121 
122 		pud = (pud_t *)info->alloc_pgt_page(info->context);
123 		if (!pud)
124 			return -ENOMEM;
125 		result = ident_pud_init(info, pud, addr, next);
126 		if (result)
127 			return result;
128 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129 	}
130 
131 	return 0;
132 }
133 
134 static int __init parse_direct_gbpages_off(char *arg)
135 {
136 	direct_gbpages = 0;
137 	return 0;
138 }
139 early_param("nogbpages", parse_direct_gbpages_off);
140 
141 static int __init parse_direct_gbpages_on(char *arg)
142 {
143 	direct_gbpages = 1;
144 	return 0;
145 }
146 early_param("gbpages", parse_direct_gbpages_on);
147 
148 /*
149  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150  * physical space so we can cache the place of the first one and move
151  * around without checking the pgd every time.
152  */
153 
154 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
156 
157 int force_personality32;
158 
159 /*
160  * noexec32=on|off
161  * Control non executable heap for 32bit processes.
162  * To control the stack too use noexec=off
163  *
164  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165  * off	PROT_READ implies PROT_EXEC
166  */
167 static int __init nonx32_setup(char *str)
168 {
169 	if (!strcmp(str, "on"))
170 		force_personality32 &= ~READ_IMPLIES_EXEC;
171 	else if (!strcmp(str, "off"))
172 		force_personality32 |= READ_IMPLIES_EXEC;
173 	return 1;
174 }
175 __setup("noexec32=", nonx32_setup);
176 
177 /*
178  * When memory was added/removed make sure all the processes MM have
179  * suitable PGD entries in the local PGD level page.
180  */
181 void sync_global_pgds(unsigned long start, unsigned long end)
182 {
183 	unsigned long address;
184 
185 	for (address = start; address <= end; address += PGDIR_SIZE) {
186 		const pgd_t *pgd_ref = pgd_offset_k(address);
187 		struct page *page;
188 
189 		if (pgd_none(*pgd_ref))
190 			continue;
191 
192 		spin_lock(&pgd_lock);
193 		list_for_each_entry(page, &pgd_list, lru) {
194 			pgd_t *pgd;
195 			spinlock_t *pgt_lock;
196 
197 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
198 			/* the pgt_lock only for Xen */
199 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
200 			spin_lock(pgt_lock);
201 
202 			if (pgd_none(*pgd))
203 				set_pgd(pgd, *pgd_ref);
204 			else
205 				BUG_ON(pgd_page_vaddr(*pgd)
206 				       != pgd_page_vaddr(*pgd_ref));
207 
208 			spin_unlock(pgt_lock);
209 		}
210 		spin_unlock(&pgd_lock);
211 	}
212 }
213 
214 /*
215  * NOTE: This function is marked __ref because it calls __init function
216  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
217  */
218 static __ref void *spp_getpage(void)
219 {
220 	void *ptr;
221 
222 	if (after_bootmem)
223 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
224 	else
225 		ptr = alloc_bootmem_pages(PAGE_SIZE);
226 
227 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
228 		panic("set_pte_phys: cannot allocate page data %s\n",
229 			after_bootmem ? "after bootmem" : "");
230 	}
231 
232 	pr_debug("spp_getpage %p\n", ptr);
233 
234 	return ptr;
235 }
236 
237 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
238 {
239 	if (pgd_none(*pgd)) {
240 		pud_t *pud = (pud_t *)spp_getpage();
241 		pgd_populate(&init_mm, pgd, pud);
242 		if (pud != pud_offset(pgd, 0))
243 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
244 			       pud, pud_offset(pgd, 0));
245 	}
246 	return pud_offset(pgd, vaddr);
247 }
248 
249 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
250 {
251 	if (pud_none(*pud)) {
252 		pmd_t *pmd = (pmd_t *) spp_getpage();
253 		pud_populate(&init_mm, pud, pmd);
254 		if (pmd != pmd_offset(pud, 0))
255 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
256 			       pmd, pmd_offset(pud, 0));
257 	}
258 	return pmd_offset(pud, vaddr);
259 }
260 
261 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
262 {
263 	if (pmd_none(*pmd)) {
264 		pte_t *pte = (pte_t *) spp_getpage();
265 		pmd_populate_kernel(&init_mm, pmd, pte);
266 		if (pte != pte_offset_kernel(pmd, 0))
267 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
268 	}
269 	return pte_offset_kernel(pmd, vaddr);
270 }
271 
272 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
273 {
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *pte;
277 
278 	pud = pud_page + pud_index(vaddr);
279 	pmd = fill_pmd(pud, vaddr);
280 	pte = fill_pte(pmd, vaddr);
281 
282 	set_pte(pte, new_pte);
283 
284 	/*
285 	 * It's enough to flush this one mapping.
286 	 * (PGE mappings get flushed as well)
287 	 */
288 	__flush_tlb_one(vaddr);
289 }
290 
291 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
292 {
293 	pgd_t *pgd;
294 	pud_t *pud_page;
295 
296 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
297 
298 	pgd = pgd_offset_k(vaddr);
299 	if (pgd_none(*pgd)) {
300 		printk(KERN_ERR
301 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
302 		return;
303 	}
304 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
305 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
306 }
307 
308 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
309 {
310 	pgd_t *pgd;
311 	pud_t *pud;
312 
313 	pgd = pgd_offset_k(vaddr);
314 	pud = fill_pud(pgd, vaddr);
315 	return fill_pmd(pud, vaddr);
316 }
317 
318 pte_t * __init populate_extra_pte(unsigned long vaddr)
319 {
320 	pmd_t *pmd;
321 
322 	pmd = populate_extra_pmd(vaddr);
323 	return fill_pte(pmd, vaddr);
324 }
325 
326 /*
327  * Create large page table mappings for a range of physical addresses.
328  */
329 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
330 						pgprot_t prot)
331 {
332 	pgd_t *pgd;
333 	pud_t *pud;
334 	pmd_t *pmd;
335 
336 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
337 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
338 		pgd = pgd_offset_k((unsigned long)__va(phys));
339 		if (pgd_none(*pgd)) {
340 			pud = (pud_t *) spp_getpage();
341 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
342 						_PAGE_USER));
343 		}
344 		pud = pud_offset(pgd, (unsigned long)__va(phys));
345 		if (pud_none(*pud)) {
346 			pmd = (pmd_t *) spp_getpage();
347 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
348 						_PAGE_USER));
349 		}
350 		pmd = pmd_offset(pud, phys);
351 		BUG_ON(!pmd_none(*pmd));
352 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
353 	}
354 }
355 
356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
357 {
358 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
359 }
360 
361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
362 {
363 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
364 }
365 
366 /*
367  * The head.S code sets up the kernel high mapping:
368  *
369  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
370  *
371  * phys_base holds the negative offset to the kernel, which is added
372  * to the compile time generated pmds. This results in invalid pmds up
373  * to the point where we hit the physaddr 0 mapping.
374  *
375  * We limit the mappings to the region from _text to _brk_end.  _brk_end
376  * is rounded up to the 2MB boundary. This catches the invalid pmds as
377  * well, as they are located before _text:
378  */
379 void __init cleanup_highmap(void)
380 {
381 	unsigned long vaddr = __START_KERNEL_map;
382 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
383 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
384 	pmd_t *pmd = level2_kernel_pgt;
385 
386 	/*
387 	 * Native path, max_pfn_mapped is not set yet.
388 	 * Xen has valid max_pfn_mapped set in
389 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
390 	 */
391 	if (max_pfn_mapped)
392 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
393 
394 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
395 		if (pmd_none(*pmd))
396 			continue;
397 		if (vaddr < (unsigned long) _text || vaddr > end)
398 			set_pmd(pmd, __pmd(0));
399 	}
400 }
401 
402 static unsigned long __meminit
403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
404 	      pgprot_t prot)
405 {
406 	unsigned long pages = 0, next;
407 	unsigned long last_map_addr = end;
408 	int i;
409 
410 	pte_t *pte = pte_page + pte_index(addr);
411 
412 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
413 		next = (addr & PAGE_MASK) + PAGE_SIZE;
414 		if (addr >= end) {
415 			if (!after_bootmem &&
416 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
417 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
418 				set_pte(pte, __pte(0));
419 			continue;
420 		}
421 
422 		/*
423 		 * We will re-use the existing mapping.
424 		 * Xen for example has some special requirements, like mapping
425 		 * pagetable pages as RO. So assume someone who pre-setup
426 		 * these mappings are more intelligent.
427 		 */
428 		if (pte_val(*pte)) {
429 			if (!after_bootmem)
430 				pages++;
431 			continue;
432 		}
433 
434 		if (0)
435 			printk("   pte=%p addr=%lx pte=%016lx\n",
436 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
437 		pages++;
438 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
439 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
440 	}
441 
442 	update_page_count(PG_LEVEL_4K, pages);
443 
444 	return last_map_addr;
445 }
446 
447 static unsigned long __meminit
448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
449 	      unsigned long page_size_mask, pgprot_t prot)
450 {
451 	unsigned long pages = 0, next;
452 	unsigned long last_map_addr = end;
453 
454 	int i = pmd_index(address);
455 
456 	for (; i < PTRS_PER_PMD; i++, address = next) {
457 		pmd_t *pmd = pmd_page + pmd_index(address);
458 		pte_t *pte;
459 		pgprot_t new_prot = prot;
460 
461 		next = (address & PMD_MASK) + PMD_SIZE;
462 		if (address >= end) {
463 			if (!after_bootmem &&
464 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
465 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
466 				set_pmd(pmd, __pmd(0));
467 			continue;
468 		}
469 
470 		if (pmd_val(*pmd)) {
471 			if (!pmd_large(*pmd)) {
472 				spin_lock(&init_mm.page_table_lock);
473 				pte = (pte_t *)pmd_page_vaddr(*pmd);
474 				last_map_addr = phys_pte_init(pte, address,
475 								end, prot);
476 				spin_unlock(&init_mm.page_table_lock);
477 				continue;
478 			}
479 			/*
480 			 * If we are ok with PG_LEVEL_2M mapping, then we will
481 			 * use the existing mapping,
482 			 *
483 			 * Otherwise, we will split the large page mapping but
484 			 * use the same existing protection bits except for
485 			 * large page, so that we don't violate Intel's TLB
486 			 * Application note (317080) which says, while changing
487 			 * the page sizes, new and old translations should
488 			 * not differ with respect to page frame and
489 			 * attributes.
490 			 */
491 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
492 				if (!after_bootmem)
493 					pages++;
494 				last_map_addr = next;
495 				continue;
496 			}
497 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
498 		}
499 
500 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
501 			pages++;
502 			spin_lock(&init_mm.page_table_lock);
503 			set_pte((pte_t *)pmd,
504 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
505 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
506 			spin_unlock(&init_mm.page_table_lock);
507 			last_map_addr = next;
508 			continue;
509 		}
510 
511 		pte = alloc_low_page();
512 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
513 
514 		spin_lock(&init_mm.page_table_lock);
515 		pmd_populate_kernel(&init_mm, pmd, pte);
516 		spin_unlock(&init_mm.page_table_lock);
517 	}
518 	update_page_count(PG_LEVEL_2M, pages);
519 	return last_map_addr;
520 }
521 
522 static unsigned long __meminit
523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
524 			 unsigned long page_size_mask)
525 {
526 	unsigned long pages = 0, next;
527 	unsigned long last_map_addr = end;
528 	int i = pud_index(addr);
529 
530 	for (; i < PTRS_PER_PUD; i++, addr = next) {
531 		pud_t *pud = pud_page + pud_index(addr);
532 		pmd_t *pmd;
533 		pgprot_t prot = PAGE_KERNEL;
534 
535 		next = (addr & PUD_MASK) + PUD_SIZE;
536 		if (addr >= end) {
537 			if (!after_bootmem &&
538 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
539 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
540 				set_pud(pud, __pud(0));
541 			continue;
542 		}
543 
544 		if (pud_val(*pud)) {
545 			if (!pud_large(*pud)) {
546 				pmd = pmd_offset(pud, 0);
547 				last_map_addr = phys_pmd_init(pmd, addr, end,
548 							 page_size_mask, prot);
549 				__flush_tlb_all();
550 				continue;
551 			}
552 			/*
553 			 * If we are ok with PG_LEVEL_1G mapping, then we will
554 			 * use the existing mapping.
555 			 *
556 			 * Otherwise, we will split the gbpage mapping but use
557 			 * the same existing protection  bits except for large
558 			 * page, so that we don't violate Intel's TLB
559 			 * Application note (317080) which says, while changing
560 			 * the page sizes, new and old translations should
561 			 * not differ with respect to page frame and
562 			 * attributes.
563 			 */
564 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
565 				if (!after_bootmem)
566 					pages++;
567 				last_map_addr = next;
568 				continue;
569 			}
570 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
571 		}
572 
573 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
574 			pages++;
575 			spin_lock(&init_mm.page_table_lock);
576 			set_pte((pte_t *)pud,
577 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
578 					PAGE_KERNEL_LARGE));
579 			spin_unlock(&init_mm.page_table_lock);
580 			last_map_addr = next;
581 			continue;
582 		}
583 
584 		pmd = alloc_low_page();
585 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
586 					      prot);
587 
588 		spin_lock(&init_mm.page_table_lock);
589 		pud_populate(&init_mm, pud, pmd);
590 		spin_unlock(&init_mm.page_table_lock);
591 	}
592 	__flush_tlb_all();
593 
594 	update_page_count(PG_LEVEL_1G, pages);
595 
596 	return last_map_addr;
597 }
598 
599 unsigned long __meminit
600 kernel_physical_mapping_init(unsigned long start,
601 			     unsigned long end,
602 			     unsigned long page_size_mask)
603 {
604 	bool pgd_changed = false;
605 	unsigned long next, last_map_addr = end;
606 	unsigned long addr;
607 
608 	start = (unsigned long)__va(start);
609 	end = (unsigned long)__va(end);
610 	addr = start;
611 
612 	for (; start < end; start = next) {
613 		pgd_t *pgd = pgd_offset_k(start);
614 		pud_t *pud;
615 
616 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
617 
618 		if (pgd_val(*pgd)) {
619 			pud = (pud_t *)pgd_page_vaddr(*pgd);
620 			last_map_addr = phys_pud_init(pud, __pa(start),
621 						 __pa(end), page_size_mask);
622 			continue;
623 		}
624 
625 		pud = alloc_low_page();
626 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
627 						 page_size_mask);
628 
629 		spin_lock(&init_mm.page_table_lock);
630 		pgd_populate(&init_mm, pgd, pud);
631 		spin_unlock(&init_mm.page_table_lock);
632 		pgd_changed = true;
633 	}
634 
635 	if (pgd_changed)
636 		sync_global_pgds(addr, end - 1);
637 
638 	__flush_tlb_all();
639 
640 	return last_map_addr;
641 }
642 
643 #ifndef CONFIG_NUMA
644 void __init initmem_init(void)
645 {
646 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
647 }
648 #endif
649 
650 void __init paging_init(void)
651 {
652 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
653 	sparse_init();
654 
655 	/*
656 	 * clear the default setting with node 0
657 	 * note: don't use nodes_clear here, that is really clearing when
658 	 *	 numa support is not compiled in, and later node_set_state
659 	 *	 will not set it back.
660 	 */
661 	node_clear_state(0, N_MEMORY);
662 	if (N_MEMORY != N_NORMAL_MEMORY)
663 		node_clear_state(0, N_NORMAL_MEMORY);
664 
665 	zone_sizes_init();
666 }
667 
668 /*
669  * Memory hotplug specific functions
670  */
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 /*
673  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
674  * updating.
675  */
676 static void  update_end_of_memory_vars(u64 start, u64 size)
677 {
678 	unsigned long end_pfn = PFN_UP(start + size);
679 
680 	if (end_pfn > max_pfn) {
681 		max_pfn = end_pfn;
682 		max_low_pfn = end_pfn;
683 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
684 	}
685 }
686 
687 /*
688  * Memory is added always to NORMAL zone. This means you will never get
689  * additional DMA/DMA32 memory.
690  */
691 int arch_add_memory(int nid, u64 start, u64 size)
692 {
693 	struct pglist_data *pgdat = NODE_DATA(nid);
694 	struct zone *zone = pgdat->node_zones +
695 		zone_for_memory(nid, start, size, ZONE_NORMAL);
696 	unsigned long start_pfn = start >> PAGE_SHIFT;
697 	unsigned long nr_pages = size >> PAGE_SHIFT;
698 	int ret;
699 
700 	init_memory_mapping(start, start + size);
701 
702 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
703 	WARN_ON_ONCE(ret);
704 
705 	/* update max_pfn, max_low_pfn and high_memory */
706 	update_end_of_memory_vars(start, size);
707 
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(arch_add_memory);
711 
712 #define PAGE_INUSE 0xFD
713 
714 static void __meminit free_pagetable(struct page *page, int order)
715 {
716 	unsigned long magic;
717 	unsigned int nr_pages = 1 << order;
718 
719 	/* bootmem page has reserved flag */
720 	if (PageReserved(page)) {
721 		__ClearPageReserved(page);
722 
723 		magic = (unsigned long)page->lru.next;
724 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
725 			while (nr_pages--)
726 				put_page_bootmem(page++);
727 		} else
728 			while (nr_pages--)
729 				free_reserved_page(page++);
730 	} else
731 		free_pages((unsigned long)page_address(page), order);
732 }
733 
734 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
735 {
736 	pte_t *pte;
737 	int i;
738 
739 	for (i = 0; i < PTRS_PER_PTE; i++) {
740 		pte = pte_start + i;
741 		if (pte_val(*pte))
742 			return;
743 	}
744 
745 	/* free a pte talbe */
746 	free_pagetable(pmd_page(*pmd), 0);
747 	spin_lock(&init_mm.page_table_lock);
748 	pmd_clear(pmd);
749 	spin_unlock(&init_mm.page_table_lock);
750 }
751 
752 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
753 {
754 	pmd_t *pmd;
755 	int i;
756 
757 	for (i = 0; i < PTRS_PER_PMD; i++) {
758 		pmd = pmd_start + i;
759 		if (pmd_val(*pmd))
760 			return;
761 	}
762 
763 	/* free a pmd talbe */
764 	free_pagetable(pud_page(*pud), 0);
765 	spin_lock(&init_mm.page_table_lock);
766 	pud_clear(pud);
767 	spin_unlock(&init_mm.page_table_lock);
768 }
769 
770 /* Return true if pgd is changed, otherwise return false. */
771 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
772 {
773 	pud_t *pud;
774 	int i;
775 
776 	for (i = 0; i < PTRS_PER_PUD; i++) {
777 		pud = pud_start + i;
778 		if (pud_val(*pud))
779 			return false;
780 	}
781 
782 	/* free a pud table */
783 	free_pagetable(pgd_page(*pgd), 0);
784 	spin_lock(&init_mm.page_table_lock);
785 	pgd_clear(pgd);
786 	spin_unlock(&init_mm.page_table_lock);
787 
788 	return true;
789 }
790 
791 static void __meminit
792 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
793 		 bool direct)
794 {
795 	unsigned long next, pages = 0;
796 	pte_t *pte;
797 	void *page_addr;
798 	phys_addr_t phys_addr;
799 
800 	pte = pte_start + pte_index(addr);
801 	for (; addr < end; addr = next, pte++) {
802 		next = (addr + PAGE_SIZE) & PAGE_MASK;
803 		if (next > end)
804 			next = end;
805 
806 		if (!pte_present(*pte))
807 			continue;
808 
809 		/*
810 		 * We mapped [0,1G) memory as identity mapping when
811 		 * initializing, in arch/x86/kernel/head_64.S. These
812 		 * pagetables cannot be removed.
813 		 */
814 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
815 		if (phys_addr < (phys_addr_t)0x40000000)
816 			return;
817 
818 		if (IS_ALIGNED(addr, PAGE_SIZE) &&
819 		    IS_ALIGNED(next, PAGE_SIZE)) {
820 			/*
821 			 * Do not free direct mapping pages since they were
822 			 * freed when offlining, or simplely not in use.
823 			 */
824 			if (!direct)
825 				free_pagetable(pte_page(*pte), 0);
826 
827 			spin_lock(&init_mm.page_table_lock);
828 			pte_clear(&init_mm, addr, pte);
829 			spin_unlock(&init_mm.page_table_lock);
830 
831 			/* For non-direct mapping, pages means nothing. */
832 			pages++;
833 		} else {
834 			/*
835 			 * If we are here, we are freeing vmemmap pages since
836 			 * direct mapped memory ranges to be freed are aligned.
837 			 *
838 			 * If we are not removing the whole page, it means
839 			 * other page structs in this page are being used and
840 			 * we canot remove them. So fill the unused page_structs
841 			 * with 0xFD, and remove the page when it is wholly
842 			 * filled with 0xFD.
843 			 */
844 			memset((void *)addr, PAGE_INUSE, next - addr);
845 
846 			page_addr = page_address(pte_page(*pte));
847 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
848 				free_pagetable(pte_page(*pte), 0);
849 
850 				spin_lock(&init_mm.page_table_lock);
851 				pte_clear(&init_mm, addr, pte);
852 				spin_unlock(&init_mm.page_table_lock);
853 			}
854 		}
855 	}
856 
857 	/* Call free_pte_table() in remove_pmd_table(). */
858 	flush_tlb_all();
859 	if (direct)
860 		update_page_count(PG_LEVEL_4K, -pages);
861 }
862 
863 static void __meminit
864 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
865 		 bool direct)
866 {
867 	unsigned long next, pages = 0;
868 	pte_t *pte_base;
869 	pmd_t *pmd;
870 	void *page_addr;
871 
872 	pmd = pmd_start + pmd_index(addr);
873 	for (; addr < end; addr = next, pmd++) {
874 		next = pmd_addr_end(addr, end);
875 
876 		if (!pmd_present(*pmd))
877 			continue;
878 
879 		if (pmd_large(*pmd)) {
880 			if (IS_ALIGNED(addr, PMD_SIZE) &&
881 			    IS_ALIGNED(next, PMD_SIZE)) {
882 				if (!direct)
883 					free_pagetable(pmd_page(*pmd),
884 						       get_order(PMD_SIZE));
885 
886 				spin_lock(&init_mm.page_table_lock);
887 				pmd_clear(pmd);
888 				spin_unlock(&init_mm.page_table_lock);
889 				pages++;
890 			} else {
891 				/* If here, we are freeing vmemmap pages. */
892 				memset((void *)addr, PAGE_INUSE, next - addr);
893 
894 				page_addr = page_address(pmd_page(*pmd));
895 				if (!memchr_inv(page_addr, PAGE_INUSE,
896 						PMD_SIZE)) {
897 					free_pagetable(pmd_page(*pmd),
898 						       get_order(PMD_SIZE));
899 
900 					spin_lock(&init_mm.page_table_lock);
901 					pmd_clear(pmd);
902 					spin_unlock(&init_mm.page_table_lock);
903 				}
904 			}
905 
906 			continue;
907 		}
908 
909 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
910 		remove_pte_table(pte_base, addr, next, direct);
911 		free_pte_table(pte_base, pmd);
912 	}
913 
914 	/* Call free_pmd_table() in remove_pud_table(). */
915 	if (direct)
916 		update_page_count(PG_LEVEL_2M, -pages);
917 }
918 
919 static void __meminit
920 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
921 		 bool direct)
922 {
923 	unsigned long next, pages = 0;
924 	pmd_t *pmd_base;
925 	pud_t *pud;
926 	void *page_addr;
927 
928 	pud = pud_start + pud_index(addr);
929 	for (; addr < end; addr = next, pud++) {
930 		next = pud_addr_end(addr, end);
931 
932 		if (!pud_present(*pud))
933 			continue;
934 
935 		if (pud_large(*pud)) {
936 			if (IS_ALIGNED(addr, PUD_SIZE) &&
937 			    IS_ALIGNED(next, PUD_SIZE)) {
938 				if (!direct)
939 					free_pagetable(pud_page(*pud),
940 						       get_order(PUD_SIZE));
941 
942 				spin_lock(&init_mm.page_table_lock);
943 				pud_clear(pud);
944 				spin_unlock(&init_mm.page_table_lock);
945 				pages++;
946 			} else {
947 				/* If here, we are freeing vmemmap pages. */
948 				memset((void *)addr, PAGE_INUSE, next - addr);
949 
950 				page_addr = page_address(pud_page(*pud));
951 				if (!memchr_inv(page_addr, PAGE_INUSE,
952 						PUD_SIZE)) {
953 					free_pagetable(pud_page(*pud),
954 						       get_order(PUD_SIZE));
955 
956 					spin_lock(&init_mm.page_table_lock);
957 					pud_clear(pud);
958 					spin_unlock(&init_mm.page_table_lock);
959 				}
960 			}
961 
962 			continue;
963 		}
964 
965 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
966 		remove_pmd_table(pmd_base, addr, next, direct);
967 		free_pmd_table(pmd_base, pud);
968 	}
969 
970 	if (direct)
971 		update_page_count(PG_LEVEL_1G, -pages);
972 }
973 
974 /* start and end are both virtual address. */
975 static void __meminit
976 remove_pagetable(unsigned long start, unsigned long end, bool direct)
977 {
978 	unsigned long next;
979 	pgd_t *pgd;
980 	pud_t *pud;
981 	bool pgd_changed = false;
982 
983 	for (; start < end; start = next) {
984 		next = pgd_addr_end(start, end);
985 
986 		pgd = pgd_offset_k(start);
987 		if (!pgd_present(*pgd))
988 			continue;
989 
990 		pud = (pud_t *)pgd_page_vaddr(*pgd);
991 		remove_pud_table(pud, start, next, direct);
992 		if (free_pud_table(pud, pgd))
993 			pgd_changed = true;
994 	}
995 
996 	if (pgd_changed)
997 		sync_global_pgds(start, end - 1);
998 
999 	flush_tlb_all();
1000 }
1001 
1002 void __ref vmemmap_free(unsigned long start, unsigned long end)
1003 {
1004 	remove_pagetable(start, end, false);
1005 }
1006 
1007 #ifdef CONFIG_MEMORY_HOTREMOVE
1008 static void __meminit
1009 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1010 {
1011 	start = (unsigned long)__va(start);
1012 	end = (unsigned long)__va(end);
1013 
1014 	remove_pagetable(start, end, true);
1015 }
1016 
1017 int __ref arch_remove_memory(u64 start, u64 size)
1018 {
1019 	unsigned long start_pfn = start >> PAGE_SHIFT;
1020 	unsigned long nr_pages = size >> PAGE_SHIFT;
1021 	struct zone *zone;
1022 	int ret;
1023 
1024 	zone = page_zone(pfn_to_page(start_pfn));
1025 	kernel_physical_mapping_remove(start, start + size);
1026 	ret = __remove_pages(zone, start_pfn, nr_pages);
1027 	WARN_ON_ONCE(ret);
1028 
1029 	return ret;
1030 }
1031 #endif
1032 #endif /* CONFIG_MEMORY_HOTPLUG */
1033 
1034 static struct kcore_list kcore_vsyscall;
1035 
1036 static void __init register_page_bootmem_info(void)
1037 {
1038 #ifdef CONFIG_NUMA
1039 	int i;
1040 
1041 	for_each_online_node(i)
1042 		register_page_bootmem_info_node(NODE_DATA(i));
1043 #endif
1044 }
1045 
1046 void __init mem_init(void)
1047 {
1048 	pci_iommu_alloc();
1049 
1050 	/* clear_bss() already clear the empty_zero_page */
1051 
1052 	register_page_bootmem_info();
1053 
1054 	/* this will put all memory onto the freelists */
1055 	free_all_bootmem();
1056 	after_bootmem = 1;
1057 
1058 	/* Register memory areas for /proc/kcore */
1059 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1060 			 PAGE_SIZE, KCORE_OTHER);
1061 
1062 	mem_init_print_info(NULL);
1063 }
1064 
1065 #ifdef CONFIG_DEBUG_RODATA
1066 const int rodata_test_data = 0xC3;
1067 EXPORT_SYMBOL_GPL(rodata_test_data);
1068 
1069 int kernel_set_to_readonly;
1070 
1071 void set_kernel_text_rw(void)
1072 {
1073 	unsigned long start = PFN_ALIGN(_text);
1074 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1075 
1076 	if (!kernel_set_to_readonly)
1077 		return;
1078 
1079 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1080 		 start, end);
1081 
1082 	/*
1083 	 * Make the kernel identity mapping for text RW. Kernel text
1084 	 * mapping will always be RO. Refer to the comment in
1085 	 * static_protections() in pageattr.c
1086 	 */
1087 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1088 }
1089 
1090 void set_kernel_text_ro(void)
1091 {
1092 	unsigned long start = PFN_ALIGN(_text);
1093 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1094 
1095 	if (!kernel_set_to_readonly)
1096 		return;
1097 
1098 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1099 		 start, end);
1100 
1101 	/*
1102 	 * Set the kernel identity mapping for text RO.
1103 	 */
1104 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1105 }
1106 
1107 void mark_rodata_ro(void)
1108 {
1109 	unsigned long start = PFN_ALIGN(_text);
1110 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1111 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1112 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1113 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1114 	unsigned long all_end = PFN_ALIGN(&_end);
1115 
1116 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1117 	       (end - start) >> 10);
1118 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119 
1120 	kernel_set_to_readonly = 1;
1121 
1122 	/*
1123 	 * The rodata/data/bss/brk section (but not the kernel text!)
1124 	 * should also be not-executable.
1125 	 */
1126 	set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1127 
1128 	rodata_test();
1129 
1130 #ifdef CONFIG_CPA_DEBUG
1131 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1132 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1133 
1134 	printk(KERN_INFO "Testing CPA: again\n");
1135 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1136 #endif
1137 
1138 	free_init_pages("unused kernel",
1139 			(unsigned long) __va(__pa_symbol(text_end)),
1140 			(unsigned long) __va(__pa_symbol(rodata_start)));
1141 	free_init_pages("unused kernel",
1142 			(unsigned long) __va(__pa_symbol(rodata_end)),
1143 			(unsigned long) __va(__pa_symbol(_sdata)));
1144 }
1145 
1146 #endif
1147 
1148 int kern_addr_valid(unsigned long addr)
1149 {
1150 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1151 	pgd_t *pgd;
1152 	pud_t *pud;
1153 	pmd_t *pmd;
1154 	pte_t *pte;
1155 
1156 	if (above != 0 && above != -1UL)
1157 		return 0;
1158 
1159 	pgd = pgd_offset_k(addr);
1160 	if (pgd_none(*pgd))
1161 		return 0;
1162 
1163 	pud = pud_offset(pgd, addr);
1164 	if (pud_none(*pud))
1165 		return 0;
1166 
1167 	if (pud_large(*pud))
1168 		return pfn_valid(pud_pfn(*pud));
1169 
1170 	pmd = pmd_offset(pud, addr);
1171 	if (pmd_none(*pmd))
1172 		return 0;
1173 
1174 	if (pmd_large(*pmd))
1175 		return pfn_valid(pmd_pfn(*pmd));
1176 
1177 	pte = pte_offset_kernel(pmd, addr);
1178 	if (pte_none(*pte))
1179 		return 0;
1180 
1181 	return pfn_valid(pte_pfn(*pte));
1182 }
1183 
1184 /*
1185  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1186  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1187  * not need special handling anymore:
1188  */
1189 static const char *gate_vma_name(struct vm_area_struct *vma)
1190 {
1191 	return "[vsyscall]";
1192 }
1193 static struct vm_operations_struct gate_vma_ops = {
1194 	.name = gate_vma_name,
1195 };
1196 static struct vm_area_struct gate_vma = {
1197 	.vm_start	= VSYSCALL_ADDR,
1198 	.vm_end		= VSYSCALL_ADDR + PAGE_SIZE,
1199 	.vm_page_prot	= PAGE_READONLY_EXEC,
1200 	.vm_flags	= VM_READ | VM_EXEC,
1201 	.vm_ops		= &gate_vma_ops,
1202 };
1203 
1204 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1205 {
1206 #ifdef CONFIG_IA32_EMULATION
1207 	if (!mm || mm->context.ia32_compat)
1208 		return NULL;
1209 #endif
1210 	return &gate_vma;
1211 }
1212 
1213 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1214 {
1215 	struct vm_area_struct *vma = get_gate_vma(mm);
1216 
1217 	if (!vma)
1218 		return 0;
1219 
1220 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1221 }
1222 
1223 /*
1224  * Use this when you have no reliable mm, typically from interrupt
1225  * context. It is less reliable than using a task's mm and may give
1226  * false positives.
1227  */
1228 int in_gate_area_no_mm(unsigned long addr)
1229 {
1230 	return (addr & PAGE_MASK) == VSYSCALL_ADDR;
1231 }
1232 
1233 static unsigned long probe_memory_block_size(void)
1234 {
1235 	/* start from 2g */
1236 	unsigned long bz = 1UL<<31;
1237 
1238 #ifdef CONFIG_X86_UV
1239 	if (is_uv_system()) {
1240 		printk(KERN_INFO "UV: memory block size 2GB\n");
1241 		return 2UL * 1024 * 1024 * 1024;
1242 	}
1243 #endif
1244 
1245 	/* less than 64g installed */
1246 	if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1247 		return MIN_MEMORY_BLOCK_SIZE;
1248 
1249 	/* get the tail size */
1250 	while (bz > MIN_MEMORY_BLOCK_SIZE) {
1251 		if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1252 			break;
1253 		bz >>= 1;
1254 	}
1255 
1256 	printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1257 
1258 	return bz;
1259 }
1260 
1261 static unsigned long memory_block_size_probed;
1262 unsigned long memory_block_size_bytes(void)
1263 {
1264 	if (!memory_block_size_probed)
1265 		memory_block_size_probed = probe_memory_block_size();
1266 
1267 	return memory_block_size_probed;
1268 }
1269 
1270 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1271 /*
1272  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1273  */
1274 static long __meminitdata addr_start, addr_end;
1275 static void __meminitdata *p_start, *p_end;
1276 static int __meminitdata node_start;
1277 
1278 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1279 						unsigned long end, int node)
1280 {
1281 	unsigned long addr;
1282 	unsigned long next;
1283 	pgd_t *pgd;
1284 	pud_t *pud;
1285 	pmd_t *pmd;
1286 
1287 	for (addr = start; addr < end; addr = next) {
1288 		next = pmd_addr_end(addr, end);
1289 
1290 		pgd = vmemmap_pgd_populate(addr, node);
1291 		if (!pgd)
1292 			return -ENOMEM;
1293 
1294 		pud = vmemmap_pud_populate(pgd, addr, node);
1295 		if (!pud)
1296 			return -ENOMEM;
1297 
1298 		pmd = pmd_offset(pud, addr);
1299 		if (pmd_none(*pmd)) {
1300 			void *p;
1301 
1302 			p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1303 			if (p) {
1304 				pte_t entry;
1305 
1306 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1307 						PAGE_KERNEL_LARGE);
1308 				set_pmd(pmd, __pmd(pte_val(entry)));
1309 
1310 				/* check to see if we have contiguous blocks */
1311 				if (p_end != p || node_start != node) {
1312 					if (p_start)
1313 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1314 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1315 					addr_start = addr;
1316 					node_start = node;
1317 					p_start = p;
1318 				}
1319 
1320 				addr_end = addr + PMD_SIZE;
1321 				p_end = p + PMD_SIZE;
1322 				continue;
1323 			}
1324 		} else if (pmd_large(*pmd)) {
1325 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1326 			continue;
1327 		}
1328 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1329 		if (vmemmap_populate_basepages(addr, next, node))
1330 			return -ENOMEM;
1331 	}
1332 	return 0;
1333 }
1334 
1335 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1336 {
1337 	int err;
1338 
1339 	if (cpu_has_pse)
1340 		err = vmemmap_populate_hugepages(start, end, node);
1341 	else
1342 		err = vmemmap_populate_basepages(start, end, node);
1343 	if (!err)
1344 		sync_global_pgds(start, end - 1);
1345 	return err;
1346 }
1347 
1348 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1349 void register_page_bootmem_memmap(unsigned long section_nr,
1350 				  struct page *start_page, unsigned long size)
1351 {
1352 	unsigned long addr = (unsigned long)start_page;
1353 	unsigned long end = (unsigned long)(start_page + size);
1354 	unsigned long next;
1355 	pgd_t *pgd;
1356 	pud_t *pud;
1357 	pmd_t *pmd;
1358 	unsigned int nr_pages;
1359 	struct page *page;
1360 
1361 	for (; addr < end; addr = next) {
1362 		pte_t *pte = NULL;
1363 
1364 		pgd = pgd_offset_k(addr);
1365 		if (pgd_none(*pgd)) {
1366 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1367 			continue;
1368 		}
1369 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1370 
1371 		pud = pud_offset(pgd, addr);
1372 		if (pud_none(*pud)) {
1373 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1374 			continue;
1375 		}
1376 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1377 
1378 		if (!cpu_has_pse) {
1379 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1380 			pmd = pmd_offset(pud, addr);
1381 			if (pmd_none(*pmd))
1382 				continue;
1383 			get_page_bootmem(section_nr, pmd_page(*pmd),
1384 					 MIX_SECTION_INFO);
1385 
1386 			pte = pte_offset_kernel(pmd, addr);
1387 			if (pte_none(*pte))
1388 				continue;
1389 			get_page_bootmem(section_nr, pte_page(*pte),
1390 					 SECTION_INFO);
1391 		} else {
1392 			next = pmd_addr_end(addr, end);
1393 
1394 			pmd = pmd_offset(pud, addr);
1395 			if (pmd_none(*pmd))
1396 				continue;
1397 
1398 			nr_pages = 1 << (get_order(PMD_SIZE));
1399 			page = pmd_page(*pmd);
1400 			while (nr_pages--)
1401 				get_page_bootmem(section_nr, page++,
1402 						 SECTION_INFO);
1403 		}
1404 	}
1405 }
1406 #endif
1407 
1408 void __meminit vmemmap_populate_print_last(void)
1409 {
1410 	if (p_start) {
1411 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1412 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1413 		p_start = NULL;
1414 		p_end = NULL;
1415 		node_start = 0;
1416 	}
1417 }
1418 #endif
1419