xref: /openbmc/linux/arch/x86/mm/init_64.c (revision 22246614)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31 
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49 
50 static unsigned long dma_reserve __initdata;
51 
52 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
53 
54 int direct_gbpages __meminitdata
55 #ifdef CONFIG_DIRECT_GBPAGES
56 				= 1
57 #endif
58 ;
59 
60 static int __init parse_direct_gbpages_off(char *arg)
61 {
62 	direct_gbpages = 0;
63 	return 0;
64 }
65 early_param("nogbpages", parse_direct_gbpages_off);
66 
67 static int __init parse_direct_gbpages_on(char *arg)
68 {
69 	direct_gbpages = 1;
70 	return 0;
71 }
72 early_param("gbpages", parse_direct_gbpages_on);
73 
74 /*
75  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
76  * physical space so we can cache the place of the first one and move
77  * around without checking the pgd every time.
78  */
79 
80 void show_mem(void)
81 {
82 	long i, total = 0, reserved = 0;
83 	long shared = 0, cached = 0;
84 	struct page *page;
85 	pg_data_t *pgdat;
86 
87 	printk(KERN_INFO "Mem-info:\n");
88 	show_free_areas();
89 	for_each_online_pgdat(pgdat) {
90 		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
91 			/*
92 			 * This loop can take a while with 256 GB and
93 			 * 4k pages so defer the NMI watchdog:
94 			 */
95 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
96 				touch_nmi_watchdog();
97 
98 			if (!pfn_valid(pgdat->node_start_pfn + i))
99 				continue;
100 
101 			page = pfn_to_page(pgdat->node_start_pfn + i);
102 			total++;
103 			if (PageReserved(page))
104 				reserved++;
105 			else if (PageSwapCache(page))
106 				cached++;
107 			else if (page_count(page))
108 				shared += page_count(page) - 1;
109 		}
110 	}
111 	printk(KERN_INFO "%lu pages of RAM\n",		total);
112 	printk(KERN_INFO "%lu reserved pages\n",	reserved);
113 	printk(KERN_INFO "%lu pages shared\n",		shared);
114 	printk(KERN_INFO "%lu pages swap cached\n",	cached);
115 }
116 
117 int after_bootmem;
118 
119 static __init void *spp_getpage(void)
120 {
121 	void *ptr;
122 
123 	if (after_bootmem)
124 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
125 	else
126 		ptr = alloc_bootmem_pages(PAGE_SIZE);
127 
128 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
129 		panic("set_pte_phys: cannot allocate page data %s\n",
130 			after_bootmem ? "after bootmem" : "");
131 	}
132 
133 	pr_debug("spp_getpage %p\n", ptr);
134 
135 	return ptr;
136 }
137 
138 static void
139 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
140 {
141 	pgd_t *pgd;
142 	pud_t *pud;
143 	pmd_t *pmd;
144 	pte_t *pte, new_pte;
145 
146 	pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
147 
148 	pgd = pgd_offset_k(vaddr);
149 	if (pgd_none(*pgd)) {
150 		printk(KERN_ERR
151 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
152 		return;
153 	}
154 	pud = pud_offset(pgd, vaddr);
155 	if (pud_none(*pud)) {
156 		pmd = (pmd_t *) spp_getpage();
157 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
158 		if (pmd != pmd_offset(pud, 0)) {
159 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160 				pmd, pmd_offset(pud, 0));
161 			return;
162 		}
163 	}
164 	pmd = pmd_offset(pud, vaddr);
165 	if (pmd_none(*pmd)) {
166 		pte = (pte_t *) spp_getpage();
167 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
168 		if (pte != pte_offset_kernel(pmd, 0)) {
169 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
170 			return;
171 		}
172 	}
173 	new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
174 
175 	pte = pte_offset_kernel(pmd, vaddr);
176 	if (!pte_none(*pte) && pte_val(new_pte) &&
177 	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
178 		pte_ERROR(*pte);
179 	set_pte(pte, new_pte);
180 
181 	/*
182 	 * It's enough to flush this one mapping.
183 	 * (PGE mappings get flushed as well)
184 	 */
185 	__flush_tlb_one(vaddr);
186 }
187 
188 /*
189  * The head.S code sets up the kernel high mapping:
190  *
191  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
192  *
193  * phys_addr holds the negative offset to the kernel, which is added
194  * to the compile time generated pmds. This results in invalid pmds up
195  * to the point where we hit the physaddr 0 mapping.
196  *
197  * We limit the mappings to the region from _text to _end.  _end is
198  * rounded up to the 2MB boundary. This catches the invalid pmds as
199  * well, as they are located before _text:
200  */
201 void __init cleanup_highmap(void)
202 {
203 	unsigned long vaddr = __START_KERNEL_map;
204 	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
205 	pmd_t *pmd = level2_kernel_pgt;
206 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
207 
208 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
209 		if (!pmd_present(*pmd))
210 			continue;
211 		if (vaddr < (unsigned long) _text || vaddr > end)
212 			set_pmd(pmd, __pmd(0));
213 	}
214 }
215 
216 /* NOTE: this is meant to be run only at boot */
217 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
218 {
219 	unsigned long address = __fix_to_virt(idx);
220 
221 	if (idx >= __end_of_fixed_addresses) {
222 		printk(KERN_ERR "Invalid __set_fixmap\n");
223 		return;
224 	}
225 	set_pte_phys(address, phys, prot);
226 }
227 
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230 
231 static __meminit void *alloc_low_page(unsigned long *phys)
232 {
233 	unsigned long pfn = table_end++;
234 	void *adr;
235 
236 	if (after_bootmem) {
237 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
238 		*phys = __pa(adr);
239 
240 		return adr;
241 	}
242 
243 	if (pfn >= end_pfn)
244 		panic("alloc_low_page: ran out of memory");
245 
246 	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247 	memset(adr, 0, PAGE_SIZE);
248 	*phys  = pfn * PAGE_SIZE;
249 	return adr;
250 }
251 
252 static __meminit void unmap_low_page(void *adr)
253 {
254 	if (after_bootmem)
255 		return;
256 
257 	early_iounmap(adr, PAGE_SIZE);
258 }
259 
260 /* Must run before zap_low_mappings */
261 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
262 {
263 	pmd_t *pmd, *last_pmd;
264 	unsigned long vaddr;
265 	int i, pmds;
266 
267 	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268 	vaddr = __START_KERNEL_map;
269 	pmd = level2_kernel_pgt;
270 	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271 
272 	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273 		for (i = 0; i < pmds; i++) {
274 			if (pmd_present(pmd[i]))
275 				goto continue_outer_loop;
276 		}
277 		vaddr += addr & ~PMD_MASK;
278 		addr &= PMD_MASK;
279 
280 		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281 			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282 		__flush_tlb_all();
283 
284 		return (void *)vaddr;
285 continue_outer_loop:
286 		;
287 	}
288 	printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289 
290 	return NULL;
291 }
292 
293 /*
294  * To avoid virtual aliases later:
295  */
296 __meminit void early_iounmap(void *addr, unsigned long size)
297 {
298 	unsigned long vaddr;
299 	pmd_t *pmd;
300 	int i, pmds;
301 
302 	vaddr = (unsigned long)addr;
303 	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304 	pmd = level2_kernel_pgt + pmd_index(vaddr);
305 
306 	for (i = 0; i < pmds; i++)
307 		pmd_clear(pmd + i);
308 
309 	__flush_tlb_all();
310 }
311 
312 static unsigned long __meminit
313 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314 {
315 	int i = pmd_index(address);
316 
317 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
318 		pmd_t *pmd = pmd_page + pmd_index(address);
319 
320 		if (address >= end) {
321 			if (!after_bootmem) {
322 				for (; i < PTRS_PER_PMD; i++, pmd++)
323 					set_pmd(pmd, __pmd(0));
324 			}
325 			break;
326 		}
327 
328 		if (pmd_val(*pmd))
329 			continue;
330 
331 		set_pte((pte_t *)pmd,
332 			pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
333 	}
334 	return address;
335 }
336 
337 static unsigned long __meminit
338 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
339 {
340 	pmd_t *pmd = pmd_offset(pud, 0);
341 	unsigned long last_map_addr;
342 
343 	spin_lock(&init_mm.page_table_lock);
344 	last_map_addr = phys_pmd_init(pmd, address, end);
345 	spin_unlock(&init_mm.page_table_lock);
346 	__flush_tlb_all();
347 	return last_map_addr;
348 }
349 
350 static unsigned long __meminit
351 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
352 {
353 	unsigned long last_map_addr = end;
354 	int i = pud_index(addr);
355 
356 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
357 		unsigned long pmd_phys;
358 		pud_t *pud = pud_page + pud_index(addr);
359 		pmd_t *pmd;
360 
361 		if (addr >= end)
362 			break;
363 
364 		if (!after_bootmem &&
365 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
366 			set_pud(pud, __pud(0));
367 			continue;
368 		}
369 
370 		if (pud_val(*pud)) {
371 			if (!pud_large(*pud))
372 				last_map_addr = phys_pmd_update(pud, addr, end);
373 			continue;
374 		}
375 
376 		if (direct_gbpages) {
377 			set_pte((pte_t *)pud,
378 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
379 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
380 			continue;
381 		}
382 
383 		pmd = alloc_low_page(&pmd_phys);
384 
385 		spin_lock(&init_mm.page_table_lock);
386 		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
387 		last_map_addr = phys_pmd_init(pmd, addr, end);
388 		spin_unlock(&init_mm.page_table_lock);
389 
390 		unmap_low_page(pmd);
391 	}
392 	__flush_tlb_all();
393 
394 	return last_map_addr >> PAGE_SHIFT;
395 }
396 
397 static void __init find_early_table_space(unsigned long end)
398 {
399 	unsigned long puds, pmds, tables, start;
400 
401 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
402 	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
403 	if (!direct_gbpages) {
404 		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
405 		tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
406 	}
407 
408 	/*
409 	 * RED-PEN putting page tables only on node 0 could
410 	 * cause a hotspot and fill up ZONE_DMA. The page tables
411 	 * need roughly 0.5KB per GB.
412 	 */
413 	start = 0x8000;
414 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
415 	if (table_start == -1UL)
416 		panic("Cannot find space for the kernel page tables");
417 
418 	table_start >>= PAGE_SHIFT;
419 	table_end = table_start;
420 
421 	early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
422 		end, table_start << PAGE_SHIFT,
423 		(table_start << PAGE_SHIFT) + tables);
424 }
425 
426 static void __init init_gbpages(void)
427 {
428 	if (direct_gbpages && cpu_has_gbpages)
429 		printk(KERN_INFO "Using GB pages for direct mapping\n");
430 	else
431 		direct_gbpages = 0;
432 }
433 
434 #ifdef CONFIG_MEMTEST_BOOTPARAM
435 
436 static void __init memtest(unsigned long start_phys, unsigned long size,
437 				 unsigned pattern)
438 {
439 	unsigned long i;
440 	unsigned long *start;
441 	unsigned long start_bad;
442 	unsigned long last_bad;
443 	unsigned long val;
444 	unsigned long start_phys_aligned;
445 	unsigned long count;
446 	unsigned long incr;
447 
448 	switch (pattern) {
449 	case 0:
450 		val = 0UL;
451 		break;
452 	case 1:
453 		val = -1UL;
454 		break;
455 	case 2:
456 		val = 0x5555555555555555UL;
457 		break;
458 	case 3:
459 		val = 0xaaaaaaaaaaaaaaaaUL;
460 		break;
461 	default:
462 		return;
463 	}
464 
465 	incr = sizeof(unsigned long);
466 	start_phys_aligned = ALIGN(start_phys, incr);
467 	count = (size - (start_phys_aligned - start_phys))/incr;
468 	start = __va(start_phys_aligned);
469 	start_bad = 0;
470 	last_bad = 0;
471 
472 	for (i = 0; i < count; i++)
473 		start[i] = val;
474 	for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
475 		if (*start != val) {
476 			if (start_phys_aligned == last_bad + incr) {
477 				last_bad += incr;
478 			} else {
479 				if (start_bad) {
480 					printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
481 						val, start_bad, last_bad + incr);
482 					reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
483 				}
484 				start_bad = last_bad = start_phys_aligned;
485 			}
486 		}
487 	}
488 	if (start_bad) {
489 		printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
490 			val, start_bad, last_bad + incr);
491 		reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
492 	}
493 
494 }
495 
496 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
497 
498 static int __init parse_memtest(char *arg)
499 {
500 	if (arg)
501 		memtest_pattern = simple_strtoul(arg, NULL, 0);
502 	return 0;
503 }
504 
505 early_param("memtest", parse_memtest);
506 
507 static void __init early_memtest(unsigned long start, unsigned long end)
508 {
509 	unsigned long t_start, t_size;
510 	unsigned pattern;
511 
512 	if (!memtest_pattern)
513 		return;
514 
515 	printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
516 	for (pattern = 0; pattern < memtest_pattern; pattern++) {
517 		t_start = start;
518 		t_size = 0;
519 		while (t_start < end) {
520 			t_start = find_e820_area_size(t_start, &t_size, 1);
521 
522 			/* done ? */
523 			if (t_start >= end)
524 				break;
525 			if (t_start + t_size > end)
526 				t_size = end - t_start;
527 
528 			printk(KERN_CONT "\n  %016lx - %016lx pattern %d",
529 				t_start, t_start + t_size, pattern);
530 
531 			memtest(t_start, t_size, pattern);
532 
533 			t_start += t_size;
534 		}
535 	}
536 	printk(KERN_CONT "\n");
537 }
538 #else
539 static void __init early_memtest(unsigned long start, unsigned long end)
540 {
541 }
542 #endif
543 
544 /*
545  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
546  * This runs before bootmem is initialized and gets pages directly from
547  * the physical memory. To access them they are temporarily mapped.
548  */
549 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
550 {
551 	unsigned long next, last_map_addr = end;
552 	unsigned long start_phys = start, end_phys = end;
553 
554 	printk(KERN_INFO "init_memory_mapping\n");
555 
556 	/*
557 	 * Find space for the kernel direct mapping tables.
558 	 *
559 	 * Later we should allocate these tables in the local node of the
560 	 * memory mapped. Unfortunately this is done currently before the
561 	 * nodes are discovered.
562 	 */
563 	if (!after_bootmem) {
564 		init_gbpages();
565 		find_early_table_space(end);
566 	}
567 
568 	start = (unsigned long)__va(start);
569 	end = (unsigned long)__va(end);
570 
571 	for (; start < end; start = next) {
572 		pgd_t *pgd = pgd_offset_k(start);
573 		unsigned long pud_phys;
574 		pud_t *pud;
575 
576 		if (after_bootmem)
577 			pud = pud_offset(pgd, start & PGDIR_MASK);
578 		else
579 			pud = alloc_low_page(&pud_phys);
580 
581 		next = start + PGDIR_SIZE;
582 		if (next > end)
583 			next = end;
584 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
585 		if (!after_bootmem)
586 			set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
587 		unmap_low_page(pud);
588 	}
589 
590 	if (!after_bootmem)
591 		mmu_cr4_features = read_cr4();
592 	__flush_tlb_all();
593 
594 	if (!after_bootmem)
595 		reserve_early(table_start << PAGE_SHIFT,
596 				 table_end << PAGE_SHIFT, "PGTABLE");
597 
598 	if (!after_bootmem)
599 		early_memtest(start_phys, end_phys);
600 
601 	return last_map_addr;
602 }
603 
604 #ifndef CONFIG_NUMA
605 void __init paging_init(void)
606 {
607 	unsigned long max_zone_pfns[MAX_NR_ZONES];
608 
609 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
610 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
611 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
612 	max_zone_pfns[ZONE_NORMAL] = end_pfn;
613 
614 	memory_present(0, 0, end_pfn);
615 	sparse_init();
616 	free_area_init_nodes(max_zone_pfns);
617 }
618 #endif
619 
620 /*
621  * Memory hotplug specific functions
622  */
623 #ifdef CONFIG_MEMORY_HOTPLUG
624 /*
625  * Memory is added always to NORMAL zone. This means you will never get
626  * additional DMA/DMA32 memory.
627  */
628 int arch_add_memory(int nid, u64 start, u64 size)
629 {
630 	struct pglist_data *pgdat = NODE_DATA(nid);
631 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
632 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
633 	unsigned long nr_pages = size >> PAGE_SHIFT;
634 	int ret;
635 
636 	last_mapped_pfn = init_memory_mapping(start, start + size-1);
637 	if (last_mapped_pfn > max_pfn_mapped)
638 		max_pfn_mapped = last_mapped_pfn;
639 
640 	ret = __add_pages(zone, start_pfn, nr_pages);
641 	WARN_ON(1);
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL_GPL(arch_add_memory);
646 
647 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
648 int memory_add_physaddr_to_nid(u64 start)
649 {
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
653 #endif
654 
655 #endif /* CONFIG_MEMORY_HOTPLUG */
656 
657 /*
658  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
659  * is valid. The argument is a physical page number.
660  *
661  *
662  * On x86, access has to be given to the first megabyte of ram because that area
663  * contains bios code and data regions used by X and dosemu and similar apps.
664  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
665  * mmio resources as well as potential bios/acpi data regions.
666  */
667 int devmem_is_allowed(unsigned long pagenr)
668 {
669 	if (pagenr <= 256)
670 		return 1;
671 	if (!page_is_ram(pagenr))
672 		return 1;
673 	return 0;
674 }
675 
676 
677 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
678 			 kcore_modules, kcore_vsyscall;
679 
680 void __init mem_init(void)
681 {
682 	long codesize, reservedpages, datasize, initsize;
683 
684 	pci_iommu_alloc();
685 
686 	/* clear_bss() already clear the empty_zero_page */
687 
688 	reservedpages = 0;
689 
690 	/* this will put all low memory onto the freelists */
691 #ifdef CONFIG_NUMA
692 	totalram_pages = numa_free_all_bootmem();
693 #else
694 	totalram_pages = free_all_bootmem();
695 #endif
696 	reservedpages = end_pfn - totalram_pages -
697 					absent_pages_in_range(0, end_pfn);
698 	after_bootmem = 1;
699 
700 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
701 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
702 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
703 
704 	/* Register memory areas for /proc/kcore */
705 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
706 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
707 		   VMALLOC_END-VMALLOC_START);
708 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
709 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
710 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
711 				 VSYSCALL_END - VSYSCALL_START);
712 
713 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
714 				"%ldk reserved, %ldk data, %ldk init)\n",
715 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
716 		end_pfn << (PAGE_SHIFT-10),
717 		codesize >> 10,
718 		reservedpages << (PAGE_SHIFT-10),
719 		datasize >> 10,
720 		initsize >> 10);
721 
722 	cpa_init();
723 }
724 
725 void free_init_pages(char *what, unsigned long begin, unsigned long end)
726 {
727 	unsigned long addr = begin;
728 
729 	if (addr >= end)
730 		return;
731 
732 	/*
733 	 * If debugging page accesses then do not free this memory but
734 	 * mark them not present - any buggy init-section access will
735 	 * create a kernel page fault:
736 	 */
737 #ifdef CONFIG_DEBUG_PAGEALLOC
738 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
739 		begin, PAGE_ALIGN(end));
740 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
741 #else
742 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
743 
744 	for (; addr < end; addr += PAGE_SIZE) {
745 		ClearPageReserved(virt_to_page(addr));
746 		init_page_count(virt_to_page(addr));
747 		memset((void *)(addr & ~(PAGE_SIZE-1)),
748 			POISON_FREE_INITMEM, PAGE_SIZE);
749 		free_page(addr);
750 		totalram_pages++;
751 	}
752 #endif
753 }
754 
755 void free_initmem(void)
756 {
757 	free_init_pages("unused kernel memory",
758 			(unsigned long)(&__init_begin),
759 			(unsigned long)(&__init_end));
760 }
761 
762 #ifdef CONFIG_DEBUG_RODATA
763 const int rodata_test_data = 0xC3;
764 EXPORT_SYMBOL_GPL(rodata_test_data);
765 
766 void mark_rodata_ro(void)
767 {
768 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
769 
770 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
771 	       (end - start) >> 10);
772 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
773 
774 	/*
775 	 * The rodata section (but not the kernel text!) should also be
776 	 * not-executable.
777 	 */
778 	start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
779 	set_memory_nx(start, (end - start) >> PAGE_SHIFT);
780 
781 	rodata_test();
782 
783 #ifdef CONFIG_CPA_DEBUG
784 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
785 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
786 
787 	printk(KERN_INFO "Testing CPA: again\n");
788 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
789 #endif
790 }
791 
792 #endif
793 
794 #ifdef CONFIG_BLK_DEV_INITRD
795 void free_initrd_mem(unsigned long start, unsigned long end)
796 {
797 	free_init_pages("initrd memory", start, end);
798 }
799 #endif
800 
801 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
802 {
803 #ifdef CONFIG_NUMA
804 	int nid, next_nid;
805 #endif
806 	unsigned long pfn = phys >> PAGE_SHIFT;
807 
808 	if (pfn >= end_pfn) {
809 		/*
810 		 * This can happen with kdump kernels when accessing
811 		 * firmware tables:
812 		 */
813 		if (pfn < max_pfn_mapped)
814 			return;
815 
816 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
817 				phys, len);
818 		return;
819 	}
820 
821 	/* Should check here against the e820 map to avoid double free */
822 #ifdef CONFIG_NUMA
823 	nid = phys_to_nid(phys);
824 	next_nid = phys_to_nid(phys + len - 1);
825 	if (nid == next_nid)
826 		reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
827 	else
828 		reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
829 #else
830 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
831 #endif
832 
833 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
834 		dma_reserve += len / PAGE_SIZE;
835 		set_dma_reserve(dma_reserve);
836 	}
837 }
838 
839 int kern_addr_valid(unsigned long addr)
840 {
841 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
842 	pgd_t *pgd;
843 	pud_t *pud;
844 	pmd_t *pmd;
845 	pte_t *pte;
846 
847 	if (above != 0 && above != -1UL)
848 		return 0;
849 
850 	pgd = pgd_offset_k(addr);
851 	if (pgd_none(*pgd))
852 		return 0;
853 
854 	pud = pud_offset(pgd, addr);
855 	if (pud_none(*pud))
856 		return 0;
857 
858 	pmd = pmd_offset(pud, addr);
859 	if (pmd_none(*pmd))
860 		return 0;
861 
862 	if (pmd_large(*pmd))
863 		return pfn_valid(pmd_pfn(*pmd));
864 
865 	pte = pte_offset_kernel(pmd, addr);
866 	if (pte_none(*pte))
867 		return 0;
868 
869 	return pfn_valid(pte_pfn(*pte));
870 }
871 
872 /*
873  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
874  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
875  * not need special handling anymore:
876  */
877 static struct vm_area_struct gate_vma = {
878 	.vm_start	= VSYSCALL_START,
879 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
880 	.vm_page_prot	= PAGE_READONLY_EXEC,
881 	.vm_flags	= VM_READ | VM_EXEC
882 };
883 
884 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
885 {
886 #ifdef CONFIG_IA32_EMULATION
887 	if (test_tsk_thread_flag(tsk, TIF_IA32))
888 		return NULL;
889 #endif
890 	return &gate_vma;
891 }
892 
893 int in_gate_area(struct task_struct *task, unsigned long addr)
894 {
895 	struct vm_area_struct *vma = get_gate_vma(task);
896 
897 	if (!vma)
898 		return 0;
899 
900 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
901 }
902 
903 /*
904  * Use this when you have no reliable task/vma, typically from interrupt
905  * context. It is less reliable than using the task's vma and may give
906  * false positives:
907  */
908 int in_gate_area_no_task(unsigned long addr)
909 {
910 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
911 }
912 
913 const char *arch_vma_name(struct vm_area_struct *vma)
914 {
915 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
916 		return "[vdso]";
917 	if (vma == &gate_vma)
918 		return "[vsyscall]";
919 	return NULL;
920 }
921 
922 #ifdef CONFIG_SPARSEMEM_VMEMMAP
923 /*
924  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
925  */
926 static long __meminitdata addr_start, addr_end;
927 static void __meminitdata *p_start, *p_end;
928 static int __meminitdata node_start;
929 
930 int __meminit
931 vmemmap_populate(struct page *start_page, unsigned long size, int node)
932 {
933 	unsigned long addr = (unsigned long)start_page;
934 	unsigned long end = (unsigned long)(start_page + size);
935 	unsigned long next;
936 	pgd_t *pgd;
937 	pud_t *pud;
938 	pmd_t *pmd;
939 
940 	for (; addr < end; addr = next) {
941 		next = pmd_addr_end(addr, end);
942 
943 		pgd = vmemmap_pgd_populate(addr, node);
944 		if (!pgd)
945 			return -ENOMEM;
946 
947 		pud = vmemmap_pud_populate(pgd, addr, node);
948 		if (!pud)
949 			return -ENOMEM;
950 
951 		pmd = pmd_offset(pud, addr);
952 		if (pmd_none(*pmd)) {
953 			pte_t entry;
954 			void *p;
955 
956 			p = vmemmap_alloc_block(PMD_SIZE, node);
957 			if (!p)
958 				return -ENOMEM;
959 
960 			entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
961 							PAGE_KERNEL_LARGE);
962 			set_pmd(pmd, __pmd(pte_val(entry)));
963 
964 			/* check to see if we have contiguous blocks */
965 			if (p_end != p || node_start != node) {
966 				if (p_start)
967 					printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
968 						addr_start, addr_end-1, p_start, p_end-1, node_start);
969 				addr_start = addr;
970 				node_start = node;
971 				p_start = p;
972 			}
973 			addr_end = addr + PMD_SIZE;
974 			p_end = p + PMD_SIZE;
975 		} else {
976 			vmemmap_verify((pte_t *)pmd, node, addr, next);
977 		}
978 	}
979 	return 0;
980 }
981 
982 void __meminit vmemmap_populate_print_last(void)
983 {
984 	if (p_start) {
985 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
986 			addr_start, addr_end-1, p_start, p_end-1, node_start);
987 		p_start = NULL;
988 		p_end = NULL;
989 		node_start = 0;
990 	}
991 }
992 #endif
993