1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/x86_64/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 8 */ 9 10 #include <linux/signal.h> 11 #include <linux/sched.h> 12 #include <linux/kernel.h> 13 #include <linux/errno.h> 14 #include <linux/string.h> 15 #include <linux/types.h> 16 #include <linux/ptrace.h> 17 #include <linux/mman.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/smp.h> 21 #include <linux/init.h> 22 #include <linux/initrd.h> 23 #include <linux/pagemap.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/memory.h> 31 #include <linux/memory_hotplug.h> 32 #include <linux/memremap.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 37 #include <asm/processor.h> 38 #include <asm/bios_ebda.h> 39 #include <linux/uaccess.h> 40 #include <asm/pgalloc.h> 41 #include <asm/dma.h> 42 #include <asm/fixmap.h> 43 #include <asm/e820/api.h> 44 #include <asm/apic.h> 45 #include <asm/tlb.h> 46 #include <asm/mmu_context.h> 47 #include <asm/proto.h> 48 #include <asm/smp.h> 49 #include <asm/sections.h> 50 #include <asm/kdebug.h> 51 #include <asm/numa.h> 52 #include <asm/set_memory.h> 53 #include <asm/init.h> 54 #include <asm/uv/uv.h> 55 #include <asm/setup.h> 56 #include <asm/ftrace.h> 57 58 #include "mm_internal.h" 59 60 #include "ident_map.c" 61 62 #define DEFINE_POPULATE(fname, type1, type2, init) \ 63 static inline void fname##_init(struct mm_struct *mm, \ 64 type1##_t *arg1, type2##_t *arg2, bool init) \ 65 { \ 66 if (init) \ 67 fname##_safe(mm, arg1, arg2); \ 68 else \ 69 fname(mm, arg1, arg2); \ 70 } 71 72 DEFINE_POPULATE(p4d_populate, p4d, pud, init) 73 DEFINE_POPULATE(pgd_populate, pgd, p4d, init) 74 DEFINE_POPULATE(pud_populate, pud, pmd, init) 75 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) 76 77 #define DEFINE_ENTRY(type1, type2, init) \ 78 static inline void set_##type1##_init(type1##_t *arg1, \ 79 type2##_t arg2, bool init) \ 80 { \ 81 if (init) \ 82 set_##type1##_safe(arg1, arg2); \ 83 else \ 84 set_##type1(arg1, arg2); \ 85 } 86 87 DEFINE_ENTRY(p4d, p4d, init) 88 DEFINE_ENTRY(pud, pud, init) 89 DEFINE_ENTRY(pmd, pmd, init) 90 DEFINE_ENTRY(pte, pte, init) 91 92 93 /* 94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 95 * physical space so we can cache the place of the first one and move 96 * around without checking the pgd every time. 97 */ 98 99 /* Bits supported by the hardware: */ 100 pteval_t __supported_pte_mask __read_mostly = ~0; 101 /* Bits allowed in normal kernel mappings: */ 102 pteval_t __default_kernel_pte_mask __read_mostly = ~0; 103 EXPORT_SYMBOL_GPL(__supported_pte_mask); 104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ 105 EXPORT_SYMBOL(__default_kernel_pte_mask); 106 107 int force_personality32; 108 109 /* 110 * noexec32=on|off 111 * Control non executable heap for 32bit processes. 112 * To control the stack too use noexec=off 113 * 114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 115 * off PROT_READ implies PROT_EXEC 116 */ 117 static int __init nonx32_setup(char *str) 118 { 119 if (!strcmp(str, "on")) 120 force_personality32 &= ~READ_IMPLIES_EXEC; 121 else if (!strcmp(str, "off")) 122 force_personality32 |= READ_IMPLIES_EXEC; 123 return 1; 124 } 125 __setup("noexec32=", nonx32_setup); 126 127 static void sync_global_pgds_l5(unsigned long start, unsigned long end) 128 { 129 unsigned long addr; 130 131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 132 const pgd_t *pgd_ref = pgd_offset_k(addr); 133 struct page *page; 134 135 /* Check for overflow */ 136 if (addr < start) 137 break; 138 139 if (pgd_none(*pgd_ref)) 140 continue; 141 142 spin_lock(&pgd_lock); 143 list_for_each_entry(page, &pgd_list, lru) { 144 pgd_t *pgd; 145 spinlock_t *pgt_lock; 146 147 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 148 /* the pgt_lock only for Xen */ 149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 150 spin_lock(pgt_lock); 151 152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 154 155 if (pgd_none(*pgd)) 156 set_pgd(pgd, *pgd_ref); 157 158 spin_unlock(pgt_lock); 159 } 160 spin_unlock(&pgd_lock); 161 } 162 } 163 164 static void sync_global_pgds_l4(unsigned long start, unsigned long end) 165 { 166 unsigned long addr; 167 168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 169 pgd_t *pgd_ref = pgd_offset_k(addr); 170 const p4d_t *p4d_ref; 171 struct page *page; 172 173 /* 174 * With folded p4d, pgd_none() is always false, we need to 175 * handle synchonization on p4d level. 176 */ 177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); 178 p4d_ref = p4d_offset(pgd_ref, addr); 179 180 if (p4d_none(*p4d_ref)) 181 continue; 182 183 spin_lock(&pgd_lock); 184 list_for_each_entry(page, &pgd_list, lru) { 185 pgd_t *pgd; 186 p4d_t *p4d; 187 spinlock_t *pgt_lock; 188 189 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 190 p4d = p4d_offset(pgd, addr); 191 /* the pgt_lock only for Xen */ 192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 193 spin_lock(pgt_lock); 194 195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) 196 BUG_ON(p4d_page_vaddr(*p4d) 197 != p4d_page_vaddr(*p4d_ref)); 198 199 if (p4d_none(*p4d)) 200 set_p4d(p4d, *p4d_ref); 201 202 spin_unlock(pgt_lock); 203 } 204 spin_unlock(&pgd_lock); 205 } 206 } 207 208 /* 209 * When memory was added make sure all the processes MM have 210 * suitable PGD entries in the local PGD level page. 211 */ 212 void sync_global_pgds(unsigned long start, unsigned long end) 213 { 214 if (pgtable_l5_enabled()) 215 sync_global_pgds_l5(start, end); 216 else 217 sync_global_pgds_l4(start, end); 218 } 219 220 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 221 { 222 sync_global_pgds(start, end); 223 } 224 225 /* 226 * NOTE: This function is marked __ref because it calls __init function 227 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 228 */ 229 static __ref void *spp_getpage(void) 230 { 231 void *ptr; 232 233 if (after_bootmem) 234 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 235 else 236 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 237 238 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 239 panic("set_pte_phys: cannot allocate page data %s\n", 240 after_bootmem ? "after bootmem" : ""); 241 } 242 243 pr_debug("spp_getpage %p\n", ptr); 244 245 return ptr; 246 } 247 248 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) 249 { 250 if (pgd_none(*pgd)) { 251 p4d_t *p4d = (p4d_t *)spp_getpage(); 252 pgd_populate(&init_mm, pgd, p4d); 253 if (p4d != p4d_offset(pgd, 0)) 254 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 255 p4d, p4d_offset(pgd, 0)); 256 } 257 return p4d_offset(pgd, vaddr); 258 } 259 260 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) 261 { 262 if (p4d_none(*p4d)) { 263 pud_t *pud = (pud_t *)spp_getpage(); 264 p4d_populate(&init_mm, p4d, pud); 265 if (pud != pud_offset(p4d, 0)) 266 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 267 pud, pud_offset(p4d, 0)); 268 } 269 return pud_offset(p4d, vaddr); 270 } 271 272 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 273 { 274 if (pud_none(*pud)) { 275 pmd_t *pmd = (pmd_t *) spp_getpage(); 276 pud_populate(&init_mm, pud, pmd); 277 if (pmd != pmd_offset(pud, 0)) 278 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", 279 pmd, pmd_offset(pud, 0)); 280 } 281 return pmd_offset(pud, vaddr); 282 } 283 284 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 285 { 286 if (pmd_none(*pmd)) { 287 pte_t *pte = (pte_t *) spp_getpage(); 288 pmd_populate_kernel(&init_mm, pmd, pte); 289 if (pte != pte_offset_kernel(pmd, 0)) 290 printk(KERN_ERR "PAGETABLE BUG #03!\n"); 291 } 292 return pte_offset_kernel(pmd, vaddr); 293 } 294 295 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) 296 { 297 pmd_t *pmd = fill_pmd(pud, vaddr); 298 pte_t *pte = fill_pte(pmd, vaddr); 299 300 set_pte(pte, new_pte); 301 302 /* 303 * It's enough to flush this one mapping. 304 * (PGE mappings get flushed as well) 305 */ 306 flush_tlb_one_kernel(vaddr); 307 } 308 309 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) 310 { 311 p4d_t *p4d = p4d_page + p4d_index(vaddr); 312 pud_t *pud = fill_pud(p4d, vaddr); 313 314 __set_pte_vaddr(pud, vaddr, new_pte); 315 } 316 317 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 318 { 319 pud_t *pud = pud_page + pud_index(vaddr); 320 321 __set_pte_vaddr(pud, vaddr, new_pte); 322 } 323 324 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 325 { 326 pgd_t *pgd; 327 p4d_t *p4d_page; 328 329 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 330 331 pgd = pgd_offset_k(vaddr); 332 if (pgd_none(*pgd)) { 333 printk(KERN_ERR 334 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 335 return; 336 } 337 338 p4d_page = p4d_offset(pgd, 0); 339 set_pte_vaddr_p4d(p4d_page, vaddr, pteval); 340 } 341 342 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 343 { 344 pgd_t *pgd; 345 p4d_t *p4d; 346 pud_t *pud; 347 348 pgd = pgd_offset_k(vaddr); 349 p4d = fill_p4d(pgd, vaddr); 350 pud = fill_pud(p4d, vaddr); 351 return fill_pmd(pud, vaddr); 352 } 353 354 pte_t * __init populate_extra_pte(unsigned long vaddr) 355 { 356 pmd_t *pmd; 357 358 pmd = populate_extra_pmd(vaddr); 359 return fill_pte(pmd, vaddr); 360 } 361 362 /* 363 * Create large page table mappings for a range of physical addresses. 364 */ 365 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 366 enum page_cache_mode cache) 367 { 368 pgd_t *pgd; 369 p4d_t *p4d; 370 pud_t *pud; 371 pmd_t *pmd; 372 pgprot_t prot; 373 374 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 375 protval_4k_2_large(cachemode2protval(cache)); 376 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 377 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 378 pgd = pgd_offset_k((unsigned long)__va(phys)); 379 if (pgd_none(*pgd)) { 380 p4d = (p4d_t *) spp_getpage(); 381 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | 382 _PAGE_USER)); 383 } 384 p4d = p4d_offset(pgd, (unsigned long)__va(phys)); 385 if (p4d_none(*p4d)) { 386 pud = (pud_t *) spp_getpage(); 387 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | 388 _PAGE_USER)); 389 } 390 pud = pud_offset(p4d, (unsigned long)__va(phys)); 391 if (pud_none(*pud)) { 392 pmd = (pmd_t *) spp_getpage(); 393 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 394 _PAGE_USER)); 395 } 396 pmd = pmd_offset(pud, phys); 397 BUG_ON(!pmd_none(*pmd)); 398 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 399 } 400 } 401 402 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 403 { 404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 405 } 406 407 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 408 { 409 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 410 } 411 412 /* 413 * The head.S code sets up the kernel high mapping: 414 * 415 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 416 * 417 * phys_base holds the negative offset to the kernel, which is added 418 * to the compile time generated pmds. This results in invalid pmds up 419 * to the point where we hit the physaddr 0 mapping. 420 * 421 * We limit the mappings to the region from _text to _brk_end. _brk_end 422 * is rounded up to the 2MB boundary. This catches the invalid pmds as 423 * well, as they are located before _text: 424 */ 425 void __init cleanup_highmap(void) 426 { 427 unsigned long vaddr = __START_KERNEL_map; 428 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 429 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 430 pmd_t *pmd = level2_kernel_pgt; 431 432 /* 433 * Native path, max_pfn_mapped is not set yet. 434 * Xen has valid max_pfn_mapped set in 435 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 436 */ 437 if (max_pfn_mapped) 438 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 439 440 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 441 if (pmd_none(*pmd)) 442 continue; 443 if (vaddr < (unsigned long) _text || vaddr > end) 444 set_pmd(pmd, __pmd(0)); 445 } 446 } 447 448 /* 449 * Create PTE level page table mapping for physical addresses. 450 * It returns the last physical address mapped. 451 */ 452 static unsigned long __meminit 453 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, 454 pgprot_t prot, bool init) 455 { 456 unsigned long pages = 0, paddr_next; 457 unsigned long paddr_last = paddr_end; 458 pte_t *pte; 459 int i; 460 461 pte = pte_page + pte_index(paddr); 462 i = pte_index(paddr); 463 464 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { 465 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; 466 if (paddr >= paddr_end) { 467 if (!after_bootmem && 468 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 469 E820_TYPE_RAM) && 470 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 471 E820_TYPE_RESERVED_KERN)) 472 set_pte_init(pte, __pte(0), init); 473 continue; 474 } 475 476 /* 477 * We will re-use the existing mapping. 478 * Xen for example has some special requirements, like mapping 479 * pagetable pages as RO. So assume someone who pre-setup 480 * these mappings are more intelligent. 481 */ 482 if (!pte_none(*pte)) { 483 if (!after_bootmem) 484 pages++; 485 continue; 486 } 487 488 if (0) 489 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, 490 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); 491 pages++; 492 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); 493 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; 494 } 495 496 update_page_count(PG_LEVEL_4K, pages); 497 498 return paddr_last; 499 } 500 501 /* 502 * Create PMD level page table mapping for physical addresses. The virtual 503 * and physical address have to be aligned at this level. 504 * It returns the last physical address mapped. 505 */ 506 static unsigned long __meminit 507 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, 508 unsigned long page_size_mask, pgprot_t prot, bool init) 509 { 510 unsigned long pages = 0, paddr_next; 511 unsigned long paddr_last = paddr_end; 512 513 int i = pmd_index(paddr); 514 515 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { 516 pmd_t *pmd = pmd_page + pmd_index(paddr); 517 pte_t *pte; 518 pgprot_t new_prot = prot; 519 520 paddr_next = (paddr & PMD_MASK) + PMD_SIZE; 521 if (paddr >= paddr_end) { 522 if (!after_bootmem && 523 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 524 E820_TYPE_RAM) && 525 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 526 E820_TYPE_RESERVED_KERN)) 527 set_pmd_init(pmd, __pmd(0), init); 528 continue; 529 } 530 531 if (!pmd_none(*pmd)) { 532 if (!pmd_large(*pmd)) { 533 spin_lock(&init_mm.page_table_lock); 534 pte = (pte_t *)pmd_page_vaddr(*pmd); 535 paddr_last = phys_pte_init(pte, paddr, 536 paddr_end, prot, 537 init); 538 spin_unlock(&init_mm.page_table_lock); 539 continue; 540 } 541 /* 542 * If we are ok with PG_LEVEL_2M mapping, then we will 543 * use the existing mapping, 544 * 545 * Otherwise, we will split the large page mapping but 546 * use the same existing protection bits except for 547 * large page, so that we don't violate Intel's TLB 548 * Application note (317080) which says, while changing 549 * the page sizes, new and old translations should 550 * not differ with respect to page frame and 551 * attributes. 552 */ 553 if (page_size_mask & (1 << PG_LEVEL_2M)) { 554 if (!after_bootmem) 555 pages++; 556 paddr_last = paddr_next; 557 continue; 558 } 559 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 560 } 561 562 if (page_size_mask & (1<<PG_LEVEL_2M)) { 563 pages++; 564 spin_lock(&init_mm.page_table_lock); 565 set_pte_init((pte_t *)pmd, 566 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, 567 __pgprot(pgprot_val(prot) | _PAGE_PSE)), 568 init); 569 spin_unlock(&init_mm.page_table_lock); 570 paddr_last = paddr_next; 571 continue; 572 } 573 574 pte = alloc_low_page(); 575 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); 576 577 spin_lock(&init_mm.page_table_lock); 578 pmd_populate_kernel_init(&init_mm, pmd, pte, init); 579 spin_unlock(&init_mm.page_table_lock); 580 } 581 update_page_count(PG_LEVEL_2M, pages); 582 return paddr_last; 583 } 584 585 /* 586 * Create PUD level page table mapping for physical addresses. The virtual 587 * and physical address do not have to be aligned at this level. KASLR can 588 * randomize virtual addresses up to this level. 589 * It returns the last physical address mapped. 590 */ 591 static unsigned long __meminit 592 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, 593 unsigned long page_size_mask, pgprot_t _prot, bool init) 594 { 595 unsigned long pages = 0, paddr_next; 596 unsigned long paddr_last = paddr_end; 597 unsigned long vaddr = (unsigned long)__va(paddr); 598 int i = pud_index(vaddr); 599 600 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { 601 pud_t *pud; 602 pmd_t *pmd; 603 pgprot_t prot = _prot; 604 605 vaddr = (unsigned long)__va(paddr); 606 pud = pud_page + pud_index(vaddr); 607 paddr_next = (paddr & PUD_MASK) + PUD_SIZE; 608 609 if (paddr >= paddr_end) { 610 if (!after_bootmem && 611 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 612 E820_TYPE_RAM) && 613 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 614 E820_TYPE_RESERVED_KERN)) 615 set_pud_init(pud, __pud(0), init); 616 continue; 617 } 618 619 if (!pud_none(*pud)) { 620 if (!pud_large(*pud)) { 621 pmd = pmd_offset(pud, 0); 622 paddr_last = phys_pmd_init(pmd, paddr, 623 paddr_end, 624 page_size_mask, 625 prot, init); 626 continue; 627 } 628 /* 629 * If we are ok with PG_LEVEL_1G mapping, then we will 630 * use the existing mapping. 631 * 632 * Otherwise, we will split the gbpage mapping but use 633 * the same existing protection bits except for large 634 * page, so that we don't violate Intel's TLB 635 * Application note (317080) which says, while changing 636 * the page sizes, new and old translations should 637 * not differ with respect to page frame and 638 * attributes. 639 */ 640 if (page_size_mask & (1 << PG_LEVEL_1G)) { 641 if (!after_bootmem) 642 pages++; 643 paddr_last = paddr_next; 644 continue; 645 } 646 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 647 } 648 649 if (page_size_mask & (1<<PG_LEVEL_1G)) { 650 pages++; 651 spin_lock(&init_mm.page_table_lock); 652 653 prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE); 654 655 set_pte_init((pte_t *)pud, 656 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, 657 prot), 658 init); 659 spin_unlock(&init_mm.page_table_lock); 660 paddr_last = paddr_next; 661 continue; 662 } 663 664 pmd = alloc_low_page(); 665 paddr_last = phys_pmd_init(pmd, paddr, paddr_end, 666 page_size_mask, prot, init); 667 668 spin_lock(&init_mm.page_table_lock); 669 pud_populate_init(&init_mm, pud, pmd, init); 670 spin_unlock(&init_mm.page_table_lock); 671 } 672 673 update_page_count(PG_LEVEL_1G, pages); 674 675 return paddr_last; 676 } 677 678 static unsigned long __meminit 679 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, 680 unsigned long page_size_mask, pgprot_t prot, bool init) 681 { 682 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last; 683 684 paddr_last = paddr_end; 685 vaddr = (unsigned long)__va(paddr); 686 vaddr_end = (unsigned long)__va(paddr_end); 687 688 if (!pgtable_l5_enabled()) 689 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, 690 page_size_mask, prot, init); 691 692 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 693 p4d_t *p4d = p4d_page + p4d_index(vaddr); 694 pud_t *pud; 695 696 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE; 697 paddr = __pa(vaddr); 698 699 if (paddr >= paddr_end) { 700 paddr_next = __pa(vaddr_next); 701 if (!after_bootmem && 702 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 703 E820_TYPE_RAM) && 704 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 705 E820_TYPE_RESERVED_KERN)) 706 set_p4d_init(p4d, __p4d(0), init); 707 continue; 708 } 709 710 if (!p4d_none(*p4d)) { 711 pud = pud_offset(p4d, 0); 712 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 713 page_size_mask, prot, init); 714 continue; 715 } 716 717 pud = alloc_low_page(); 718 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 719 page_size_mask, prot, init); 720 721 spin_lock(&init_mm.page_table_lock); 722 p4d_populate_init(&init_mm, p4d, pud, init); 723 spin_unlock(&init_mm.page_table_lock); 724 } 725 726 return paddr_last; 727 } 728 729 static unsigned long __meminit 730 __kernel_physical_mapping_init(unsigned long paddr_start, 731 unsigned long paddr_end, 732 unsigned long page_size_mask, 733 pgprot_t prot, bool init) 734 { 735 bool pgd_changed = false; 736 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; 737 738 paddr_last = paddr_end; 739 vaddr = (unsigned long)__va(paddr_start); 740 vaddr_end = (unsigned long)__va(paddr_end); 741 vaddr_start = vaddr; 742 743 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 744 pgd_t *pgd = pgd_offset_k(vaddr); 745 p4d_t *p4d; 746 747 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; 748 749 if (pgd_val(*pgd)) { 750 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 751 paddr_last = phys_p4d_init(p4d, __pa(vaddr), 752 __pa(vaddr_end), 753 page_size_mask, 754 prot, init); 755 continue; 756 } 757 758 p4d = alloc_low_page(); 759 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), 760 page_size_mask, prot, init); 761 762 spin_lock(&init_mm.page_table_lock); 763 if (pgtable_l5_enabled()) 764 pgd_populate_init(&init_mm, pgd, p4d, init); 765 else 766 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), 767 (pud_t *) p4d, init); 768 769 spin_unlock(&init_mm.page_table_lock); 770 pgd_changed = true; 771 } 772 773 if (pgd_changed) 774 sync_global_pgds(vaddr_start, vaddr_end - 1); 775 776 return paddr_last; 777 } 778 779 780 /* 781 * Create page table mapping for the physical memory for specific physical 782 * addresses. Note that it can only be used to populate non-present entries. 783 * The virtual and physical addresses have to be aligned on PMD level 784 * down. It returns the last physical address mapped. 785 */ 786 unsigned long __meminit 787 kernel_physical_mapping_init(unsigned long paddr_start, 788 unsigned long paddr_end, 789 unsigned long page_size_mask, pgprot_t prot) 790 { 791 return __kernel_physical_mapping_init(paddr_start, paddr_end, 792 page_size_mask, prot, true); 793 } 794 795 /* 796 * This function is similar to kernel_physical_mapping_init() above with the 797 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() 798 * when updating the mapping. The caller is responsible to flush the TLBs after 799 * the function returns. 800 */ 801 unsigned long __meminit 802 kernel_physical_mapping_change(unsigned long paddr_start, 803 unsigned long paddr_end, 804 unsigned long page_size_mask) 805 { 806 return __kernel_physical_mapping_init(paddr_start, paddr_end, 807 page_size_mask, PAGE_KERNEL, 808 false); 809 } 810 811 #ifndef CONFIG_NUMA 812 void __init initmem_init(void) 813 { 814 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 815 } 816 #endif 817 818 void __init paging_init(void) 819 { 820 sparse_memory_present_with_active_regions(MAX_NUMNODES); 821 sparse_init(); 822 823 /* 824 * clear the default setting with node 0 825 * note: don't use nodes_clear here, that is really clearing when 826 * numa support is not compiled in, and later node_set_state 827 * will not set it back. 828 */ 829 node_clear_state(0, N_MEMORY); 830 node_clear_state(0, N_NORMAL_MEMORY); 831 832 zone_sizes_init(); 833 } 834 835 /* 836 * Memory hotplug specific functions 837 */ 838 #ifdef CONFIG_MEMORY_HOTPLUG 839 /* 840 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 841 * updating. 842 */ 843 static void update_end_of_memory_vars(u64 start, u64 size) 844 { 845 unsigned long end_pfn = PFN_UP(start + size); 846 847 if (end_pfn > max_pfn) { 848 max_pfn = end_pfn; 849 max_low_pfn = end_pfn; 850 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 851 } 852 } 853 854 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, 855 struct mhp_params *params) 856 { 857 int ret; 858 859 ret = __add_pages(nid, start_pfn, nr_pages, params); 860 WARN_ON_ONCE(ret); 861 862 /* update max_pfn, max_low_pfn and high_memory */ 863 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, 864 nr_pages << PAGE_SHIFT); 865 866 return ret; 867 } 868 869 int arch_add_memory(int nid, u64 start, u64 size, 870 struct mhp_params *params) 871 { 872 unsigned long start_pfn = start >> PAGE_SHIFT; 873 unsigned long nr_pages = size >> PAGE_SHIFT; 874 875 init_memory_mapping(start, start + size, params->pgprot); 876 877 return add_pages(nid, start_pfn, nr_pages, params); 878 } 879 880 #define PAGE_INUSE 0xFD 881 882 static void __meminit free_pagetable(struct page *page, int order) 883 { 884 unsigned long magic; 885 unsigned int nr_pages = 1 << order; 886 887 /* bootmem page has reserved flag */ 888 if (PageReserved(page)) { 889 __ClearPageReserved(page); 890 891 magic = (unsigned long)page->freelist; 892 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 893 while (nr_pages--) 894 put_page_bootmem(page++); 895 } else 896 while (nr_pages--) 897 free_reserved_page(page++); 898 } else 899 free_pages((unsigned long)page_address(page), order); 900 } 901 902 static void __meminit free_hugepage_table(struct page *page, 903 struct vmem_altmap *altmap) 904 { 905 if (altmap) 906 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); 907 else 908 free_pagetable(page, get_order(PMD_SIZE)); 909 } 910 911 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 912 { 913 pte_t *pte; 914 int i; 915 916 for (i = 0; i < PTRS_PER_PTE; i++) { 917 pte = pte_start + i; 918 if (!pte_none(*pte)) 919 return; 920 } 921 922 /* free a pte talbe */ 923 free_pagetable(pmd_page(*pmd), 0); 924 spin_lock(&init_mm.page_table_lock); 925 pmd_clear(pmd); 926 spin_unlock(&init_mm.page_table_lock); 927 } 928 929 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 930 { 931 pmd_t *pmd; 932 int i; 933 934 for (i = 0; i < PTRS_PER_PMD; i++) { 935 pmd = pmd_start + i; 936 if (!pmd_none(*pmd)) 937 return; 938 } 939 940 /* free a pmd talbe */ 941 free_pagetable(pud_page(*pud), 0); 942 spin_lock(&init_mm.page_table_lock); 943 pud_clear(pud); 944 spin_unlock(&init_mm.page_table_lock); 945 } 946 947 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 948 { 949 pud_t *pud; 950 int i; 951 952 for (i = 0; i < PTRS_PER_PUD; i++) { 953 pud = pud_start + i; 954 if (!pud_none(*pud)) 955 return; 956 } 957 958 /* free a pud talbe */ 959 free_pagetable(p4d_page(*p4d), 0); 960 spin_lock(&init_mm.page_table_lock); 961 p4d_clear(p4d); 962 spin_unlock(&init_mm.page_table_lock); 963 } 964 965 static void __meminit 966 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 967 bool direct) 968 { 969 unsigned long next, pages = 0; 970 pte_t *pte; 971 void *page_addr; 972 phys_addr_t phys_addr; 973 974 pte = pte_start + pte_index(addr); 975 for (; addr < end; addr = next, pte++) { 976 next = (addr + PAGE_SIZE) & PAGE_MASK; 977 if (next > end) 978 next = end; 979 980 if (!pte_present(*pte)) 981 continue; 982 983 /* 984 * We mapped [0,1G) memory as identity mapping when 985 * initializing, in arch/x86/kernel/head_64.S. These 986 * pagetables cannot be removed. 987 */ 988 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 989 if (phys_addr < (phys_addr_t)0x40000000) 990 return; 991 992 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { 993 /* 994 * Do not free direct mapping pages since they were 995 * freed when offlining, or simplely not in use. 996 */ 997 if (!direct) 998 free_pagetable(pte_page(*pte), 0); 999 1000 spin_lock(&init_mm.page_table_lock); 1001 pte_clear(&init_mm, addr, pte); 1002 spin_unlock(&init_mm.page_table_lock); 1003 1004 /* For non-direct mapping, pages means nothing. */ 1005 pages++; 1006 } else { 1007 /* 1008 * If we are here, we are freeing vmemmap pages since 1009 * direct mapped memory ranges to be freed are aligned. 1010 * 1011 * If we are not removing the whole page, it means 1012 * other page structs in this page are being used and 1013 * we canot remove them. So fill the unused page_structs 1014 * with 0xFD, and remove the page when it is wholly 1015 * filled with 0xFD. 1016 */ 1017 memset((void *)addr, PAGE_INUSE, next - addr); 1018 1019 page_addr = page_address(pte_page(*pte)); 1020 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 1021 free_pagetable(pte_page(*pte), 0); 1022 1023 spin_lock(&init_mm.page_table_lock); 1024 pte_clear(&init_mm, addr, pte); 1025 spin_unlock(&init_mm.page_table_lock); 1026 } 1027 } 1028 } 1029 1030 /* Call free_pte_table() in remove_pmd_table(). */ 1031 flush_tlb_all(); 1032 if (direct) 1033 update_page_count(PG_LEVEL_4K, -pages); 1034 } 1035 1036 static void __meminit 1037 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 1038 bool direct, struct vmem_altmap *altmap) 1039 { 1040 unsigned long next, pages = 0; 1041 pte_t *pte_base; 1042 pmd_t *pmd; 1043 void *page_addr; 1044 1045 pmd = pmd_start + pmd_index(addr); 1046 for (; addr < end; addr = next, pmd++) { 1047 next = pmd_addr_end(addr, end); 1048 1049 if (!pmd_present(*pmd)) 1050 continue; 1051 1052 if (pmd_large(*pmd)) { 1053 if (IS_ALIGNED(addr, PMD_SIZE) && 1054 IS_ALIGNED(next, PMD_SIZE)) { 1055 if (!direct) 1056 free_hugepage_table(pmd_page(*pmd), 1057 altmap); 1058 1059 spin_lock(&init_mm.page_table_lock); 1060 pmd_clear(pmd); 1061 spin_unlock(&init_mm.page_table_lock); 1062 pages++; 1063 } else { 1064 /* If here, we are freeing vmemmap pages. */ 1065 memset((void *)addr, PAGE_INUSE, next - addr); 1066 1067 page_addr = page_address(pmd_page(*pmd)); 1068 if (!memchr_inv(page_addr, PAGE_INUSE, 1069 PMD_SIZE)) { 1070 free_hugepage_table(pmd_page(*pmd), 1071 altmap); 1072 1073 spin_lock(&init_mm.page_table_lock); 1074 pmd_clear(pmd); 1075 spin_unlock(&init_mm.page_table_lock); 1076 } 1077 } 1078 1079 continue; 1080 } 1081 1082 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 1083 remove_pte_table(pte_base, addr, next, direct); 1084 free_pte_table(pte_base, pmd); 1085 } 1086 1087 /* Call free_pmd_table() in remove_pud_table(). */ 1088 if (direct) 1089 update_page_count(PG_LEVEL_2M, -pages); 1090 } 1091 1092 static void __meminit 1093 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 1094 struct vmem_altmap *altmap, bool direct) 1095 { 1096 unsigned long next, pages = 0; 1097 pmd_t *pmd_base; 1098 pud_t *pud; 1099 void *page_addr; 1100 1101 pud = pud_start + pud_index(addr); 1102 for (; addr < end; addr = next, pud++) { 1103 next = pud_addr_end(addr, end); 1104 1105 if (!pud_present(*pud)) 1106 continue; 1107 1108 if (pud_large(*pud)) { 1109 if (IS_ALIGNED(addr, PUD_SIZE) && 1110 IS_ALIGNED(next, PUD_SIZE)) { 1111 if (!direct) 1112 free_pagetable(pud_page(*pud), 1113 get_order(PUD_SIZE)); 1114 1115 spin_lock(&init_mm.page_table_lock); 1116 pud_clear(pud); 1117 spin_unlock(&init_mm.page_table_lock); 1118 pages++; 1119 } else { 1120 /* If here, we are freeing vmemmap pages. */ 1121 memset((void *)addr, PAGE_INUSE, next - addr); 1122 1123 page_addr = page_address(pud_page(*pud)); 1124 if (!memchr_inv(page_addr, PAGE_INUSE, 1125 PUD_SIZE)) { 1126 free_pagetable(pud_page(*pud), 1127 get_order(PUD_SIZE)); 1128 1129 spin_lock(&init_mm.page_table_lock); 1130 pud_clear(pud); 1131 spin_unlock(&init_mm.page_table_lock); 1132 } 1133 } 1134 1135 continue; 1136 } 1137 1138 pmd_base = pmd_offset(pud, 0); 1139 remove_pmd_table(pmd_base, addr, next, direct, altmap); 1140 free_pmd_table(pmd_base, pud); 1141 } 1142 1143 if (direct) 1144 update_page_count(PG_LEVEL_1G, -pages); 1145 } 1146 1147 static void __meminit 1148 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, 1149 struct vmem_altmap *altmap, bool direct) 1150 { 1151 unsigned long next, pages = 0; 1152 pud_t *pud_base; 1153 p4d_t *p4d; 1154 1155 p4d = p4d_start + p4d_index(addr); 1156 for (; addr < end; addr = next, p4d++) { 1157 next = p4d_addr_end(addr, end); 1158 1159 if (!p4d_present(*p4d)) 1160 continue; 1161 1162 BUILD_BUG_ON(p4d_large(*p4d)); 1163 1164 pud_base = pud_offset(p4d, 0); 1165 remove_pud_table(pud_base, addr, next, altmap, direct); 1166 /* 1167 * For 4-level page tables we do not want to free PUDs, but in the 1168 * 5-level case we should free them. This code will have to change 1169 * to adapt for boot-time switching between 4 and 5 level page tables. 1170 */ 1171 if (pgtable_l5_enabled()) 1172 free_pud_table(pud_base, p4d); 1173 } 1174 1175 if (direct) 1176 update_page_count(PG_LEVEL_512G, -pages); 1177 } 1178 1179 /* start and end are both virtual address. */ 1180 static void __meminit 1181 remove_pagetable(unsigned long start, unsigned long end, bool direct, 1182 struct vmem_altmap *altmap) 1183 { 1184 unsigned long next; 1185 unsigned long addr; 1186 pgd_t *pgd; 1187 p4d_t *p4d; 1188 1189 for (addr = start; addr < end; addr = next) { 1190 next = pgd_addr_end(addr, end); 1191 1192 pgd = pgd_offset_k(addr); 1193 if (!pgd_present(*pgd)) 1194 continue; 1195 1196 p4d = p4d_offset(pgd, 0); 1197 remove_p4d_table(p4d, addr, next, altmap, direct); 1198 } 1199 1200 flush_tlb_all(); 1201 } 1202 1203 void __ref vmemmap_free(unsigned long start, unsigned long end, 1204 struct vmem_altmap *altmap) 1205 { 1206 remove_pagetable(start, end, false, altmap); 1207 } 1208 1209 static void __meminit 1210 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1211 { 1212 start = (unsigned long)__va(start); 1213 end = (unsigned long)__va(end); 1214 1215 remove_pagetable(start, end, true, NULL); 1216 } 1217 1218 void __ref arch_remove_memory(int nid, u64 start, u64 size, 1219 struct vmem_altmap *altmap) 1220 { 1221 unsigned long start_pfn = start >> PAGE_SHIFT; 1222 unsigned long nr_pages = size >> PAGE_SHIFT; 1223 1224 __remove_pages(start_pfn, nr_pages, altmap); 1225 kernel_physical_mapping_remove(start, start + size); 1226 } 1227 #endif /* CONFIG_MEMORY_HOTPLUG */ 1228 1229 static struct kcore_list kcore_vsyscall; 1230 1231 static void __init register_page_bootmem_info(void) 1232 { 1233 #ifdef CONFIG_NUMA 1234 int i; 1235 1236 for_each_online_node(i) 1237 register_page_bootmem_info_node(NODE_DATA(i)); 1238 #endif 1239 } 1240 1241 void __init mem_init(void) 1242 { 1243 pci_iommu_alloc(); 1244 1245 /* clear_bss() already clear the empty_zero_page */ 1246 1247 /* this will put all memory onto the freelists */ 1248 memblock_free_all(); 1249 after_bootmem = 1; 1250 x86_init.hyper.init_after_bootmem(); 1251 1252 /* 1253 * Must be done after boot memory is put on freelist, because here we 1254 * might set fields in deferred struct pages that have not yet been 1255 * initialized, and memblock_free_all() initializes all the reserved 1256 * deferred pages for us. 1257 */ 1258 register_page_bootmem_info(); 1259 1260 /* Register memory areas for /proc/kcore */ 1261 if (get_gate_vma(&init_mm)) 1262 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); 1263 1264 mem_init_print_info(NULL); 1265 } 1266 1267 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1268 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1269 { 1270 /* 1271 * More CPUs always led to greater speedups on tested systems, up to 1272 * all the nodes' CPUs. Use all since the system is otherwise idle 1273 * now. 1274 */ 1275 return max_t(int, cpumask_weight(node_cpumask), 1); 1276 } 1277 #endif 1278 1279 int kernel_set_to_readonly; 1280 1281 void mark_rodata_ro(void) 1282 { 1283 unsigned long start = PFN_ALIGN(_text); 1284 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1285 unsigned long end = (unsigned long)__end_rodata_hpage_align; 1286 unsigned long text_end = PFN_ALIGN(_etext); 1287 unsigned long rodata_end = PFN_ALIGN(__end_rodata); 1288 unsigned long all_end; 1289 1290 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1291 (end - start) >> 10); 1292 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1293 1294 kernel_set_to_readonly = 1; 1295 1296 /* 1297 * The rodata/data/bss/brk section (but not the kernel text!) 1298 * should also be not-executable. 1299 * 1300 * We align all_end to PMD_SIZE because the existing mapping 1301 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1302 * split the PMD and the reminder between _brk_end and the end 1303 * of the PMD will remain mapped executable. 1304 * 1305 * Any PMD which was setup after the one which covers _brk_end 1306 * has been zapped already via cleanup_highmem(). 1307 */ 1308 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1309 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1310 1311 set_ftrace_ops_ro(); 1312 1313 #ifdef CONFIG_CPA_DEBUG 1314 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1315 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1316 1317 printk(KERN_INFO "Testing CPA: again\n"); 1318 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1319 #endif 1320 1321 free_kernel_image_pages("unused kernel image (text/rodata gap)", 1322 (void *)text_end, (void *)rodata_start); 1323 free_kernel_image_pages("unused kernel image (rodata/data gap)", 1324 (void *)rodata_end, (void *)_sdata); 1325 1326 debug_checkwx(); 1327 } 1328 1329 int kern_addr_valid(unsigned long addr) 1330 { 1331 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1332 pgd_t *pgd; 1333 p4d_t *p4d; 1334 pud_t *pud; 1335 pmd_t *pmd; 1336 pte_t *pte; 1337 1338 if (above != 0 && above != -1UL) 1339 return 0; 1340 1341 pgd = pgd_offset_k(addr); 1342 if (pgd_none(*pgd)) 1343 return 0; 1344 1345 p4d = p4d_offset(pgd, addr); 1346 if (p4d_none(*p4d)) 1347 return 0; 1348 1349 pud = pud_offset(p4d, addr); 1350 if (pud_none(*pud)) 1351 return 0; 1352 1353 if (pud_large(*pud)) 1354 return pfn_valid(pud_pfn(*pud)); 1355 1356 pmd = pmd_offset(pud, addr); 1357 if (pmd_none(*pmd)) 1358 return 0; 1359 1360 if (pmd_large(*pmd)) 1361 return pfn_valid(pmd_pfn(*pmd)); 1362 1363 pte = pte_offset_kernel(pmd, addr); 1364 if (pte_none(*pte)) 1365 return 0; 1366 1367 return pfn_valid(pte_pfn(*pte)); 1368 } 1369 1370 /* 1371 * Block size is the minimum amount of memory which can be hotplugged or 1372 * hotremoved. It must be power of two and must be equal or larger than 1373 * MIN_MEMORY_BLOCK_SIZE. 1374 */ 1375 #define MAX_BLOCK_SIZE (2UL << 30) 1376 1377 /* Amount of ram needed to start using large blocks */ 1378 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) 1379 1380 /* Adjustable memory block size */ 1381 static unsigned long set_memory_block_size; 1382 int __init set_memory_block_size_order(unsigned int order) 1383 { 1384 unsigned long size = 1UL << order; 1385 1386 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) 1387 return -EINVAL; 1388 1389 set_memory_block_size = size; 1390 return 0; 1391 } 1392 1393 static unsigned long probe_memory_block_size(void) 1394 { 1395 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; 1396 unsigned long bz; 1397 1398 /* If memory block size has been set, then use it */ 1399 bz = set_memory_block_size; 1400 if (bz) 1401 goto done; 1402 1403 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ 1404 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { 1405 bz = MIN_MEMORY_BLOCK_SIZE; 1406 goto done; 1407 } 1408 1409 /* Find the largest allowed block size that aligns to memory end */ 1410 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { 1411 if (IS_ALIGNED(boot_mem_end, bz)) 1412 break; 1413 } 1414 done: 1415 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); 1416 1417 return bz; 1418 } 1419 1420 static unsigned long memory_block_size_probed; 1421 unsigned long memory_block_size_bytes(void) 1422 { 1423 if (!memory_block_size_probed) 1424 memory_block_size_probed = probe_memory_block_size(); 1425 1426 return memory_block_size_probed; 1427 } 1428 1429 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1430 /* 1431 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1432 */ 1433 static long __meminitdata addr_start, addr_end; 1434 static void __meminitdata *p_start, *p_end; 1435 static int __meminitdata node_start; 1436 1437 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1438 unsigned long end, int node, struct vmem_altmap *altmap) 1439 { 1440 unsigned long addr; 1441 unsigned long next; 1442 pgd_t *pgd; 1443 p4d_t *p4d; 1444 pud_t *pud; 1445 pmd_t *pmd; 1446 1447 for (addr = start; addr < end; addr = next) { 1448 next = pmd_addr_end(addr, end); 1449 1450 pgd = vmemmap_pgd_populate(addr, node); 1451 if (!pgd) 1452 return -ENOMEM; 1453 1454 p4d = vmemmap_p4d_populate(pgd, addr, node); 1455 if (!p4d) 1456 return -ENOMEM; 1457 1458 pud = vmemmap_pud_populate(p4d, addr, node); 1459 if (!pud) 1460 return -ENOMEM; 1461 1462 pmd = pmd_offset(pud, addr); 1463 if (pmd_none(*pmd)) { 1464 void *p; 1465 1466 if (altmap) 1467 p = altmap_alloc_block_buf(PMD_SIZE, altmap); 1468 else 1469 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1470 if (p) { 1471 pte_t entry; 1472 1473 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1474 PAGE_KERNEL_LARGE); 1475 set_pmd(pmd, __pmd(pte_val(entry))); 1476 1477 /* check to see if we have contiguous blocks */ 1478 if (p_end != p || node_start != node) { 1479 if (p_start) 1480 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1481 addr_start, addr_end-1, p_start, p_end-1, node_start); 1482 addr_start = addr; 1483 node_start = node; 1484 p_start = p; 1485 } 1486 1487 addr_end = addr + PMD_SIZE; 1488 p_end = p + PMD_SIZE; 1489 continue; 1490 } else if (altmap) 1491 return -ENOMEM; /* no fallback */ 1492 } else if (pmd_large(*pmd)) { 1493 vmemmap_verify((pte_t *)pmd, node, addr, next); 1494 continue; 1495 } 1496 if (vmemmap_populate_basepages(addr, next, node)) 1497 return -ENOMEM; 1498 } 1499 return 0; 1500 } 1501 1502 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1503 struct vmem_altmap *altmap) 1504 { 1505 int err; 1506 1507 if (end - start < PAGES_PER_SECTION * sizeof(struct page)) 1508 err = vmemmap_populate_basepages(start, end, node); 1509 else if (boot_cpu_has(X86_FEATURE_PSE)) 1510 err = vmemmap_populate_hugepages(start, end, node, altmap); 1511 else if (altmap) { 1512 pr_err_once("%s: no cpu support for altmap allocations\n", 1513 __func__); 1514 err = -ENOMEM; 1515 } else 1516 err = vmemmap_populate_basepages(start, end, node); 1517 if (!err) 1518 sync_global_pgds(start, end - 1); 1519 return err; 1520 } 1521 1522 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1523 void register_page_bootmem_memmap(unsigned long section_nr, 1524 struct page *start_page, unsigned long nr_pages) 1525 { 1526 unsigned long addr = (unsigned long)start_page; 1527 unsigned long end = (unsigned long)(start_page + nr_pages); 1528 unsigned long next; 1529 pgd_t *pgd; 1530 p4d_t *p4d; 1531 pud_t *pud; 1532 pmd_t *pmd; 1533 unsigned int nr_pmd_pages; 1534 struct page *page; 1535 1536 for (; addr < end; addr = next) { 1537 pte_t *pte = NULL; 1538 1539 pgd = pgd_offset_k(addr); 1540 if (pgd_none(*pgd)) { 1541 next = (addr + PAGE_SIZE) & PAGE_MASK; 1542 continue; 1543 } 1544 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1545 1546 p4d = p4d_offset(pgd, addr); 1547 if (p4d_none(*p4d)) { 1548 next = (addr + PAGE_SIZE) & PAGE_MASK; 1549 continue; 1550 } 1551 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); 1552 1553 pud = pud_offset(p4d, addr); 1554 if (pud_none(*pud)) { 1555 next = (addr + PAGE_SIZE) & PAGE_MASK; 1556 continue; 1557 } 1558 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1559 1560 if (!boot_cpu_has(X86_FEATURE_PSE)) { 1561 next = (addr + PAGE_SIZE) & PAGE_MASK; 1562 pmd = pmd_offset(pud, addr); 1563 if (pmd_none(*pmd)) 1564 continue; 1565 get_page_bootmem(section_nr, pmd_page(*pmd), 1566 MIX_SECTION_INFO); 1567 1568 pte = pte_offset_kernel(pmd, addr); 1569 if (pte_none(*pte)) 1570 continue; 1571 get_page_bootmem(section_nr, pte_page(*pte), 1572 SECTION_INFO); 1573 } else { 1574 next = pmd_addr_end(addr, end); 1575 1576 pmd = pmd_offset(pud, addr); 1577 if (pmd_none(*pmd)) 1578 continue; 1579 1580 nr_pmd_pages = 1 << get_order(PMD_SIZE); 1581 page = pmd_page(*pmd); 1582 while (nr_pmd_pages--) 1583 get_page_bootmem(section_nr, page++, 1584 SECTION_INFO); 1585 } 1586 } 1587 } 1588 #endif 1589 1590 void __meminit vmemmap_populate_print_last(void) 1591 { 1592 if (p_start) { 1593 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1594 addr_start, addr_end-1, p_start, p_end-1, node_start); 1595 p_start = NULL; 1596 p_end = NULL; 1597 node_start = 0; 1598 } 1599 } 1600 #endif 1601