xref: /openbmc/linux/arch/x86/mm/init.c (revision ff2c8252)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 #include <asm/hypervisor.h>
22 
23 /*
24  * We need to define the tracepoints somewhere, and tlb.c
25  * is only compied when SMP=y.
26  */
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/tlb.h>
29 
30 #include "mm_internal.h"
31 
32 /*
33  * Tables translating between page_cache_type_t and pte encoding.
34  *
35  * The default values are defined statically as minimal supported mode;
36  * WC and WT fall back to UC-.  pat_init() updates these values to support
37  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
38  * for the details.  Note, __early_ioremap() used during early boot-time
39  * takes pgprot_t (pte encoding) and does not use these tables.
40  *
41  *   Index into __cachemode2pte_tbl[] is the cachemode.
42  *
43  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
44  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
45  */
46 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
47 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
48 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
49 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
50 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
51 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
52 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
53 };
54 EXPORT_SYMBOL(__cachemode2pte_tbl);
55 
56 uint8_t __pte2cachemode_tbl[8] = {
57 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
58 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
59 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
60 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
61 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
62 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
63 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
64 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
65 };
66 EXPORT_SYMBOL(__pte2cachemode_tbl);
67 
68 static unsigned long __initdata pgt_buf_start;
69 static unsigned long __initdata pgt_buf_end;
70 static unsigned long __initdata pgt_buf_top;
71 
72 static unsigned long min_pfn_mapped;
73 
74 static bool __initdata can_use_brk_pgt = true;
75 
76 /*
77  * Pages returned are already directly mapped.
78  *
79  * Changing that is likely to break Xen, see commit:
80  *
81  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
82  *
83  * for detailed information.
84  */
85 __ref void *alloc_low_pages(unsigned int num)
86 {
87 	unsigned long pfn;
88 	int i;
89 
90 	if (after_bootmem) {
91 		unsigned int order;
92 
93 		order = get_order((unsigned long)num << PAGE_SHIFT);
94 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
95 						__GFP_ZERO, order);
96 	}
97 
98 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
99 		unsigned long ret;
100 		if (min_pfn_mapped >= max_pfn_mapped)
101 			panic("alloc_low_pages: ran out of memory");
102 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
103 					max_pfn_mapped << PAGE_SHIFT,
104 					PAGE_SIZE * num , PAGE_SIZE);
105 		if (!ret)
106 			panic("alloc_low_pages: can not alloc memory");
107 		memblock_reserve(ret, PAGE_SIZE * num);
108 		pfn = ret >> PAGE_SHIFT;
109 	} else {
110 		pfn = pgt_buf_end;
111 		pgt_buf_end += num;
112 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
113 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
114 	}
115 
116 	for (i = 0; i < num; i++) {
117 		void *adr;
118 
119 		adr = __va((pfn + i) << PAGE_SHIFT);
120 		clear_page(adr);
121 	}
122 
123 	return __va(pfn << PAGE_SHIFT);
124 }
125 
126 /*
127  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
128  * With KASLR memory randomization, depending on the machine e820 memory
129  * and the PUD alignment. We may need twice more pages when KASLR memory
130  * randomization is enabled.
131  */
132 #ifndef CONFIG_RANDOMIZE_MEMORY
133 #define INIT_PGD_PAGE_COUNT      6
134 #else
135 #define INIT_PGD_PAGE_COUNT      12
136 #endif
137 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
138 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
139 void  __init early_alloc_pgt_buf(void)
140 {
141 	unsigned long tables = INIT_PGT_BUF_SIZE;
142 	phys_addr_t base;
143 
144 	base = __pa(extend_brk(tables, PAGE_SIZE));
145 
146 	pgt_buf_start = base >> PAGE_SHIFT;
147 	pgt_buf_end = pgt_buf_start;
148 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
149 }
150 
151 int after_bootmem;
152 
153 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
154 
155 struct map_range {
156 	unsigned long start;
157 	unsigned long end;
158 	unsigned page_size_mask;
159 };
160 
161 static int page_size_mask;
162 
163 static void __init probe_page_size_mask(void)
164 {
165 	/*
166 	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
167 	 * use small pages.
168 	 * This will simplify cpa(), which otherwise needs to support splitting
169 	 * large pages into small in interrupt context, etc.
170 	 */
171 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
172 		page_size_mask |= 1 << PG_LEVEL_2M;
173 	else
174 		direct_gbpages = 0;
175 
176 	/* Enable PSE if available */
177 	if (boot_cpu_has(X86_FEATURE_PSE))
178 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179 
180 	/* Enable PGE if available */
181 	if (boot_cpu_has(X86_FEATURE_PGE)) {
182 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
183 		__supported_pte_mask |= _PAGE_GLOBAL;
184 	} else
185 		__supported_pte_mask &= ~_PAGE_GLOBAL;
186 
187 	/* Enable 1 GB linear kernel mappings if available: */
188 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
189 		printk(KERN_INFO "Using GB pages for direct mapping\n");
190 		page_size_mask |= 1 << PG_LEVEL_1G;
191 	} else {
192 		direct_gbpages = 0;
193 	}
194 }
195 
196 #ifdef CONFIG_X86_32
197 #define NR_RANGE_MR 3
198 #else /* CONFIG_X86_64 */
199 #define NR_RANGE_MR 5
200 #endif
201 
202 static int __meminit save_mr(struct map_range *mr, int nr_range,
203 			     unsigned long start_pfn, unsigned long end_pfn,
204 			     unsigned long page_size_mask)
205 {
206 	if (start_pfn < end_pfn) {
207 		if (nr_range >= NR_RANGE_MR)
208 			panic("run out of range for init_memory_mapping\n");
209 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
210 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
211 		mr[nr_range].page_size_mask = page_size_mask;
212 		nr_range++;
213 	}
214 
215 	return nr_range;
216 }
217 
218 /*
219  * adjust the page_size_mask for small range to go with
220  *	big page size instead small one if nearby are ram too.
221  */
222 static void __ref adjust_range_page_size_mask(struct map_range *mr,
223 							 int nr_range)
224 {
225 	int i;
226 
227 	for (i = 0; i < nr_range; i++) {
228 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
229 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
230 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
231 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
232 
233 #ifdef CONFIG_X86_32
234 			if ((end >> PAGE_SHIFT) > max_low_pfn)
235 				continue;
236 #endif
237 
238 			if (memblock_is_region_memory(start, end - start))
239 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
240 		}
241 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
242 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
243 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
244 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
245 
246 			if (memblock_is_region_memory(start, end - start))
247 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
248 		}
249 	}
250 }
251 
252 static const char *page_size_string(struct map_range *mr)
253 {
254 	static const char str_1g[] = "1G";
255 	static const char str_2m[] = "2M";
256 	static const char str_4m[] = "4M";
257 	static const char str_4k[] = "4k";
258 
259 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
260 		return str_1g;
261 	/*
262 	 * 32-bit without PAE has a 4M large page size.
263 	 * PG_LEVEL_2M is misnamed, but we can at least
264 	 * print out the right size in the string.
265 	 */
266 	if (IS_ENABLED(CONFIG_X86_32) &&
267 	    !IS_ENABLED(CONFIG_X86_PAE) &&
268 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
269 		return str_4m;
270 
271 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
272 		return str_2m;
273 
274 	return str_4k;
275 }
276 
277 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
278 				     unsigned long start,
279 				     unsigned long end)
280 {
281 	unsigned long start_pfn, end_pfn, limit_pfn;
282 	unsigned long pfn;
283 	int i;
284 
285 	limit_pfn = PFN_DOWN(end);
286 
287 	/* head if not big page alignment ? */
288 	pfn = start_pfn = PFN_DOWN(start);
289 #ifdef CONFIG_X86_32
290 	/*
291 	 * Don't use a large page for the first 2/4MB of memory
292 	 * because there are often fixed size MTRRs in there
293 	 * and overlapping MTRRs into large pages can cause
294 	 * slowdowns.
295 	 */
296 	if (pfn == 0)
297 		end_pfn = PFN_DOWN(PMD_SIZE);
298 	else
299 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
300 #else /* CONFIG_X86_64 */
301 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
302 #endif
303 	if (end_pfn > limit_pfn)
304 		end_pfn = limit_pfn;
305 	if (start_pfn < end_pfn) {
306 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
307 		pfn = end_pfn;
308 	}
309 
310 	/* big page (2M) range */
311 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
312 #ifdef CONFIG_X86_32
313 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
314 #else /* CONFIG_X86_64 */
315 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
316 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
317 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
318 #endif
319 
320 	if (start_pfn < end_pfn) {
321 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
322 				page_size_mask & (1<<PG_LEVEL_2M));
323 		pfn = end_pfn;
324 	}
325 
326 #ifdef CONFIG_X86_64
327 	/* big page (1G) range */
328 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
329 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
330 	if (start_pfn < end_pfn) {
331 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
332 				page_size_mask &
333 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
334 		pfn = end_pfn;
335 	}
336 
337 	/* tail is not big page (1G) alignment */
338 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
339 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
340 	if (start_pfn < end_pfn) {
341 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
342 				page_size_mask & (1<<PG_LEVEL_2M));
343 		pfn = end_pfn;
344 	}
345 #endif
346 
347 	/* tail is not big page (2M) alignment */
348 	start_pfn = pfn;
349 	end_pfn = limit_pfn;
350 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
351 
352 	if (!after_bootmem)
353 		adjust_range_page_size_mask(mr, nr_range);
354 
355 	/* try to merge same page size and continuous */
356 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
357 		unsigned long old_start;
358 		if (mr[i].end != mr[i+1].start ||
359 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
360 			continue;
361 		/* move it */
362 		old_start = mr[i].start;
363 		memmove(&mr[i], &mr[i+1],
364 			(nr_range - 1 - i) * sizeof(struct map_range));
365 		mr[i--].start = old_start;
366 		nr_range--;
367 	}
368 
369 	for (i = 0; i < nr_range; i++)
370 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
371 				mr[i].start, mr[i].end - 1,
372 				page_size_string(&mr[i]));
373 
374 	return nr_range;
375 }
376 
377 struct range pfn_mapped[E820_MAX_ENTRIES];
378 int nr_pfn_mapped;
379 
380 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
381 {
382 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
383 					     nr_pfn_mapped, start_pfn, end_pfn);
384 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
385 
386 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
387 
388 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
389 		max_low_pfn_mapped = max(max_low_pfn_mapped,
390 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
391 }
392 
393 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
394 {
395 	int i;
396 
397 	for (i = 0; i < nr_pfn_mapped; i++)
398 		if ((start_pfn >= pfn_mapped[i].start) &&
399 		    (end_pfn <= pfn_mapped[i].end))
400 			return true;
401 
402 	return false;
403 }
404 
405 /*
406  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
407  * This runs before bootmem is initialized and gets pages directly from
408  * the physical memory. To access them they are temporarily mapped.
409  */
410 unsigned long __ref init_memory_mapping(unsigned long start,
411 					       unsigned long end)
412 {
413 	struct map_range mr[NR_RANGE_MR];
414 	unsigned long ret = 0;
415 	int nr_range, i;
416 
417 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
418 	       start, end - 1);
419 
420 	memset(mr, 0, sizeof(mr));
421 	nr_range = split_mem_range(mr, 0, start, end);
422 
423 	for (i = 0; i < nr_range; i++)
424 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
425 						   mr[i].page_size_mask);
426 
427 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
428 
429 	return ret >> PAGE_SHIFT;
430 }
431 
432 /*
433  * We need to iterate through the E820 memory map and create direct mappings
434  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
435  * create direct mappings for all pfns from [0 to max_low_pfn) and
436  * [4GB to max_pfn) because of possible memory holes in high addresses
437  * that cannot be marked as UC by fixed/variable range MTRRs.
438  * Depending on the alignment of E820 ranges, this may possibly result
439  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
440  *
441  * init_mem_mapping() calls init_range_memory_mapping() with big range.
442  * That range would have hole in the middle or ends, and only ram parts
443  * will be mapped in init_range_memory_mapping().
444  */
445 static unsigned long __init init_range_memory_mapping(
446 					   unsigned long r_start,
447 					   unsigned long r_end)
448 {
449 	unsigned long start_pfn, end_pfn;
450 	unsigned long mapped_ram_size = 0;
451 	int i;
452 
453 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
454 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
455 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
456 		if (start >= end)
457 			continue;
458 
459 		/*
460 		 * if it is overlapping with brk pgt, we need to
461 		 * alloc pgt buf from memblock instead.
462 		 */
463 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
464 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
465 		init_memory_mapping(start, end);
466 		mapped_ram_size += end - start;
467 		can_use_brk_pgt = true;
468 	}
469 
470 	return mapped_ram_size;
471 }
472 
473 static unsigned long __init get_new_step_size(unsigned long step_size)
474 {
475 	/*
476 	 * Initial mapped size is PMD_SIZE (2M).
477 	 * We can not set step_size to be PUD_SIZE (1G) yet.
478 	 * In worse case, when we cross the 1G boundary, and
479 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
480 	 * to map 1G range with PTE. Hence we use one less than the
481 	 * difference of page table level shifts.
482 	 *
483 	 * Don't need to worry about overflow in the top-down case, on 32bit,
484 	 * when step_size is 0, round_down() returns 0 for start, and that
485 	 * turns it into 0x100000000ULL.
486 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
487 	 * needs to be taken into consideration by the code below.
488 	 */
489 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
490 }
491 
492 /**
493  * memory_map_top_down - Map [map_start, map_end) top down
494  * @map_start: start address of the target memory range
495  * @map_end: end address of the target memory range
496  *
497  * This function will setup direct mapping for memory range
498  * [map_start, map_end) in top-down. That said, the page tables
499  * will be allocated at the end of the memory, and we map the
500  * memory in top-down.
501  */
502 static void __init memory_map_top_down(unsigned long map_start,
503 				       unsigned long map_end)
504 {
505 	unsigned long real_end, start, last_start;
506 	unsigned long step_size;
507 	unsigned long addr;
508 	unsigned long mapped_ram_size = 0;
509 
510 	/* xen has big range in reserved near end of ram, skip it at first.*/
511 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
512 	real_end = addr + PMD_SIZE;
513 
514 	/* step_size need to be small so pgt_buf from BRK could cover it */
515 	step_size = PMD_SIZE;
516 	max_pfn_mapped = 0; /* will get exact value next */
517 	min_pfn_mapped = real_end >> PAGE_SHIFT;
518 	last_start = start = real_end;
519 
520 	/*
521 	 * We start from the top (end of memory) and go to the bottom.
522 	 * The memblock_find_in_range() gets us a block of RAM from the
523 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
524 	 * for page table.
525 	 */
526 	while (last_start > map_start) {
527 		if (last_start > step_size) {
528 			start = round_down(last_start - 1, step_size);
529 			if (start < map_start)
530 				start = map_start;
531 		} else
532 			start = map_start;
533 		mapped_ram_size += init_range_memory_mapping(start,
534 							last_start);
535 		last_start = start;
536 		min_pfn_mapped = last_start >> PAGE_SHIFT;
537 		if (mapped_ram_size >= step_size)
538 			step_size = get_new_step_size(step_size);
539 	}
540 
541 	if (real_end < map_end)
542 		init_range_memory_mapping(real_end, map_end);
543 }
544 
545 /**
546  * memory_map_bottom_up - Map [map_start, map_end) bottom up
547  * @map_start: start address of the target memory range
548  * @map_end: end address of the target memory range
549  *
550  * This function will setup direct mapping for memory range
551  * [map_start, map_end) in bottom-up. Since we have limited the
552  * bottom-up allocation above the kernel, the page tables will
553  * be allocated just above the kernel and we map the memory
554  * in [map_start, map_end) in bottom-up.
555  */
556 static void __init memory_map_bottom_up(unsigned long map_start,
557 					unsigned long map_end)
558 {
559 	unsigned long next, start;
560 	unsigned long mapped_ram_size = 0;
561 	/* step_size need to be small so pgt_buf from BRK could cover it */
562 	unsigned long step_size = PMD_SIZE;
563 
564 	start = map_start;
565 	min_pfn_mapped = start >> PAGE_SHIFT;
566 
567 	/*
568 	 * We start from the bottom (@map_start) and go to the top (@map_end).
569 	 * The memblock_find_in_range() gets us a block of RAM from the
570 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
571 	 * for page table.
572 	 */
573 	while (start < map_end) {
574 		if (step_size && map_end - start > step_size) {
575 			next = round_up(start + 1, step_size);
576 			if (next > map_end)
577 				next = map_end;
578 		} else {
579 			next = map_end;
580 		}
581 
582 		mapped_ram_size += init_range_memory_mapping(start, next);
583 		start = next;
584 
585 		if (mapped_ram_size >= step_size)
586 			step_size = get_new_step_size(step_size);
587 	}
588 }
589 
590 void __init init_mem_mapping(void)
591 {
592 	unsigned long end;
593 
594 	probe_page_size_mask();
595 
596 #ifdef CONFIG_X86_64
597 	end = max_pfn << PAGE_SHIFT;
598 #else
599 	end = max_low_pfn << PAGE_SHIFT;
600 #endif
601 
602 	/* the ISA range is always mapped regardless of memory holes */
603 	init_memory_mapping(0, ISA_END_ADDRESS);
604 
605 	/* Init the trampoline, possibly with KASLR memory offset */
606 	init_trampoline();
607 
608 	/*
609 	 * If the allocation is in bottom-up direction, we setup direct mapping
610 	 * in bottom-up, otherwise we setup direct mapping in top-down.
611 	 */
612 	if (memblock_bottom_up()) {
613 		unsigned long kernel_end = __pa_symbol(_end);
614 
615 		/*
616 		 * we need two separate calls here. This is because we want to
617 		 * allocate page tables above the kernel. So we first map
618 		 * [kernel_end, end) to make memory above the kernel be mapped
619 		 * as soon as possible. And then use page tables allocated above
620 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
621 		 */
622 		memory_map_bottom_up(kernel_end, end);
623 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
624 	} else {
625 		memory_map_top_down(ISA_END_ADDRESS, end);
626 	}
627 
628 #ifdef CONFIG_X86_64
629 	if (max_pfn > max_low_pfn) {
630 		/* can we preseve max_low_pfn ?*/
631 		max_low_pfn = max_pfn;
632 	}
633 #else
634 	early_ioremap_page_table_range_init();
635 #endif
636 
637 	load_cr3(swapper_pg_dir);
638 	__flush_tlb_all();
639 
640 	hypervisor_init_mem_mapping();
641 
642 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
643 }
644 
645 /*
646  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
647  * is valid. The argument is a physical page number.
648  *
649  * On x86, access has to be given to the first megabyte of RAM because that
650  * area traditionally contains BIOS code and data regions used by X, dosemu,
651  * and similar apps. Since they map the entire memory range, the whole range
652  * must be allowed (for mapping), but any areas that would otherwise be
653  * disallowed are flagged as being "zero filled" instead of rejected.
654  * Access has to be given to non-kernel-ram areas as well, these contain the
655  * PCI mmio resources as well as potential bios/acpi data regions.
656  */
657 int devmem_is_allowed(unsigned long pagenr)
658 {
659 	if (page_is_ram(pagenr)) {
660 		/*
661 		 * For disallowed memory regions in the low 1MB range,
662 		 * request that the page be shown as all zeros.
663 		 */
664 		if (pagenr < 256)
665 			return 2;
666 
667 		return 0;
668 	}
669 
670 	/*
671 	 * This must follow RAM test, since System RAM is considered a
672 	 * restricted resource under CONFIG_STRICT_IOMEM.
673 	 */
674 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
675 		/* Low 1MB bypasses iomem restrictions. */
676 		if (pagenr < 256)
677 			return 1;
678 
679 		return 0;
680 	}
681 
682 	return 1;
683 }
684 
685 void free_init_pages(char *what, unsigned long begin, unsigned long end)
686 {
687 	unsigned long begin_aligned, end_aligned;
688 
689 	/* Make sure boundaries are page aligned */
690 	begin_aligned = PAGE_ALIGN(begin);
691 	end_aligned   = end & PAGE_MASK;
692 
693 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
694 		begin = begin_aligned;
695 		end   = end_aligned;
696 	}
697 
698 	if (begin >= end)
699 		return;
700 
701 	/*
702 	 * If debugging page accesses then do not free this memory but
703 	 * mark them not present - any buggy init-section access will
704 	 * create a kernel page fault:
705 	 */
706 	if (debug_pagealloc_enabled()) {
707 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
708 			begin, end - 1);
709 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
710 	} else {
711 		/*
712 		 * We just marked the kernel text read only above, now that
713 		 * we are going to free part of that, we need to make that
714 		 * writeable and non-executable first.
715 		 */
716 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
717 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
718 
719 		free_reserved_area((void *)begin, (void *)end,
720 				   POISON_FREE_INITMEM, what);
721 	}
722 }
723 
724 void __ref free_initmem(void)
725 {
726 	e820__reallocate_tables();
727 
728 	free_init_pages("unused kernel",
729 			(unsigned long)(&__init_begin),
730 			(unsigned long)(&__init_end));
731 }
732 
733 #ifdef CONFIG_BLK_DEV_INITRD
734 void __init free_initrd_mem(unsigned long start, unsigned long end)
735 {
736 	/*
737 	 * end could be not aligned, and We can not align that,
738 	 * decompresser could be confused by aligned initrd_end
739 	 * We already reserve the end partial page before in
740 	 *   - i386_start_kernel()
741 	 *   - x86_64_start_kernel()
742 	 *   - relocate_initrd()
743 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
744 	 */
745 	free_init_pages("initrd", start, PAGE_ALIGN(end));
746 }
747 #endif
748 
749 /*
750  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
751  * and pass it to the MM layer - to help it set zone watermarks more
752  * accurately.
753  *
754  * Done on 64-bit systems only for the time being, although 32-bit systems
755  * might benefit from this as well.
756  */
757 void __init memblock_find_dma_reserve(void)
758 {
759 #ifdef CONFIG_X86_64
760 	u64 nr_pages = 0, nr_free_pages = 0;
761 	unsigned long start_pfn, end_pfn;
762 	phys_addr_t start_addr, end_addr;
763 	int i;
764 	u64 u;
765 
766 	/*
767 	 * Iterate over all memory ranges (free and reserved ones alike),
768 	 * to calculate the total number of pages in the first 16 MB of RAM:
769 	 */
770 	nr_pages = 0;
771 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
772 		start_pfn = min(start_pfn, MAX_DMA_PFN);
773 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
774 
775 		nr_pages += end_pfn - start_pfn;
776 	}
777 
778 	/*
779 	 * Iterate over free memory ranges to calculate the number of free
780 	 * pages in the DMA zone, while not counting potential partial
781 	 * pages at the beginning or the end of the range:
782 	 */
783 	nr_free_pages = 0;
784 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
785 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
786 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
787 
788 		if (start_pfn < end_pfn)
789 			nr_free_pages += end_pfn - start_pfn;
790 	}
791 
792 	set_dma_reserve(nr_pages - nr_free_pages);
793 #endif
794 }
795 
796 void __init zone_sizes_init(void)
797 {
798 	unsigned long max_zone_pfns[MAX_NR_ZONES];
799 
800 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
801 
802 #ifdef CONFIG_ZONE_DMA
803 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
804 #endif
805 #ifdef CONFIG_ZONE_DMA32
806 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
807 #endif
808 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
809 #ifdef CONFIG_HIGHMEM
810 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
811 #endif
812 
813 	free_area_init_nodes(max_zone_pfns);
814 }
815 
816 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
817 	.loaded_mm = &init_mm,
818 	.state = 0,
819 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
820 };
821 EXPORT_SYMBOL_GPL(cpu_tlbstate);
822 
823 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
824 {
825 	/* entry 0 MUST be WB (hardwired to speed up translations) */
826 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
827 
828 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
829 	__pte2cachemode_tbl[entry] = cache;
830 }
831