1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/swapfile.h> 7 #include <linux/swapops.h> 8 #include <linux/kmemleak.h> 9 #include <linux/sched/task.h> 10 11 #include <asm/set_memory.h> 12 #include <asm/e820/api.h> 13 #include <asm/init.h> 14 #include <asm/page.h> 15 #include <asm/page_types.h> 16 #include <asm/sections.h> 17 #include <asm/setup.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include <asm/proto.h> 21 #include <asm/dma.h> /* for MAX_DMA_PFN */ 22 #include <asm/microcode.h> 23 #include <asm/kaslr.h> 24 #include <asm/hypervisor.h> 25 #include <asm/cpufeature.h> 26 #include <asm/pti.h> 27 #include <asm/text-patching.h> 28 #include <asm/memtype.h> 29 30 /* 31 * We need to define the tracepoints somewhere, and tlb.c 32 * is only compied when SMP=y. 33 */ 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/tlb.h> 36 37 #include "mm_internal.h" 38 39 /* 40 * Tables translating between page_cache_type_t and pte encoding. 41 * 42 * The default values are defined statically as minimal supported mode; 43 * WC and WT fall back to UC-. pat_init() updates these values to support 44 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 45 * for the details. Note, __early_ioremap() used during early boot-time 46 * takes pgprot_t (pte encoding) and does not use these tables. 47 * 48 * Index into __cachemode2pte_tbl[] is the cachemode. 49 * 50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 52 */ 53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 60 }; 61 62 unsigned long cachemode2protval(enum page_cache_mode pcm) 63 { 64 if (likely(pcm == 0)) 65 return 0; 66 return __cachemode2pte_tbl[pcm]; 67 } 68 EXPORT_SYMBOL(cachemode2protval); 69 70 static uint8_t __pte2cachemode_tbl[8] = { 71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 79 }; 80 81 /* Check that the write-protect PAT entry is set for write-protect */ 82 bool x86_has_pat_wp(void) 83 { 84 return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP; 85 } 86 87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) 88 { 89 unsigned long masked; 90 91 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; 92 if (likely(masked == 0)) 93 return 0; 94 return __pte2cachemode_tbl[__pte2cm_idx(masked)]; 95 } 96 97 static unsigned long __initdata pgt_buf_start; 98 static unsigned long __initdata pgt_buf_end; 99 static unsigned long __initdata pgt_buf_top; 100 101 static unsigned long min_pfn_mapped; 102 103 static bool __initdata can_use_brk_pgt = true; 104 105 /* 106 * Pages returned are already directly mapped. 107 * 108 * Changing that is likely to break Xen, see commit: 109 * 110 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 111 * 112 * for detailed information. 113 */ 114 __ref void *alloc_low_pages(unsigned int num) 115 { 116 unsigned long pfn; 117 int i; 118 119 if (after_bootmem) { 120 unsigned int order; 121 122 order = get_order((unsigned long)num << PAGE_SHIFT); 123 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 124 } 125 126 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 127 unsigned long ret = 0; 128 129 if (min_pfn_mapped < max_pfn_mapped) { 130 ret = memblock_find_in_range( 131 min_pfn_mapped << PAGE_SHIFT, 132 max_pfn_mapped << PAGE_SHIFT, 133 PAGE_SIZE * num , PAGE_SIZE); 134 } 135 if (ret) 136 memblock_reserve(ret, PAGE_SIZE * num); 137 else if (can_use_brk_pgt) 138 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 139 140 if (!ret) 141 panic("alloc_low_pages: can not alloc memory"); 142 143 pfn = ret >> PAGE_SHIFT; 144 } else { 145 pfn = pgt_buf_end; 146 pgt_buf_end += num; 147 } 148 149 for (i = 0; i < num; i++) { 150 void *adr; 151 152 adr = __va((pfn + i) << PAGE_SHIFT); 153 clear_page(adr); 154 } 155 156 return __va(pfn << PAGE_SHIFT); 157 } 158 159 /* 160 * By default need to be able to allocate page tables below PGD firstly for 161 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. 162 * With KASLR memory randomization, depending on the machine e820 memory and the 163 * PUD alignment, twice that many pages may be needed when KASLR memory 164 * randomization is enabled. 165 */ 166 167 #ifndef CONFIG_X86_5LEVEL 168 #define INIT_PGD_PAGE_TABLES 3 169 #else 170 #define INIT_PGD_PAGE_TABLES 4 171 #endif 172 173 #ifndef CONFIG_RANDOMIZE_MEMORY 174 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) 175 #else 176 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) 177 #endif 178 179 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 180 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 181 void __init early_alloc_pgt_buf(void) 182 { 183 unsigned long tables = INIT_PGT_BUF_SIZE; 184 phys_addr_t base; 185 186 base = __pa(extend_brk(tables, PAGE_SIZE)); 187 188 pgt_buf_start = base >> PAGE_SHIFT; 189 pgt_buf_end = pgt_buf_start; 190 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 191 } 192 193 int after_bootmem; 194 195 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 196 197 struct map_range { 198 unsigned long start; 199 unsigned long end; 200 unsigned page_size_mask; 201 }; 202 203 static int page_size_mask; 204 205 /* 206 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 207 * enable and PPro Global page enable), so that any CPU's that boot 208 * up after us can get the correct flags. Invoked on the boot CPU. 209 */ 210 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 211 { 212 mmu_cr4_features |= mask; 213 if (trampoline_cr4_features) 214 *trampoline_cr4_features = mmu_cr4_features; 215 cr4_set_bits(mask); 216 } 217 218 static void __init probe_page_size_mask(void) 219 { 220 /* 221 * For pagealloc debugging, identity mapping will use small pages. 222 * This will simplify cpa(), which otherwise needs to support splitting 223 * large pages into small in interrupt context, etc. 224 */ 225 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 226 page_size_mask |= 1 << PG_LEVEL_2M; 227 else 228 direct_gbpages = 0; 229 230 /* Enable PSE if available */ 231 if (boot_cpu_has(X86_FEATURE_PSE)) 232 cr4_set_bits_and_update_boot(X86_CR4_PSE); 233 234 /* Enable PGE if available */ 235 __supported_pte_mask &= ~_PAGE_GLOBAL; 236 if (boot_cpu_has(X86_FEATURE_PGE)) { 237 cr4_set_bits_and_update_boot(X86_CR4_PGE); 238 __supported_pte_mask |= _PAGE_GLOBAL; 239 } 240 241 /* By the default is everything supported: */ 242 __default_kernel_pte_mask = __supported_pte_mask; 243 /* Except when with PTI where the kernel is mostly non-Global: */ 244 if (cpu_feature_enabled(X86_FEATURE_PTI)) 245 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 246 247 /* Enable 1 GB linear kernel mappings if available: */ 248 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 249 printk(KERN_INFO "Using GB pages for direct mapping\n"); 250 page_size_mask |= 1 << PG_LEVEL_1G; 251 } else { 252 direct_gbpages = 0; 253 } 254 } 255 256 static void setup_pcid(void) 257 { 258 if (!IS_ENABLED(CONFIG_X86_64)) 259 return; 260 261 if (!boot_cpu_has(X86_FEATURE_PCID)) 262 return; 263 264 if (boot_cpu_has(X86_FEATURE_PGE)) { 265 /* 266 * This can't be cr4_set_bits_and_update_boot() -- the 267 * trampoline code can't handle CR4.PCIDE and it wouldn't 268 * do any good anyway. Despite the name, 269 * cr4_set_bits_and_update_boot() doesn't actually cause 270 * the bits in question to remain set all the way through 271 * the secondary boot asm. 272 * 273 * Instead, we brute-force it and set CR4.PCIDE manually in 274 * start_secondary(). 275 */ 276 cr4_set_bits(X86_CR4_PCIDE); 277 278 /* 279 * INVPCID's single-context modes (2/3) only work if we set 280 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 281 * on systems that have X86_CR4_PCIDE clear, or that have 282 * no INVPCID support at all. 283 */ 284 if (boot_cpu_has(X86_FEATURE_INVPCID)) 285 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 286 } else { 287 /* 288 * flush_tlb_all(), as currently implemented, won't work if 289 * PCID is on but PGE is not. Since that combination 290 * doesn't exist on real hardware, there's no reason to try 291 * to fully support it, but it's polite to avoid corrupting 292 * data if we're on an improperly configured VM. 293 */ 294 setup_clear_cpu_cap(X86_FEATURE_PCID); 295 } 296 } 297 298 #ifdef CONFIG_X86_32 299 #define NR_RANGE_MR 3 300 #else /* CONFIG_X86_64 */ 301 #define NR_RANGE_MR 5 302 #endif 303 304 static int __meminit save_mr(struct map_range *mr, int nr_range, 305 unsigned long start_pfn, unsigned long end_pfn, 306 unsigned long page_size_mask) 307 { 308 if (start_pfn < end_pfn) { 309 if (nr_range >= NR_RANGE_MR) 310 panic("run out of range for init_memory_mapping\n"); 311 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 312 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 313 mr[nr_range].page_size_mask = page_size_mask; 314 nr_range++; 315 } 316 317 return nr_range; 318 } 319 320 /* 321 * adjust the page_size_mask for small range to go with 322 * big page size instead small one if nearby are ram too. 323 */ 324 static void __ref adjust_range_page_size_mask(struct map_range *mr, 325 int nr_range) 326 { 327 int i; 328 329 for (i = 0; i < nr_range; i++) { 330 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 331 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 332 unsigned long start = round_down(mr[i].start, PMD_SIZE); 333 unsigned long end = round_up(mr[i].end, PMD_SIZE); 334 335 #ifdef CONFIG_X86_32 336 if ((end >> PAGE_SHIFT) > max_low_pfn) 337 continue; 338 #endif 339 340 if (memblock_is_region_memory(start, end - start)) 341 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 342 } 343 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 344 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 345 unsigned long start = round_down(mr[i].start, PUD_SIZE); 346 unsigned long end = round_up(mr[i].end, PUD_SIZE); 347 348 if (memblock_is_region_memory(start, end - start)) 349 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 350 } 351 } 352 } 353 354 static const char *page_size_string(struct map_range *mr) 355 { 356 static const char str_1g[] = "1G"; 357 static const char str_2m[] = "2M"; 358 static const char str_4m[] = "4M"; 359 static const char str_4k[] = "4k"; 360 361 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 362 return str_1g; 363 /* 364 * 32-bit without PAE has a 4M large page size. 365 * PG_LEVEL_2M is misnamed, but we can at least 366 * print out the right size in the string. 367 */ 368 if (IS_ENABLED(CONFIG_X86_32) && 369 !IS_ENABLED(CONFIG_X86_PAE) && 370 mr->page_size_mask & (1<<PG_LEVEL_2M)) 371 return str_4m; 372 373 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 374 return str_2m; 375 376 return str_4k; 377 } 378 379 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 380 unsigned long start, 381 unsigned long end) 382 { 383 unsigned long start_pfn, end_pfn, limit_pfn; 384 unsigned long pfn; 385 int i; 386 387 limit_pfn = PFN_DOWN(end); 388 389 /* head if not big page alignment ? */ 390 pfn = start_pfn = PFN_DOWN(start); 391 #ifdef CONFIG_X86_32 392 /* 393 * Don't use a large page for the first 2/4MB of memory 394 * because there are often fixed size MTRRs in there 395 * and overlapping MTRRs into large pages can cause 396 * slowdowns. 397 */ 398 if (pfn == 0) 399 end_pfn = PFN_DOWN(PMD_SIZE); 400 else 401 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 402 #else /* CONFIG_X86_64 */ 403 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 404 #endif 405 if (end_pfn > limit_pfn) 406 end_pfn = limit_pfn; 407 if (start_pfn < end_pfn) { 408 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 409 pfn = end_pfn; 410 } 411 412 /* big page (2M) range */ 413 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 414 #ifdef CONFIG_X86_32 415 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 416 #else /* CONFIG_X86_64 */ 417 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 418 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 419 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 420 #endif 421 422 if (start_pfn < end_pfn) { 423 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 424 page_size_mask & (1<<PG_LEVEL_2M)); 425 pfn = end_pfn; 426 } 427 428 #ifdef CONFIG_X86_64 429 /* big page (1G) range */ 430 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 431 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 432 if (start_pfn < end_pfn) { 433 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 434 page_size_mask & 435 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 436 pfn = end_pfn; 437 } 438 439 /* tail is not big page (1G) alignment */ 440 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 441 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 442 if (start_pfn < end_pfn) { 443 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 444 page_size_mask & (1<<PG_LEVEL_2M)); 445 pfn = end_pfn; 446 } 447 #endif 448 449 /* tail is not big page (2M) alignment */ 450 start_pfn = pfn; 451 end_pfn = limit_pfn; 452 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 453 454 if (!after_bootmem) 455 adjust_range_page_size_mask(mr, nr_range); 456 457 /* try to merge same page size and continuous */ 458 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 459 unsigned long old_start; 460 if (mr[i].end != mr[i+1].start || 461 mr[i].page_size_mask != mr[i+1].page_size_mask) 462 continue; 463 /* move it */ 464 old_start = mr[i].start; 465 memmove(&mr[i], &mr[i+1], 466 (nr_range - 1 - i) * sizeof(struct map_range)); 467 mr[i--].start = old_start; 468 nr_range--; 469 } 470 471 for (i = 0; i < nr_range; i++) 472 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 473 mr[i].start, mr[i].end - 1, 474 page_size_string(&mr[i])); 475 476 return nr_range; 477 } 478 479 struct range pfn_mapped[E820_MAX_ENTRIES]; 480 int nr_pfn_mapped; 481 482 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 483 { 484 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 485 nr_pfn_mapped, start_pfn, end_pfn); 486 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 487 488 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 489 490 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 491 max_low_pfn_mapped = max(max_low_pfn_mapped, 492 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 493 } 494 495 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 496 { 497 int i; 498 499 for (i = 0; i < nr_pfn_mapped; i++) 500 if ((start_pfn >= pfn_mapped[i].start) && 501 (end_pfn <= pfn_mapped[i].end)) 502 return true; 503 504 return false; 505 } 506 507 /* 508 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 509 * This runs before bootmem is initialized and gets pages directly from 510 * the physical memory. To access them they are temporarily mapped. 511 */ 512 unsigned long __ref init_memory_mapping(unsigned long start, 513 unsigned long end, pgprot_t prot) 514 { 515 struct map_range mr[NR_RANGE_MR]; 516 unsigned long ret = 0; 517 int nr_range, i; 518 519 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 520 start, end - 1); 521 522 memset(mr, 0, sizeof(mr)); 523 nr_range = split_mem_range(mr, 0, start, end); 524 525 for (i = 0; i < nr_range; i++) 526 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 527 mr[i].page_size_mask, 528 prot); 529 530 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 531 532 return ret >> PAGE_SHIFT; 533 } 534 535 /* 536 * We need to iterate through the E820 memory map and create direct mappings 537 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 538 * create direct mappings for all pfns from [0 to max_low_pfn) and 539 * [4GB to max_pfn) because of possible memory holes in high addresses 540 * that cannot be marked as UC by fixed/variable range MTRRs. 541 * Depending on the alignment of E820 ranges, this may possibly result 542 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 543 * 544 * init_mem_mapping() calls init_range_memory_mapping() with big range. 545 * That range would have hole in the middle or ends, and only ram parts 546 * will be mapped in init_range_memory_mapping(). 547 */ 548 static unsigned long __init init_range_memory_mapping( 549 unsigned long r_start, 550 unsigned long r_end) 551 { 552 unsigned long start_pfn, end_pfn; 553 unsigned long mapped_ram_size = 0; 554 int i; 555 556 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 557 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 558 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 559 if (start >= end) 560 continue; 561 562 /* 563 * if it is overlapping with brk pgt, we need to 564 * alloc pgt buf from memblock instead. 565 */ 566 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 567 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 568 init_memory_mapping(start, end, PAGE_KERNEL); 569 mapped_ram_size += end - start; 570 can_use_brk_pgt = true; 571 } 572 573 return mapped_ram_size; 574 } 575 576 static unsigned long __init get_new_step_size(unsigned long step_size) 577 { 578 /* 579 * Initial mapped size is PMD_SIZE (2M). 580 * We can not set step_size to be PUD_SIZE (1G) yet. 581 * In worse case, when we cross the 1G boundary, and 582 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 583 * to map 1G range with PTE. Hence we use one less than the 584 * difference of page table level shifts. 585 * 586 * Don't need to worry about overflow in the top-down case, on 32bit, 587 * when step_size is 0, round_down() returns 0 for start, and that 588 * turns it into 0x100000000ULL. 589 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 590 * needs to be taken into consideration by the code below. 591 */ 592 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 593 } 594 595 /** 596 * memory_map_top_down - Map [map_start, map_end) top down 597 * @map_start: start address of the target memory range 598 * @map_end: end address of the target memory range 599 * 600 * This function will setup direct mapping for memory range 601 * [map_start, map_end) in top-down. That said, the page tables 602 * will be allocated at the end of the memory, and we map the 603 * memory in top-down. 604 */ 605 static void __init memory_map_top_down(unsigned long map_start, 606 unsigned long map_end) 607 { 608 unsigned long real_end, last_start; 609 unsigned long step_size; 610 unsigned long addr; 611 unsigned long mapped_ram_size = 0; 612 613 /* xen has big range in reserved near end of ram, skip it at first.*/ 614 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); 615 real_end = addr + PMD_SIZE; 616 617 /* step_size need to be small so pgt_buf from BRK could cover it */ 618 step_size = PMD_SIZE; 619 max_pfn_mapped = 0; /* will get exact value next */ 620 min_pfn_mapped = real_end >> PAGE_SHIFT; 621 last_start = real_end; 622 623 /* 624 * We start from the top (end of memory) and go to the bottom. 625 * The memblock_find_in_range() gets us a block of RAM from the 626 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 627 * for page table. 628 */ 629 while (last_start > map_start) { 630 unsigned long start; 631 632 if (last_start > step_size) { 633 start = round_down(last_start - 1, step_size); 634 if (start < map_start) 635 start = map_start; 636 } else 637 start = map_start; 638 mapped_ram_size += init_range_memory_mapping(start, 639 last_start); 640 last_start = start; 641 min_pfn_mapped = last_start >> PAGE_SHIFT; 642 if (mapped_ram_size >= step_size) 643 step_size = get_new_step_size(step_size); 644 } 645 646 if (real_end < map_end) 647 init_range_memory_mapping(real_end, map_end); 648 } 649 650 /** 651 * memory_map_bottom_up - Map [map_start, map_end) bottom up 652 * @map_start: start address of the target memory range 653 * @map_end: end address of the target memory range 654 * 655 * This function will setup direct mapping for memory range 656 * [map_start, map_end) in bottom-up. Since we have limited the 657 * bottom-up allocation above the kernel, the page tables will 658 * be allocated just above the kernel and we map the memory 659 * in [map_start, map_end) in bottom-up. 660 */ 661 static void __init memory_map_bottom_up(unsigned long map_start, 662 unsigned long map_end) 663 { 664 unsigned long next, start; 665 unsigned long mapped_ram_size = 0; 666 /* step_size need to be small so pgt_buf from BRK could cover it */ 667 unsigned long step_size = PMD_SIZE; 668 669 start = map_start; 670 min_pfn_mapped = start >> PAGE_SHIFT; 671 672 /* 673 * We start from the bottom (@map_start) and go to the top (@map_end). 674 * The memblock_find_in_range() gets us a block of RAM from the 675 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 676 * for page table. 677 */ 678 while (start < map_end) { 679 if (step_size && map_end - start > step_size) { 680 next = round_up(start + 1, step_size); 681 if (next > map_end) 682 next = map_end; 683 } else { 684 next = map_end; 685 } 686 687 mapped_ram_size += init_range_memory_mapping(start, next); 688 start = next; 689 690 if (mapped_ram_size >= step_size) 691 step_size = get_new_step_size(step_size); 692 } 693 } 694 695 /* 696 * The real mode trampoline, which is required for bootstrapping CPUs 697 * occupies only a small area under the low 1MB. See reserve_real_mode() 698 * for details. 699 * 700 * If KASLR is disabled the first PGD entry of the direct mapping is copied 701 * to map the real mode trampoline. 702 * 703 * If KASLR is enabled, copy only the PUD which covers the low 1MB 704 * area. This limits the randomization granularity to 1GB for both 4-level 705 * and 5-level paging. 706 */ 707 static void __init init_trampoline(void) 708 { 709 #ifdef CONFIG_X86_64 710 if (!kaslr_memory_enabled()) 711 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 712 else 713 init_trampoline_kaslr(); 714 #endif 715 } 716 717 void __init init_mem_mapping(void) 718 { 719 unsigned long end; 720 721 pti_check_boottime_disable(); 722 probe_page_size_mask(); 723 setup_pcid(); 724 725 #ifdef CONFIG_X86_64 726 end = max_pfn << PAGE_SHIFT; 727 #else 728 end = max_low_pfn << PAGE_SHIFT; 729 #endif 730 731 /* the ISA range is always mapped regardless of memory holes */ 732 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); 733 734 /* Init the trampoline, possibly with KASLR memory offset */ 735 init_trampoline(); 736 737 /* 738 * If the allocation is in bottom-up direction, we setup direct mapping 739 * in bottom-up, otherwise we setup direct mapping in top-down. 740 */ 741 if (memblock_bottom_up()) { 742 unsigned long kernel_end = __pa_symbol(_end); 743 744 /* 745 * we need two separate calls here. This is because we want to 746 * allocate page tables above the kernel. So we first map 747 * [kernel_end, end) to make memory above the kernel be mapped 748 * as soon as possible. And then use page tables allocated above 749 * the kernel to map [ISA_END_ADDRESS, kernel_end). 750 */ 751 memory_map_bottom_up(kernel_end, end); 752 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 753 } else { 754 memory_map_top_down(ISA_END_ADDRESS, end); 755 } 756 757 #ifdef CONFIG_X86_64 758 if (max_pfn > max_low_pfn) { 759 /* can we preseve max_low_pfn ?*/ 760 max_low_pfn = max_pfn; 761 } 762 #else 763 early_ioremap_page_table_range_init(); 764 #endif 765 766 load_cr3(swapper_pg_dir); 767 __flush_tlb_all(); 768 769 x86_init.hyper.init_mem_mapping(); 770 771 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 772 } 773 774 /* 775 * Initialize an mm_struct to be used during poking and a pointer to be used 776 * during patching. 777 */ 778 void __init poking_init(void) 779 { 780 spinlock_t *ptl; 781 pte_t *ptep; 782 783 poking_mm = copy_init_mm(); 784 BUG_ON(!poking_mm); 785 786 /* 787 * Randomize the poking address, but make sure that the following page 788 * will be mapped at the same PMD. We need 2 pages, so find space for 3, 789 * and adjust the address if the PMD ends after the first one. 790 */ 791 poking_addr = TASK_UNMAPPED_BASE; 792 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 793 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % 794 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); 795 796 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) 797 poking_addr += PAGE_SIZE; 798 799 /* 800 * We need to trigger the allocation of the page-tables that will be 801 * needed for poking now. Later, poking may be performed in an atomic 802 * section, which might cause allocation to fail. 803 */ 804 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 805 BUG_ON(!ptep); 806 pte_unmap_unlock(ptep, ptl); 807 } 808 809 /* 810 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 811 * is valid. The argument is a physical page number. 812 * 813 * On x86, access has to be given to the first megabyte of RAM because that 814 * area traditionally contains BIOS code and data regions used by X, dosemu, 815 * and similar apps. Since they map the entire memory range, the whole range 816 * must be allowed (for mapping), but any areas that would otherwise be 817 * disallowed are flagged as being "zero filled" instead of rejected. 818 * Access has to be given to non-kernel-ram areas as well, these contain the 819 * PCI mmio resources as well as potential bios/acpi data regions. 820 */ 821 int devmem_is_allowed(unsigned long pagenr) 822 { 823 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 824 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 825 != REGION_DISJOINT) { 826 /* 827 * For disallowed memory regions in the low 1MB range, 828 * request that the page be shown as all zeros. 829 */ 830 if (pagenr < 256) 831 return 2; 832 833 return 0; 834 } 835 836 /* 837 * This must follow RAM test, since System RAM is considered a 838 * restricted resource under CONFIG_STRICT_IOMEM. 839 */ 840 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 841 /* Low 1MB bypasses iomem restrictions. */ 842 if (pagenr < 256) 843 return 1; 844 845 return 0; 846 } 847 848 return 1; 849 } 850 851 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 852 { 853 unsigned long begin_aligned, end_aligned; 854 855 /* Make sure boundaries are page aligned */ 856 begin_aligned = PAGE_ALIGN(begin); 857 end_aligned = end & PAGE_MASK; 858 859 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 860 begin = begin_aligned; 861 end = end_aligned; 862 } 863 864 if (begin >= end) 865 return; 866 867 /* 868 * If debugging page accesses then do not free this memory but 869 * mark them not present - any buggy init-section access will 870 * create a kernel page fault: 871 */ 872 if (debug_pagealloc_enabled()) { 873 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 874 begin, end - 1); 875 /* 876 * Inform kmemleak about the hole in the memory since the 877 * corresponding pages will be unmapped. 878 */ 879 kmemleak_free_part((void *)begin, end - begin); 880 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 881 } else { 882 /* 883 * We just marked the kernel text read only above, now that 884 * we are going to free part of that, we need to make that 885 * writeable and non-executable first. 886 */ 887 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 888 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 889 890 free_reserved_area((void *)begin, (void *)end, 891 POISON_FREE_INITMEM, what); 892 } 893 } 894 895 /* 896 * begin/end can be in the direct map or the "high kernel mapping" 897 * used for the kernel image only. free_init_pages() will do the 898 * right thing for either kind of address. 899 */ 900 void free_kernel_image_pages(const char *what, void *begin, void *end) 901 { 902 unsigned long begin_ul = (unsigned long)begin; 903 unsigned long end_ul = (unsigned long)end; 904 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 905 906 free_init_pages(what, begin_ul, end_ul); 907 908 /* 909 * PTI maps some of the kernel into userspace. For performance, 910 * this includes some kernel areas that do not contain secrets. 911 * Those areas might be adjacent to the parts of the kernel image 912 * being freed, which may contain secrets. Remove the "high kernel 913 * image mapping" for these freed areas, ensuring they are not even 914 * potentially vulnerable to Meltdown regardless of the specific 915 * optimizations PTI is currently using. 916 * 917 * The "noalias" prevents unmapping the direct map alias which is 918 * needed to access the freed pages. 919 * 920 * This is only valid for 64bit kernels. 32bit has only one mapping 921 * which can't be treated in this way for obvious reasons. 922 */ 923 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 924 set_memory_np_noalias(begin_ul, len_pages); 925 } 926 927 void __ref free_initmem(void) 928 { 929 e820__reallocate_tables(); 930 931 mem_encrypt_free_decrypted_mem(); 932 933 free_kernel_image_pages("unused kernel image (initmem)", 934 &__init_begin, &__init_end); 935 } 936 937 #ifdef CONFIG_BLK_DEV_INITRD 938 void __init free_initrd_mem(unsigned long start, unsigned long end) 939 { 940 /* 941 * end could be not aligned, and We can not align that, 942 * decompresser could be confused by aligned initrd_end 943 * We already reserve the end partial page before in 944 * - i386_start_kernel() 945 * - x86_64_start_kernel() 946 * - relocate_initrd() 947 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 948 */ 949 free_init_pages("initrd", start, PAGE_ALIGN(end)); 950 } 951 #endif 952 953 /* 954 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 955 * and pass it to the MM layer - to help it set zone watermarks more 956 * accurately. 957 * 958 * Done on 64-bit systems only for the time being, although 32-bit systems 959 * might benefit from this as well. 960 */ 961 void __init memblock_find_dma_reserve(void) 962 { 963 #ifdef CONFIG_X86_64 964 u64 nr_pages = 0, nr_free_pages = 0; 965 unsigned long start_pfn, end_pfn; 966 phys_addr_t start_addr, end_addr; 967 int i; 968 u64 u; 969 970 /* 971 * Iterate over all memory ranges (free and reserved ones alike), 972 * to calculate the total number of pages in the first 16 MB of RAM: 973 */ 974 nr_pages = 0; 975 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 976 start_pfn = min(start_pfn, MAX_DMA_PFN); 977 end_pfn = min(end_pfn, MAX_DMA_PFN); 978 979 nr_pages += end_pfn - start_pfn; 980 } 981 982 /* 983 * Iterate over free memory ranges to calculate the number of free 984 * pages in the DMA zone, while not counting potential partial 985 * pages at the beginning or the end of the range: 986 */ 987 nr_free_pages = 0; 988 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 989 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 990 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 991 992 if (start_pfn < end_pfn) 993 nr_free_pages += end_pfn - start_pfn; 994 } 995 996 set_dma_reserve(nr_pages - nr_free_pages); 997 #endif 998 } 999 1000 void __init zone_sizes_init(void) 1001 { 1002 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1003 1004 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1005 1006 #ifdef CONFIG_ZONE_DMA 1007 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 1008 #endif 1009 #ifdef CONFIG_ZONE_DMA32 1010 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 1011 #endif 1012 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 1013 #ifdef CONFIG_HIGHMEM 1014 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 1015 #endif 1016 1017 free_area_init(max_zone_pfns); 1018 } 1019 1020 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { 1021 .loaded_mm = &init_mm, 1022 .next_asid = 1, 1023 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 1024 }; 1025 1026 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 1027 { 1028 /* entry 0 MUST be WB (hardwired to speed up translations) */ 1029 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 1030 1031 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 1032 __pte2cachemode_tbl[entry] = cache; 1033 } 1034 1035 #ifdef CONFIG_SWAP 1036 unsigned long max_swapfile_size(void) 1037 { 1038 unsigned long pages; 1039 1040 pages = generic_max_swapfile_size(); 1041 1042 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { 1043 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 1044 unsigned long long l1tf_limit = l1tf_pfn_limit(); 1045 /* 1046 * We encode swap offsets also with 3 bits below those for pfn 1047 * which makes the usable limit higher. 1048 */ 1049 #if CONFIG_PGTABLE_LEVELS > 2 1050 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 1051 #endif 1052 pages = min_t(unsigned long long, l1tf_limit, pages); 1053 } 1054 return pages; 1055 } 1056 #endif 1057