xref: /openbmc/linux/arch/x86/mm/init.c (revision d9f6e12f)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compiled when SMP=y.
33  */
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60 };
61 
62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 	if (likely(pcm == 0))
65 		return 0;
66 	return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69 
70 static uint8_t __pte2cachemode_tbl[8] = {
71 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80 
81 /* Check that the write-protect PAT entry is set for write-protect */
82 bool x86_has_pat_wp(void)
83 {
84 	return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85 }
86 
87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88 {
89 	unsigned long masked;
90 
91 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 	if (likely(masked == 0))
93 		return 0;
94 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95 }
96 
97 static unsigned long __initdata pgt_buf_start;
98 static unsigned long __initdata pgt_buf_end;
99 static unsigned long __initdata pgt_buf_top;
100 
101 static unsigned long min_pfn_mapped;
102 
103 static bool __initdata can_use_brk_pgt = true;
104 
105 /*
106  * Pages returned are already directly mapped.
107  *
108  * Changing that is likely to break Xen, see commit:
109  *
110  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111  *
112  * for detailed information.
113  */
114 __ref void *alloc_low_pages(unsigned int num)
115 {
116 	unsigned long pfn;
117 	int i;
118 
119 	if (after_bootmem) {
120 		unsigned int order;
121 
122 		order = get_order((unsigned long)num << PAGE_SHIFT);
123 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124 	}
125 
126 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 		unsigned long ret = 0;
128 
129 		if (min_pfn_mapped < max_pfn_mapped) {
130 			ret = memblock_find_in_range(
131 					min_pfn_mapped << PAGE_SHIFT,
132 					max_pfn_mapped << PAGE_SHIFT,
133 					PAGE_SIZE * num , PAGE_SIZE);
134 		}
135 		if (ret)
136 			memblock_reserve(ret, PAGE_SIZE * num);
137 		else if (can_use_brk_pgt)
138 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
139 
140 		if (!ret)
141 			panic("alloc_low_pages: can not alloc memory");
142 
143 		pfn = ret >> PAGE_SHIFT;
144 	} else {
145 		pfn = pgt_buf_end;
146 		pgt_buf_end += num;
147 	}
148 
149 	for (i = 0; i < num; i++) {
150 		void *adr;
151 
152 		adr = __va((pfn + i) << PAGE_SHIFT);
153 		clear_page(adr);
154 	}
155 
156 	return __va(pfn << PAGE_SHIFT);
157 }
158 
159 /*
160  * By default need to be able to allocate page tables below PGD firstly for
161  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
162  * With KASLR memory randomization, depending on the machine e820 memory and the
163  * PUD alignment, twice that many pages may be needed when KASLR memory
164  * randomization is enabled.
165  */
166 
167 #ifndef CONFIG_X86_5LEVEL
168 #define INIT_PGD_PAGE_TABLES    3
169 #else
170 #define INIT_PGD_PAGE_TABLES    4
171 #endif
172 
173 #ifndef CONFIG_RANDOMIZE_MEMORY
174 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
175 #else
176 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
177 #endif
178 
179 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
180 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
181 void  __init early_alloc_pgt_buf(void)
182 {
183 	unsigned long tables = INIT_PGT_BUF_SIZE;
184 	phys_addr_t base;
185 
186 	base = __pa(extend_brk(tables, PAGE_SIZE));
187 
188 	pgt_buf_start = base >> PAGE_SHIFT;
189 	pgt_buf_end = pgt_buf_start;
190 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
191 }
192 
193 int after_bootmem;
194 
195 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
196 
197 struct map_range {
198 	unsigned long start;
199 	unsigned long end;
200 	unsigned page_size_mask;
201 };
202 
203 static int page_size_mask;
204 
205 /*
206  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
207  * enable and PPro Global page enable), so that any CPU's that boot
208  * up after us can get the correct flags. Invoked on the boot CPU.
209  */
210 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
211 {
212 	mmu_cr4_features |= mask;
213 	if (trampoline_cr4_features)
214 		*trampoline_cr4_features = mmu_cr4_features;
215 	cr4_set_bits(mask);
216 }
217 
218 static void __init probe_page_size_mask(void)
219 {
220 	/*
221 	 * For pagealloc debugging, identity mapping will use small pages.
222 	 * This will simplify cpa(), which otherwise needs to support splitting
223 	 * large pages into small in interrupt context, etc.
224 	 */
225 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
226 		page_size_mask |= 1 << PG_LEVEL_2M;
227 	else
228 		direct_gbpages = 0;
229 
230 	/* Enable PSE if available */
231 	if (boot_cpu_has(X86_FEATURE_PSE))
232 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
233 
234 	/* Enable PGE if available */
235 	__supported_pte_mask &= ~_PAGE_GLOBAL;
236 	if (boot_cpu_has(X86_FEATURE_PGE)) {
237 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
238 		__supported_pte_mask |= _PAGE_GLOBAL;
239 	}
240 
241 	/* By the default is everything supported: */
242 	__default_kernel_pte_mask = __supported_pte_mask;
243 	/* Except when with PTI where the kernel is mostly non-Global: */
244 	if (cpu_feature_enabled(X86_FEATURE_PTI))
245 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
246 
247 	/* Enable 1 GB linear kernel mappings if available: */
248 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
249 		printk(KERN_INFO "Using GB pages for direct mapping\n");
250 		page_size_mask |= 1 << PG_LEVEL_1G;
251 	} else {
252 		direct_gbpages = 0;
253 	}
254 }
255 
256 static void setup_pcid(void)
257 {
258 	if (!IS_ENABLED(CONFIG_X86_64))
259 		return;
260 
261 	if (!boot_cpu_has(X86_FEATURE_PCID))
262 		return;
263 
264 	if (boot_cpu_has(X86_FEATURE_PGE)) {
265 		/*
266 		 * This can't be cr4_set_bits_and_update_boot() -- the
267 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
268 		 * do any good anyway.  Despite the name,
269 		 * cr4_set_bits_and_update_boot() doesn't actually cause
270 		 * the bits in question to remain set all the way through
271 		 * the secondary boot asm.
272 		 *
273 		 * Instead, we brute-force it and set CR4.PCIDE manually in
274 		 * start_secondary().
275 		 */
276 		cr4_set_bits(X86_CR4_PCIDE);
277 
278 		/*
279 		 * INVPCID's single-context modes (2/3) only work if we set
280 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
281 		 * on systems that have X86_CR4_PCIDE clear, or that have
282 		 * no INVPCID support at all.
283 		 */
284 		if (boot_cpu_has(X86_FEATURE_INVPCID))
285 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
286 	} else {
287 		/*
288 		 * flush_tlb_all(), as currently implemented, won't work if
289 		 * PCID is on but PGE is not.  Since that combination
290 		 * doesn't exist on real hardware, there's no reason to try
291 		 * to fully support it, but it's polite to avoid corrupting
292 		 * data if we're on an improperly configured VM.
293 		 */
294 		setup_clear_cpu_cap(X86_FEATURE_PCID);
295 	}
296 }
297 
298 #ifdef CONFIG_X86_32
299 #define NR_RANGE_MR 3
300 #else /* CONFIG_X86_64 */
301 #define NR_RANGE_MR 5
302 #endif
303 
304 static int __meminit save_mr(struct map_range *mr, int nr_range,
305 			     unsigned long start_pfn, unsigned long end_pfn,
306 			     unsigned long page_size_mask)
307 {
308 	if (start_pfn < end_pfn) {
309 		if (nr_range >= NR_RANGE_MR)
310 			panic("run out of range for init_memory_mapping\n");
311 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
312 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
313 		mr[nr_range].page_size_mask = page_size_mask;
314 		nr_range++;
315 	}
316 
317 	return nr_range;
318 }
319 
320 /*
321  * adjust the page_size_mask for small range to go with
322  *	big page size instead small one if nearby are ram too.
323  */
324 static void __ref adjust_range_page_size_mask(struct map_range *mr,
325 							 int nr_range)
326 {
327 	int i;
328 
329 	for (i = 0; i < nr_range; i++) {
330 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
331 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
332 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
333 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
334 
335 #ifdef CONFIG_X86_32
336 			if ((end >> PAGE_SHIFT) > max_low_pfn)
337 				continue;
338 #endif
339 
340 			if (memblock_is_region_memory(start, end - start))
341 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
342 		}
343 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
344 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
345 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
346 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
347 
348 			if (memblock_is_region_memory(start, end - start))
349 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
350 		}
351 	}
352 }
353 
354 static const char *page_size_string(struct map_range *mr)
355 {
356 	static const char str_1g[] = "1G";
357 	static const char str_2m[] = "2M";
358 	static const char str_4m[] = "4M";
359 	static const char str_4k[] = "4k";
360 
361 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
362 		return str_1g;
363 	/*
364 	 * 32-bit without PAE has a 4M large page size.
365 	 * PG_LEVEL_2M is misnamed, but we can at least
366 	 * print out the right size in the string.
367 	 */
368 	if (IS_ENABLED(CONFIG_X86_32) &&
369 	    !IS_ENABLED(CONFIG_X86_PAE) &&
370 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
371 		return str_4m;
372 
373 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
374 		return str_2m;
375 
376 	return str_4k;
377 }
378 
379 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
380 				     unsigned long start,
381 				     unsigned long end)
382 {
383 	unsigned long start_pfn, end_pfn, limit_pfn;
384 	unsigned long pfn;
385 	int i;
386 
387 	limit_pfn = PFN_DOWN(end);
388 
389 	/* head if not big page alignment ? */
390 	pfn = start_pfn = PFN_DOWN(start);
391 #ifdef CONFIG_X86_32
392 	/*
393 	 * Don't use a large page for the first 2/4MB of memory
394 	 * because there are often fixed size MTRRs in there
395 	 * and overlapping MTRRs into large pages can cause
396 	 * slowdowns.
397 	 */
398 	if (pfn == 0)
399 		end_pfn = PFN_DOWN(PMD_SIZE);
400 	else
401 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
402 #else /* CONFIG_X86_64 */
403 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
404 #endif
405 	if (end_pfn > limit_pfn)
406 		end_pfn = limit_pfn;
407 	if (start_pfn < end_pfn) {
408 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
409 		pfn = end_pfn;
410 	}
411 
412 	/* big page (2M) range */
413 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
414 #ifdef CONFIG_X86_32
415 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
416 #else /* CONFIG_X86_64 */
417 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
418 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
419 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
420 #endif
421 
422 	if (start_pfn < end_pfn) {
423 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
424 				page_size_mask & (1<<PG_LEVEL_2M));
425 		pfn = end_pfn;
426 	}
427 
428 #ifdef CONFIG_X86_64
429 	/* big page (1G) range */
430 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
431 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
432 	if (start_pfn < end_pfn) {
433 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
434 				page_size_mask &
435 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
436 		pfn = end_pfn;
437 	}
438 
439 	/* tail is not big page (1G) alignment */
440 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
441 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
442 	if (start_pfn < end_pfn) {
443 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444 				page_size_mask & (1<<PG_LEVEL_2M));
445 		pfn = end_pfn;
446 	}
447 #endif
448 
449 	/* tail is not big page (2M) alignment */
450 	start_pfn = pfn;
451 	end_pfn = limit_pfn;
452 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
453 
454 	if (!after_bootmem)
455 		adjust_range_page_size_mask(mr, nr_range);
456 
457 	/* try to merge same page size and continuous */
458 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
459 		unsigned long old_start;
460 		if (mr[i].end != mr[i+1].start ||
461 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
462 			continue;
463 		/* move it */
464 		old_start = mr[i].start;
465 		memmove(&mr[i], &mr[i+1],
466 			(nr_range - 1 - i) * sizeof(struct map_range));
467 		mr[i--].start = old_start;
468 		nr_range--;
469 	}
470 
471 	for (i = 0; i < nr_range; i++)
472 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
473 				mr[i].start, mr[i].end - 1,
474 				page_size_string(&mr[i]));
475 
476 	return nr_range;
477 }
478 
479 struct range pfn_mapped[E820_MAX_ENTRIES];
480 int nr_pfn_mapped;
481 
482 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
483 {
484 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
485 					     nr_pfn_mapped, start_pfn, end_pfn);
486 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
487 
488 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
489 
490 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
491 		max_low_pfn_mapped = max(max_low_pfn_mapped,
492 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
493 }
494 
495 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
496 {
497 	int i;
498 
499 	for (i = 0; i < nr_pfn_mapped; i++)
500 		if ((start_pfn >= pfn_mapped[i].start) &&
501 		    (end_pfn <= pfn_mapped[i].end))
502 			return true;
503 
504 	return false;
505 }
506 
507 /*
508  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
509  * This runs before bootmem is initialized and gets pages directly from
510  * the physical memory. To access them they are temporarily mapped.
511  */
512 unsigned long __ref init_memory_mapping(unsigned long start,
513 					unsigned long end, pgprot_t prot)
514 {
515 	struct map_range mr[NR_RANGE_MR];
516 	unsigned long ret = 0;
517 	int nr_range, i;
518 
519 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
520 	       start, end - 1);
521 
522 	memset(mr, 0, sizeof(mr));
523 	nr_range = split_mem_range(mr, 0, start, end);
524 
525 	for (i = 0; i < nr_range; i++)
526 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
527 						   mr[i].page_size_mask,
528 						   prot);
529 
530 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
531 
532 	return ret >> PAGE_SHIFT;
533 }
534 
535 /*
536  * We need to iterate through the E820 memory map and create direct mappings
537  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
538  * create direct mappings for all pfns from [0 to max_low_pfn) and
539  * [4GB to max_pfn) because of possible memory holes in high addresses
540  * that cannot be marked as UC by fixed/variable range MTRRs.
541  * Depending on the alignment of E820 ranges, this may possibly result
542  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
543  *
544  * init_mem_mapping() calls init_range_memory_mapping() with big range.
545  * That range would have hole in the middle or ends, and only ram parts
546  * will be mapped in init_range_memory_mapping().
547  */
548 static unsigned long __init init_range_memory_mapping(
549 					   unsigned long r_start,
550 					   unsigned long r_end)
551 {
552 	unsigned long start_pfn, end_pfn;
553 	unsigned long mapped_ram_size = 0;
554 	int i;
555 
556 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
557 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
558 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
559 		if (start >= end)
560 			continue;
561 
562 		/*
563 		 * if it is overlapping with brk pgt, we need to
564 		 * alloc pgt buf from memblock instead.
565 		 */
566 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
567 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
568 		init_memory_mapping(start, end, PAGE_KERNEL);
569 		mapped_ram_size += end - start;
570 		can_use_brk_pgt = true;
571 	}
572 
573 	return mapped_ram_size;
574 }
575 
576 static unsigned long __init get_new_step_size(unsigned long step_size)
577 {
578 	/*
579 	 * Initial mapped size is PMD_SIZE (2M).
580 	 * We can not set step_size to be PUD_SIZE (1G) yet.
581 	 * In worse case, when we cross the 1G boundary, and
582 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
583 	 * to map 1G range with PTE. Hence we use one less than the
584 	 * difference of page table level shifts.
585 	 *
586 	 * Don't need to worry about overflow in the top-down case, on 32bit,
587 	 * when step_size is 0, round_down() returns 0 for start, and that
588 	 * turns it into 0x100000000ULL.
589 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
590 	 * needs to be taken into consideration by the code below.
591 	 */
592 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
593 }
594 
595 /**
596  * memory_map_top_down - Map [map_start, map_end) top down
597  * @map_start: start address of the target memory range
598  * @map_end: end address of the target memory range
599  *
600  * This function will setup direct mapping for memory range
601  * [map_start, map_end) in top-down. That said, the page tables
602  * will be allocated at the end of the memory, and we map the
603  * memory in top-down.
604  */
605 static void __init memory_map_top_down(unsigned long map_start,
606 				       unsigned long map_end)
607 {
608 	unsigned long real_end, last_start;
609 	unsigned long step_size;
610 	unsigned long addr;
611 	unsigned long mapped_ram_size = 0;
612 
613 	/* xen has big range in reserved near end of ram, skip it at first.*/
614 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
615 	real_end = addr + PMD_SIZE;
616 
617 	/* step_size need to be small so pgt_buf from BRK could cover it */
618 	step_size = PMD_SIZE;
619 	max_pfn_mapped = 0; /* will get exact value next */
620 	min_pfn_mapped = real_end >> PAGE_SHIFT;
621 	last_start = real_end;
622 
623 	/*
624 	 * We start from the top (end of memory) and go to the bottom.
625 	 * The memblock_find_in_range() gets us a block of RAM from the
626 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 	 * for page table.
628 	 */
629 	while (last_start > map_start) {
630 		unsigned long start;
631 
632 		if (last_start > step_size) {
633 			start = round_down(last_start - 1, step_size);
634 			if (start < map_start)
635 				start = map_start;
636 		} else
637 			start = map_start;
638 		mapped_ram_size += init_range_memory_mapping(start,
639 							last_start);
640 		last_start = start;
641 		min_pfn_mapped = last_start >> PAGE_SHIFT;
642 		if (mapped_ram_size >= step_size)
643 			step_size = get_new_step_size(step_size);
644 	}
645 
646 	if (real_end < map_end)
647 		init_range_memory_mapping(real_end, map_end);
648 }
649 
650 /**
651  * memory_map_bottom_up - Map [map_start, map_end) bottom up
652  * @map_start: start address of the target memory range
653  * @map_end: end address of the target memory range
654  *
655  * This function will setup direct mapping for memory range
656  * [map_start, map_end) in bottom-up. Since we have limited the
657  * bottom-up allocation above the kernel, the page tables will
658  * be allocated just above the kernel and we map the memory
659  * in [map_start, map_end) in bottom-up.
660  */
661 static void __init memory_map_bottom_up(unsigned long map_start,
662 					unsigned long map_end)
663 {
664 	unsigned long next, start;
665 	unsigned long mapped_ram_size = 0;
666 	/* step_size need to be small so pgt_buf from BRK could cover it */
667 	unsigned long step_size = PMD_SIZE;
668 
669 	start = map_start;
670 	min_pfn_mapped = start >> PAGE_SHIFT;
671 
672 	/*
673 	 * We start from the bottom (@map_start) and go to the top (@map_end).
674 	 * The memblock_find_in_range() gets us a block of RAM from the
675 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
676 	 * for page table.
677 	 */
678 	while (start < map_end) {
679 		if (step_size && map_end - start > step_size) {
680 			next = round_up(start + 1, step_size);
681 			if (next > map_end)
682 				next = map_end;
683 		} else {
684 			next = map_end;
685 		}
686 
687 		mapped_ram_size += init_range_memory_mapping(start, next);
688 		start = next;
689 
690 		if (mapped_ram_size >= step_size)
691 			step_size = get_new_step_size(step_size);
692 	}
693 }
694 
695 /*
696  * The real mode trampoline, which is required for bootstrapping CPUs
697  * occupies only a small area under the low 1MB.  See reserve_real_mode()
698  * for details.
699  *
700  * If KASLR is disabled the first PGD entry of the direct mapping is copied
701  * to map the real mode trampoline.
702  *
703  * If KASLR is enabled, copy only the PUD which covers the low 1MB
704  * area. This limits the randomization granularity to 1GB for both 4-level
705  * and 5-level paging.
706  */
707 static void __init init_trampoline(void)
708 {
709 #ifdef CONFIG_X86_64
710 	if (!kaslr_memory_enabled())
711 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
712 	else
713 		init_trampoline_kaslr();
714 #endif
715 }
716 
717 void __init init_mem_mapping(void)
718 {
719 	unsigned long end;
720 
721 	pti_check_boottime_disable();
722 	probe_page_size_mask();
723 	setup_pcid();
724 
725 #ifdef CONFIG_X86_64
726 	end = max_pfn << PAGE_SHIFT;
727 #else
728 	end = max_low_pfn << PAGE_SHIFT;
729 #endif
730 
731 	/* the ISA range is always mapped regardless of memory holes */
732 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
733 
734 	/* Init the trampoline, possibly with KASLR memory offset */
735 	init_trampoline();
736 
737 	/*
738 	 * If the allocation is in bottom-up direction, we setup direct mapping
739 	 * in bottom-up, otherwise we setup direct mapping in top-down.
740 	 */
741 	if (memblock_bottom_up()) {
742 		unsigned long kernel_end = __pa_symbol(_end);
743 
744 		/*
745 		 * we need two separate calls here. This is because we want to
746 		 * allocate page tables above the kernel. So we first map
747 		 * [kernel_end, end) to make memory above the kernel be mapped
748 		 * as soon as possible. And then use page tables allocated above
749 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
750 		 */
751 		memory_map_bottom_up(kernel_end, end);
752 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
753 	} else {
754 		memory_map_top_down(ISA_END_ADDRESS, end);
755 	}
756 
757 #ifdef CONFIG_X86_64
758 	if (max_pfn > max_low_pfn) {
759 		/* can we preseve max_low_pfn ?*/
760 		max_low_pfn = max_pfn;
761 	}
762 #else
763 	early_ioremap_page_table_range_init();
764 #endif
765 
766 	load_cr3(swapper_pg_dir);
767 	__flush_tlb_all();
768 
769 	x86_init.hyper.init_mem_mapping();
770 
771 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
772 }
773 
774 /*
775  * Initialize an mm_struct to be used during poking and a pointer to be used
776  * during patching.
777  */
778 void __init poking_init(void)
779 {
780 	spinlock_t *ptl;
781 	pte_t *ptep;
782 
783 	poking_mm = copy_init_mm();
784 	BUG_ON(!poking_mm);
785 
786 	/*
787 	 * Randomize the poking address, but make sure that the following page
788 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
789 	 * and adjust the address if the PMD ends after the first one.
790 	 */
791 	poking_addr = TASK_UNMAPPED_BASE;
792 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
793 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
794 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
795 
796 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
797 		poking_addr += PAGE_SIZE;
798 
799 	/*
800 	 * We need to trigger the allocation of the page-tables that will be
801 	 * needed for poking now. Later, poking may be performed in an atomic
802 	 * section, which might cause allocation to fail.
803 	 */
804 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
805 	BUG_ON(!ptep);
806 	pte_unmap_unlock(ptep, ptl);
807 }
808 
809 /*
810  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
811  * is valid. The argument is a physical page number.
812  *
813  * On x86, access has to be given to the first megabyte of RAM because that
814  * area traditionally contains BIOS code and data regions used by X, dosemu,
815  * and similar apps. Since they map the entire memory range, the whole range
816  * must be allowed (for mapping), but any areas that would otherwise be
817  * disallowed are flagged as being "zero filled" instead of rejected.
818  * Access has to be given to non-kernel-ram areas as well, these contain the
819  * PCI mmio resources as well as potential bios/acpi data regions.
820  */
821 int devmem_is_allowed(unsigned long pagenr)
822 {
823 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
824 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
825 			!= REGION_DISJOINT) {
826 		/*
827 		 * For disallowed memory regions in the low 1MB range,
828 		 * request that the page be shown as all zeros.
829 		 */
830 		if (pagenr < 256)
831 			return 2;
832 
833 		return 0;
834 	}
835 
836 	/*
837 	 * This must follow RAM test, since System RAM is considered a
838 	 * restricted resource under CONFIG_STRICT_IOMEM.
839 	 */
840 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
841 		/* Low 1MB bypasses iomem restrictions. */
842 		if (pagenr < 256)
843 			return 1;
844 
845 		return 0;
846 	}
847 
848 	return 1;
849 }
850 
851 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
852 {
853 	unsigned long begin_aligned, end_aligned;
854 
855 	/* Make sure boundaries are page aligned */
856 	begin_aligned = PAGE_ALIGN(begin);
857 	end_aligned   = end & PAGE_MASK;
858 
859 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
860 		begin = begin_aligned;
861 		end   = end_aligned;
862 	}
863 
864 	if (begin >= end)
865 		return;
866 
867 	/*
868 	 * If debugging page accesses then do not free this memory but
869 	 * mark them not present - any buggy init-section access will
870 	 * create a kernel page fault:
871 	 */
872 	if (debug_pagealloc_enabled()) {
873 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
874 			begin, end - 1);
875 		/*
876 		 * Inform kmemleak about the hole in the memory since the
877 		 * corresponding pages will be unmapped.
878 		 */
879 		kmemleak_free_part((void *)begin, end - begin);
880 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
881 	} else {
882 		/*
883 		 * We just marked the kernel text read only above, now that
884 		 * we are going to free part of that, we need to make that
885 		 * writeable and non-executable first.
886 		 */
887 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
888 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
889 
890 		free_reserved_area((void *)begin, (void *)end,
891 				   POISON_FREE_INITMEM, what);
892 	}
893 }
894 
895 /*
896  * begin/end can be in the direct map or the "high kernel mapping"
897  * used for the kernel image only.  free_init_pages() will do the
898  * right thing for either kind of address.
899  */
900 void free_kernel_image_pages(const char *what, void *begin, void *end)
901 {
902 	unsigned long begin_ul = (unsigned long)begin;
903 	unsigned long end_ul = (unsigned long)end;
904 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
905 
906 	free_init_pages(what, begin_ul, end_ul);
907 
908 	/*
909 	 * PTI maps some of the kernel into userspace.  For performance,
910 	 * this includes some kernel areas that do not contain secrets.
911 	 * Those areas might be adjacent to the parts of the kernel image
912 	 * being freed, which may contain secrets.  Remove the "high kernel
913 	 * image mapping" for these freed areas, ensuring they are not even
914 	 * potentially vulnerable to Meltdown regardless of the specific
915 	 * optimizations PTI is currently using.
916 	 *
917 	 * The "noalias" prevents unmapping the direct map alias which is
918 	 * needed to access the freed pages.
919 	 *
920 	 * This is only valid for 64bit kernels. 32bit has only one mapping
921 	 * which can't be treated in this way for obvious reasons.
922 	 */
923 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
924 		set_memory_np_noalias(begin_ul, len_pages);
925 }
926 
927 void __ref free_initmem(void)
928 {
929 	e820__reallocate_tables();
930 
931 	mem_encrypt_free_decrypted_mem();
932 
933 	free_kernel_image_pages("unused kernel image (initmem)",
934 				&__init_begin, &__init_end);
935 }
936 
937 #ifdef CONFIG_BLK_DEV_INITRD
938 void __init free_initrd_mem(unsigned long start, unsigned long end)
939 {
940 	/*
941 	 * end could be not aligned, and We can not align that,
942 	 * decompressor could be confused by aligned initrd_end
943 	 * We already reserve the end partial page before in
944 	 *   - i386_start_kernel()
945 	 *   - x86_64_start_kernel()
946 	 *   - relocate_initrd()
947 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
948 	 */
949 	free_init_pages("initrd", start, PAGE_ALIGN(end));
950 }
951 #endif
952 
953 /*
954  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
955  * and pass it to the MM layer - to help it set zone watermarks more
956  * accurately.
957  *
958  * Done on 64-bit systems only for the time being, although 32-bit systems
959  * might benefit from this as well.
960  */
961 void __init memblock_find_dma_reserve(void)
962 {
963 #ifdef CONFIG_X86_64
964 	u64 nr_pages = 0, nr_free_pages = 0;
965 	unsigned long start_pfn, end_pfn;
966 	phys_addr_t start_addr, end_addr;
967 	int i;
968 	u64 u;
969 
970 	/*
971 	 * Iterate over all memory ranges (free and reserved ones alike),
972 	 * to calculate the total number of pages in the first 16 MB of RAM:
973 	 */
974 	nr_pages = 0;
975 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
976 		start_pfn = min(start_pfn, MAX_DMA_PFN);
977 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
978 
979 		nr_pages += end_pfn - start_pfn;
980 	}
981 
982 	/*
983 	 * Iterate over free memory ranges to calculate the number of free
984 	 * pages in the DMA zone, while not counting potential partial
985 	 * pages at the beginning or the end of the range:
986 	 */
987 	nr_free_pages = 0;
988 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
989 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
990 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
991 
992 		if (start_pfn < end_pfn)
993 			nr_free_pages += end_pfn - start_pfn;
994 	}
995 
996 	set_dma_reserve(nr_pages - nr_free_pages);
997 #endif
998 }
999 
1000 void __init zone_sizes_init(void)
1001 {
1002 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1003 
1004 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005 
1006 #ifdef CONFIG_ZONE_DMA
1007 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1008 #endif
1009 #ifdef CONFIG_ZONE_DMA32
1010 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1011 #endif
1012 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1013 #ifdef CONFIG_HIGHMEM
1014 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1015 #endif
1016 
1017 	free_area_init(max_zone_pfns);
1018 }
1019 
1020 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021 	.loaded_mm = &init_mm,
1022 	.next_asid = 1,
1023 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1024 };
1025 
1026 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027 {
1028 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1029 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030 
1031 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 	__pte2cachemode_tbl[entry] = cache;
1033 }
1034 
1035 #ifdef CONFIG_SWAP
1036 unsigned long max_swapfile_size(void)
1037 {
1038 	unsigned long pages;
1039 
1040 	pages = generic_max_swapfile_size();
1041 
1042 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1045 		/*
1046 		 * We encode swap offsets also with 3 bits below those for pfn
1047 		 * which makes the usable limit higher.
1048 		 */
1049 #if CONFIG_PGTABLE_LEVELS > 2
1050 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051 #endif
1052 		pages = min_t(unsigned long long, l1tf_limit, pages);
1053 	}
1054 	return pages;
1055 }
1056 #endif
1057