xref: /openbmc/linux/arch/x86/mm/init.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compiled when SMP=y.
33  */
34 #include <trace/events/tlb.h>
35 
36 #include "mm_internal.h"
37 
38 /*
39  * Tables translating between page_cache_type_t and pte encoding.
40  *
41  * The default values are defined statically as minimal supported mode;
42  * WC and WT fall back to UC-.  pat_init() updates these values to support
43  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
44  * for the details.  Note, __early_ioremap() used during early boot-time
45  * takes pgprot_t (pte encoding) and does not use these tables.
46  *
47  *   Index into __cachemode2pte_tbl[] is the cachemode.
48  *
49  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
51  */
52 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
54 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
55 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
59 };
60 
61 unsigned long cachemode2protval(enum page_cache_mode pcm)
62 {
63 	if (likely(pcm == 0))
64 		return 0;
65 	return __cachemode2pte_tbl[pcm];
66 }
67 EXPORT_SYMBOL(cachemode2protval);
68 
69 static uint8_t __pte2cachemode_tbl[8] = {
70 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
71 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
72 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
74 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
75 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
76 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
78 };
79 
80 /* Check that the write-protect PAT entry is set for write-protect */
81 bool x86_has_pat_wp(void)
82 {
83 	return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
84 }
85 
86 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
87 {
88 	unsigned long masked;
89 
90 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
91 	if (likely(masked == 0))
92 		return 0;
93 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
94 }
95 
96 static unsigned long __initdata pgt_buf_start;
97 static unsigned long __initdata pgt_buf_end;
98 static unsigned long __initdata pgt_buf_top;
99 
100 static unsigned long min_pfn_mapped;
101 
102 static bool __initdata can_use_brk_pgt = true;
103 
104 /*
105  * Pages returned are already directly mapped.
106  *
107  * Changing that is likely to break Xen, see commit:
108  *
109  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
110  *
111  * for detailed information.
112  */
113 __ref void *alloc_low_pages(unsigned int num)
114 {
115 	unsigned long pfn;
116 	int i;
117 
118 	if (after_bootmem) {
119 		unsigned int order;
120 
121 		order = get_order((unsigned long)num << PAGE_SHIFT);
122 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
123 	}
124 
125 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
126 		unsigned long ret = 0;
127 
128 		if (min_pfn_mapped < max_pfn_mapped) {
129 			ret = memblock_phys_alloc_range(
130 					PAGE_SIZE * num, PAGE_SIZE,
131 					min_pfn_mapped << PAGE_SHIFT,
132 					max_pfn_mapped << PAGE_SHIFT);
133 		}
134 		if (!ret && can_use_brk_pgt)
135 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
136 
137 		if (!ret)
138 			panic("alloc_low_pages: can not alloc memory");
139 
140 		pfn = ret >> PAGE_SHIFT;
141 	} else {
142 		pfn = pgt_buf_end;
143 		pgt_buf_end += num;
144 	}
145 
146 	for (i = 0; i < num; i++) {
147 		void *adr;
148 
149 		adr = __va((pfn + i) << PAGE_SHIFT);
150 		clear_page(adr);
151 	}
152 
153 	return __va(pfn << PAGE_SHIFT);
154 }
155 
156 /*
157  * By default need to be able to allocate page tables below PGD firstly for
158  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
159  * With KASLR memory randomization, depending on the machine e820 memory and the
160  * PUD alignment, twice that many pages may be needed when KASLR memory
161  * randomization is enabled.
162  */
163 
164 #ifndef CONFIG_X86_5LEVEL
165 #define INIT_PGD_PAGE_TABLES    3
166 #else
167 #define INIT_PGD_PAGE_TABLES    4
168 #endif
169 
170 #ifndef CONFIG_RANDOMIZE_MEMORY
171 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
172 #else
173 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
174 #endif
175 
176 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
177 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
178 void  __init early_alloc_pgt_buf(void)
179 {
180 	unsigned long tables = INIT_PGT_BUF_SIZE;
181 	phys_addr_t base;
182 
183 	base = __pa(extend_brk(tables, PAGE_SIZE));
184 
185 	pgt_buf_start = base >> PAGE_SHIFT;
186 	pgt_buf_end = pgt_buf_start;
187 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
188 }
189 
190 int after_bootmem;
191 
192 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
193 
194 struct map_range {
195 	unsigned long start;
196 	unsigned long end;
197 	unsigned page_size_mask;
198 };
199 
200 static int page_size_mask;
201 
202 /*
203  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
204  * enable and PPro Global page enable), so that any CPU's that boot
205  * up after us can get the correct flags. Invoked on the boot CPU.
206  */
207 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
208 {
209 	mmu_cr4_features |= mask;
210 	if (trampoline_cr4_features)
211 		*trampoline_cr4_features = mmu_cr4_features;
212 	cr4_set_bits(mask);
213 }
214 
215 static void __init probe_page_size_mask(void)
216 {
217 	/*
218 	 * For pagealloc debugging, identity mapping will use small pages.
219 	 * This will simplify cpa(), which otherwise needs to support splitting
220 	 * large pages into small in interrupt context, etc.
221 	 */
222 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
223 		page_size_mask |= 1 << PG_LEVEL_2M;
224 	else
225 		direct_gbpages = 0;
226 
227 	/* Enable PSE if available */
228 	if (boot_cpu_has(X86_FEATURE_PSE))
229 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
230 
231 	/* Enable PGE if available */
232 	__supported_pte_mask &= ~_PAGE_GLOBAL;
233 	if (boot_cpu_has(X86_FEATURE_PGE)) {
234 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
235 		__supported_pte_mask |= _PAGE_GLOBAL;
236 	}
237 
238 	/* By the default is everything supported: */
239 	__default_kernel_pte_mask = __supported_pte_mask;
240 	/* Except when with PTI where the kernel is mostly non-Global: */
241 	if (cpu_feature_enabled(X86_FEATURE_PTI))
242 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
243 
244 	/* Enable 1 GB linear kernel mappings if available: */
245 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
246 		printk(KERN_INFO "Using GB pages for direct mapping\n");
247 		page_size_mask |= 1 << PG_LEVEL_1G;
248 	} else {
249 		direct_gbpages = 0;
250 	}
251 }
252 
253 static void setup_pcid(void)
254 {
255 	if (!IS_ENABLED(CONFIG_X86_64))
256 		return;
257 
258 	if (!boot_cpu_has(X86_FEATURE_PCID))
259 		return;
260 
261 	if (boot_cpu_has(X86_FEATURE_PGE)) {
262 		/*
263 		 * This can't be cr4_set_bits_and_update_boot() -- the
264 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
265 		 * do any good anyway.  Despite the name,
266 		 * cr4_set_bits_and_update_boot() doesn't actually cause
267 		 * the bits in question to remain set all the way through
268 		 * the secondary boot asm.
269 		 *
270 		 * Instead, we brute-force it and set CR4.PCIDE manually in
271 		 * start_secondary().
272 		 */
273 		cr4_set_bits(X86_CR4_PCIDE);
274 
275 		/*
276 		 * INVPCID's single-context modes (2/3) only work if we set
277 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
278 		 * on systems that have X86_CR4_PCIDE clear, or that have
279 		 * no INVPCID support at all.
280 		 */
281 		if (boot_cpu_has(X86_FEATURE_INVPCID))
282 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
283 	} else {
284 		/*
285 		 * flush_tlb_all(), as currently implemented, won't work if
286 		 * PCID is on but PGE is not.  Since that combination
287 		 * doesn't exist on real hardware, there's no reason to try
288 		 * to fully support it, but it's polite to avoid corrupting
289 		 * data if we're on an improperly configured VM.
290 		 */
291 		setup_clear_cpu_cap(X86_FEATURE_PCID);
292 	}
293 }
294 
295 #ifdef CONFIG_X86_32
296 #define NR_RANGE_MR 3
297 #else /* CONFIG_X86_64 */
298 #define NR_RANGE_MR 5
299 #endif
300 
301 static int __meminit save_mr(struct map_range *mr, int nr_range,
302 			     unsigned long start_pfn, unsigned long end_pfn,
303 			     unsigned long page_size_mask)
304 {
305 	if (start_pfn < end_pfn) {
306 		if (nr_range >= NR_RANGE_MR)
307 			panic("run out of range for init_memory_mapping\n");
308 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
309 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
310 		mr[nr_range].page_size_mask = page_size_mask;
311 		nr_range++;
312 	}
313 
314 	return nr_range;
315 }
316 
317 /*
318  * adjust the page_size_mask for small range to go with
319  *	big page size instead small one if nearby are ram too.
320  */
321 static void __ref adjust_range_page_size_mask(struct map_range *mr,
322 							 int nr_range)
323 {
324 	int i;
325 
326 	for (i = 0; i < nr_range; i++) {
327 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
328 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
329 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
330 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
331 
332 #ifdef CONFIG_X86_32
333 			if ((end >> PAGE_SHIFT) > max_low_pfn)
334 				continue;
335 #endif
336 
337 			if (memblock_is_region_memory(start, end - start))
338 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
339 		}
340 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
341 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
342 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
343 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
344 
345 			if (memblock_is_region_memory(start, end - start))
346 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
347 		}
348 	}
349 }
350 
351 static const char *page_size_string(struct map_range *mr)
352 {
353 	static const char str_1g[] = "1G";
354 	static const char str_2m[] = "2M";
355 	static const char str_4m[] = "4M";
356 	static const char str_4k[] = "4k";
357 
358 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
359 		return str_1g;
360 	/*
361 	 * 32-bit without PAE has a 4M large page size.
362 	 * PG_LEVEL_2M is misnamed, but we can at least
363 	 * print out the right size in the string.
364 	 */
365 	if (IS_ENABLED(CONFIG_X86_32) &&
366 	    !IS_ENABLED(CONFIG_X86_PAE) &&
367 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
368 		return str_4m;
369 
370 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
371 		return str_2m;
372 
373 	return str_4k;
374 }
375 
376 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
377 				     unsigned long start,
378 				     unsigned long end)
379 {
380 	unsigned long start_pfn, end_pfn, limit_pfn;
381 	unsigned long pfn;
382 	int i;
383 
384 	limit_pfn = PFN_DOWN(end);
385 
386 	/* head if not big page alignment ? */
387 	pfn = start_pfn = PFN_DOWN(start);
388 #ifdef CONFIG_X86_32
389 	/*
390 	 * Don't use a large page for the first 2/4MB of memory
391 	 * because there are often fixed size MTRRs in there
392 	 * and overlapping MTRRs into large pages can cause
393 	 * slowdowns.
394 	 */
395 	if (pfn == 0)
396 		end_pfn = PFN_DOWN(PMD_SIZE);
397 	else
398 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
399 #else /* CONFIG_X86_64 */
400 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
401 #endif
402 	if (end_pfn > limit_pfn)
403 		end_pfn = limit_pfn;
404 	if (start_pfn < end_pfn) {
405 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
406 		pfn = end_pfn;
407 	}
408 
409 	/* big page (2M) range */
410 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
411 #ifdef CONFIG_X86_32
412 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
413 #else /* CONFIG_X86_64 */
414 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
415 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
416 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
417 #endif
418 
419 	if (start_pfn < end_pfn) {
420 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
421 				page_size_mask & (1<<PG_LEVEL_2M));
422 		pfn = end_pfn;
423 	}
424 
425 #ifdef CONFIG_X86_64
426 	/* big page (1G) range */
427 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
428 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
429 	if (start_pfn < end_pfn) {
430 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
431 				page_size_mask &
432 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
433 		pfn = end_pfn;
434 	}
435 
436 	/* tail is not big page (1G) alignment */
437 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
438 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439 	if (start_pfn < end_pfn) {
440 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
441 				page_size_mask & (1<<PG_LEVEL_2M));
442 		pfn = end_pfn;
443 	}
444 #endif
445 
446 	/* tail is not big page (2M) alignment */
447 	start_pfn = pfn;
448 	end_pfn = limit_pfn;
449 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
450 
451 	if (!after_bootmem)
452 		adjust_range_page_size_mask(mr, nr_range);
453 
454 	/* try to merge same page size and continuous */
455 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
456 		unsigned long old_start;
457 		if (mr[i].end != mr[i+1].start ||
458 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
459 			continue;
460 		/* move it */
461 		old_start = mr[i].start;
462 		memmove(&mr[i], &mr[i+1],
463 			(nr_range - 1 - i) * sizeof(struct map_range));
464 		mr[i--].start = old_start;
465 		nr_range--;
466 	}
467 
468 	for (i = 0; i < nr_range; i++)
469 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
470 				mr[i].start, mr[i].end - 1,
471 				page_size_string(&mr[i]));
472 
473 	return nr_range;
474 }
475 
476 struct range pfn_mapped[E820_MAX_ENTRIES];
477 int nr_pfn_mapped;
478 
479 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
480 {
481 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
482 					     nr_pfn_mapped, start_pfn, end_pfn);
483 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
484 
485 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
486 
487 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
488 		max_low_pfn_mapped = max(max_low_pfn_mapped,
489 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
490 }
491 
492 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
493 {
494 	int i;
495 
496 	for (i = 0; i < nr_pfn_mapped; i++)
497 		if ((start_pfn >= pfn_mapped[i].start) &&
498 		    (end_pfn <= pfn_mapped[i].end))
499 			return true;
500 
501 	return false;
502 }
503 
504 /*
505  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
506  * This runs before bootmem is initialized and gets pages directly from
507  * the physical memory. To access them they are temporarily mapped.
508  */
509 unsigned long __ref init_memory_mapping(unsigned long start,
510 					unsigned long end, pgprot_t prot)
511 {
512 	struct map_range mr[NR_RANGE_MR];
513 	unsigned long ret = 0;
514 	int nr_range, i;
515 
516 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
517 	       start, end - 1);
518 
519 	memset(mr, 0, sizeof(mr));
520 	nr_range = split_mem_range(mr, 0, start, end);
521 
522 	for (i = 0; i < nr_range; i++)
523 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
524 						   mr[i].page_size_mask,
525 						   prot);
526 
527 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
528 
529 	return ret >> PAGE_SHIFT;
530 }
531 
532 /*
533  * We need to iterate through the E820 memory map and create direct mappings
534  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
535  * create direct mappings for all pfns from [0 to max_low_pfn) and
536  * [4GB to max_pfn) because of possible memory holes in high addresses
537  * that cannot be marked as UC by fixed/variable range MTRRs.
538  * Depending on the alignment of E820 ranges, this may possibly result
539  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
540  *
541  * init_mem_mapping() calls init_range_memory_mapping() with big range.
542  * That range would have hole in the middle or ends, and only ram parts
543  * will be mapped in init_range_memory_mapping().
544  */
545 static unsigned long __init init_range_memory_mapping(
546 					   unsigned long r_start,
547 					   unsigned long r_end)
548 {
549 	unsigned long start_pfn, end_pfn;
550 	unsigned long mapped_ram_size = 0;
551 	int i;
552 
553 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
554 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
555 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
556 		if (start >= end)
557 			continue;
558 
559 		/*
560 		 * if it is overlapping with brk pgt, we need to
561 		 * alloc pgt buf from memblock instead.
562 		 */
563 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
564 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
565 		init_memory_mapping(start, end, PAGE_KERNEL);
566 		mapped_ram_size += end - start;
567 		can_use_brk_pgt = true;
568 	}
569 
570 	return mapped_ram_size;
571 }
572 
573 static unsigned long __init get_new_step_size(unsigned long step_size)
574 {
575 	/*
576 	 * Initial mapped size is PMD_SIZE (2M).
577 	 * We can not set step_size to be PUD_SIZE (1G) yet.
578 	 * In worse case, when we cross the 1G boundary, and
579 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
580 	 * to map 1G range with PTE. Hence we use one less than the
581 	 * difference of page table level shifts.
582 	 *
583 	 * Don't need to worry about overflow in the top-down case, on 32bit,
584 	 * when step_size is 0, round_down() returns 0 for start, and that
585 	 * turns it into 0x100000000ULL.
586 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
587 	 * needs to be taken into consideration by the code below.
588 	 */
589 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
590 }
591 
592 /**
593  * memory_map_top_down - Map [map_start, map_end) top down
594  * @map_start: start address of the target memory range
595  * @map_end: end address of the target memory range
596  *
597  * This function will setup direct mapping for memory range
598  * [map_start, map_end) in top-down. That said, the page tables
599  * will be allocated at the end of the memory, and we map the
600  * memory in top-down.
601  */
602 static void __init memory_map_top_down(unsigned long map_start,
603 				       unsigned long map_end)
604 {
605 	unsigned long real_end, last_start;
606 	unsigned long step_size;
607 	unsigned long addr;
608 	unsigned long mapped_ram_size = 0;
609 
610 	/*
611 	 * Systems that have many reserved areas near top of the memory,
612 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
613 	 * require lots of 4K mappings which may exhaust pgt_buf.
614 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
615 	 * there is enough mapped memory that can be allocated from
616 	 * memblock.
617 	 */
618 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
619 					 map_end);
620 	memblock_phys_free(addr, PMD_SIZE);
621 	real_end = addr + PMD_SIZE;
622 
623 	/* step_size need to be small so pgt_buf from BRK could cover it */
624 	step_size = PMD_SIZE;
625 	max_pfn_mapped = 0; /* will get exact value next */
626 	min_pfn_mapped = real_end >> PAGE_SHIFT;
627 	last_start = real_end;
628 
629 	/*
630 	 * We start from the top (end of memory) and go to the bottom.
631 	 * The memblock_find_in_range() gets us a block of RAM from the
632 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
633 	 * for page table.
634 	 */
635 	while (last_start > map_start) {
636 		unsigned long start;
637 
638 		if (last_start > step_size) {
639 			start = round_down(last_start - 1, step_size);
640 			if (start < map_start)
641 				start = map_start;
642 		} else
643 			start = map_start;
644 		mapped_ram_size += init_range_memory_mapping(start,
645 							last_start);
646 		last_start = start;
647 		min_pfn_mapped = last_start >> PAGE_SHIFT;
648 		if (mapped_ram_size >= step_size)
649 			step_size = get_new_step_size(step_size);
650 	}
651 
652 	if (real_end < map_end)
653 		init_range_memory_mapping(real_end, map_end);
654 }
655 
656 /**
657  * memory_map_bottom_up - Map [map_start, map_end) bottom up
658  * @map_start: start address of the target memory range
659  * @map_end: end address of the target memory range
660  *
661  * This function will setup direct mapping for memory range
662  * [map_start, map_end) in bottom-up. Since we have limited the
663  * bottom-up allocation above the kernel, the page tables will
664  * be allocated just above the kernel and we map the memory
665  * in [map_start, map_end) in bottom-up.
666  */
667 static void __init memory_map_bottom_up(unsigned long map_start,
668 					unsigned long map_end)
669 {
670 	unsigned long next, start;
671 	unsigned long mapped_ram_size = 0;
672 	/* step_size need to be small so pgt_buf from BRK could cover it */
673 	unsigned long step_size = PMD_SIZE;
674 
675 	start = map_start;
676 	min_pfn_mapped = start >> PAGE_SHIFT;
677 
678 	/*
679 	 * We start from the bottom (@map_start) and go to the top (@map_end).
680 	 * The memblock_find_in_range() gets us a block of RAM from the
681 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
682 	 * for page table.
683 	 */
684 	while (start < map_end) {
685 		if (step_size && map_end - start > step_size) {
686 			next = round_up(start + 1, step_size);
687 			if (next > map_end)
688 				next = map_end;
689 		} else {
690 			next = map_end;
691 		}
692 
693 		mapped_ram_size += init_range_memory_mapping(start, next);
694 		start = next;
695 
696 		if (mapped_ram_size >= step_size)
697 			step_size = get_new_step_size(step_size);
698 	}
699 }
700 
701 /*
702  * The real mode trampoline, which is required for bootstrapping CPUs
703  * occupies only a small area under the low 1MB.  See reserve_real_mode()
704  * for details.
705  *
706  * If KASLR is disabled the first PGD entry of the direct mapping is copied
707  * to map the real mode trampoline.
708  *
709  * If KASLR is enabled, copy only the PUD which covers the low 1MB
710  * area. This limits the randomization granularity to 1GB for both 4-level
711  * and 5-level paging.
712  */
713 static void __init init_trampoline(void)
714 {
715 #ifdef CONFIG_X86_64
716 	/*
717 	 * The code below will alias kernel page-tables in the user-range of the
718 	 * address space, including the Global bit. So global TLB entries will
719 	 * be created when using the trampoline page-table.
720 	 */
721 	if (!kaslr_memory_enabled())
722 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
723 	else
724 		init_trampoline_kaslr();
725 #endif
726 }
727 
728 void __init init_mem_mapping(void)
729 {
730 	unsigned long end;
731 
732 	pti_check_boottime_disable();
733 	probe_page_size_mask();
734 	setup_pcid();
735 
736 #ifdef CONFIG_X86_64
737 	end = max_pfn << PAGE_SHIFT;
738 #else
739 	end = max_low_pfn << PAGE_SHIFT;
740 #endif
741 
742 	/* the ISA range is always mapped regardless of memory holes */
743 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
744 
745 	/* Init the trampoline, possibly with KASLR memory offset */
746 	init_trampoline();
747 
748 	/*
749 	 * If the allocation is in bottom-up direction, we setup direct mapping
750 	 * in bottom-up, otherwise we setup direct mapping in top-down.
751 	 */
752 	if (memblock_bottom_up()) {
753 		unsigned long kernel_end = __pa_symbol(_end);
754 
755 		/*
756 		 * we need two separate calls here. This is because we want to
757 		 * allocate page tables above the kernel. So we first map
758 		 * [kernel_end, end) to make memory above the kernel be mapped
759 		 * as soon as possible. And then use page tables allocated above
760 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
761 		 */
762 		memory_map_bottom_up(kernel_end, end);
763 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
764 	} else {
765 		memory_map_top_down(ISA_END_ADDRESS, end);
766 	}
767 
768 #ifdef CONFIG_X86_64
769 	if (max_pfn > max_low_pfn) {
770 		/* can we preserve max_low_pfn ?*/
771 		max_low_pfn = max_pfn;
772 	}
773 #else
774 	early_ioremap_page_table_range_init();
775 #endif
776 
777 	load_cr3(swapper_pg_dir);
778 	__flush_tlb_all();
779 
780 	x86_init.hyper.init_mem_mapping();
781 
782 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
783 }
784 
785 /*
786  * Initialize an mm_struct to be used during poking and a pointer to be used
787  * during patching.
788  */
789 void __init poking_init(void)
790 {
791 	spinlock_t *ptl;
792 	pte_t *ptep;
793 
794 	poking_mm = copy_init_mm();
795 	BUG_ON(!poking_mm);
796 
797 	/*
798 	 * Randomize the poking address, but make sure that the following page
799 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
800 	 * and adjust the address if the PMD ends after the first one.
801 	 */
802 	poking_addr = TASK_UNMAPPED_BASE;
803 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
804 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
805 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
806 
807 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
808 		poking_addr += PAGE_SIZE;
809 
810 	/*
811 	 * We need to trigger the allocation of the page-tables that will be
812 	 * needed for poking now. Later, poking may be performed in an atomic
813 	 * section, which might cause allocation to fail.
814 	 */
815 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
816 	BUG_ON(!ptep);
817 	pte_unmap_unlock(ptep, ptl);
818 }
819 
820 /*
821  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
822  * is valid. The argument is a physical page number.
823  *
824  * On x86, access has to be given to the first megabyte of RAM because that
825  * area traditionally contains BIOS code and data regions used by X, dosemu,
826  * and similar apps. Since they map the entire memory range, the whole range
827  * must be allowed (for mapping), but any areas that would otherwise be
828  * disallowed are flagged as being "zero filled" instead of rejected.
829  * Access has to be given to non-kernel-ram areas as well, these contain the
830  * PCI mmio resources as well as potential bios/acpi data regions.
831  */
832 int devmem_is_allowed(unsigned long pagenr)
833 {
834 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
835 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
836 			!= REGION_DISJOINT) {
837 		/*
838 		 * For disallowed memory regions in the low 1MB range,
839 		 * request that the page be shown as all zeros.
840 		 */
841 		if (pagenr < 256)
842 			return 2;
843 
844 		return 0;
845 	}
846 
847 	/*
848 	 * This must follow RAM test, since System RAM is considered a
849 	 * restricted resource under CONFIG_STRICT_IOMEM.
850 	 */
851 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
852 		/* Low 1MB bypasses iomem restrictions. */
853 		if (pagenr < 256)
854 			return 1;
855 
856 		return 0;
857 	}
858 
859 	return 1;
860 }
861 
862 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
863 {
864 	unsigned long begin_aligned, end_aligned;
865 
866 	/* Make sure boundaries are page aligned */
867 	begin_aligned = PAGE_ALIGN(begin);
868 	end_aligned   = end & PAGE_MASK;
869 
870 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
871 		begin = begin_aligned;
872 		end   = end_aligned;
873 	}
874 
875 	if (begin >= end)
876 		return;
877 
878 	/*
879 	 * If debugging page accesses then do not free this memory but
880 	 * mark them not present - any buggy init-section access will
881 	 * create a kernel page fault:
882 	 */
883 	if (debug_pagealloc_enabled()) {
884 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
885 			begin, end - 1);
886 		/*
887 		 * Inform kmemleak about the hole in the memory since the
888 		 * corresponding pages will be unmapped.
889 		 */
890 		kmemleak_free_part((void *)begin, end - begin);
891 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
892 	} else {
893 		/*
894 		 * We just marked the kernel text read only above, now that
895 		 * we are going to free part of that, we need to make that
896 		 * writeable and non-executable first.
897 		 */
898 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
899 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
900 
901 		free_reserved_area((void *)begin, (void *)end,
902 				   POISON_FREE_INITMEM, what);
903 	}
904 }
905 
906 /*
907  * begin/end can be in the direct map or the "high kernel mapping"
908  * used for the kernel image only.  free_init_pages() will do the
909  * right thing for either kind of address.
910  */
911 void free_kernel_image_pages(const char *what, void *begin, void *end)
912 {
913 	unsigned long begin_ul = (unsigned long)begin;
914 	unsigned long end_ul = (unsigned long)end;
915 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
916 
917 	free_init_pages(what, begin_ul, end_ul);
918 
919 	/*
920 	 * PTI maps some of the kernel into userspace.  For performance,
921 	 * this includes some kernel areas that do not contain secrets.
922 	 * Those areas might be adjacent to the parts of the kernel image
923 	 * being freed, which may contain secrets.  Remove the "high kernel
924 	 * image mapping" for these freed areas, ensuring they are not even
925 	 * potentially vulnerable to Meltdown regardless of the specific
926 	 * optimizations PTI is currently using.
927 	 *
928 	 * The "noalias" prevents unmapping the direct map alias which is
929 	 * needed to access the freed pages.
930 	 *
931 	 * This is only valid for 64bit kernels. 32bit has only one mapping
932 	 * which can't be treated in this way for obvious reasons.
933 	 */
934 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
935 		set_memory_np_noalias(begin_ul, len_pages);
936 }
937 
938 void __ref free_initmem(void)
939 {
940 	e820__reallocate_tables();
941 
942 	mem_encrypt_free_decrypted_mem();
943 
944 	free_kernel_image_pages("unused kernel image (initmem)",
945 				&__init_begin, &__init_end);
946 }
947 
948 #ifdef CONFIG_BLK_DEV_INITRD
949 void __init free_initrd_mem(unsigned long start, unsigned long end)
950 {
951 	/*
952 	 * end could be not aligned, and We can not align that,
953 	 * decompressor could be confused by aligned initrd_end
954 	 * We already reserve the end partial page before in
955 	 *   - i386_start_kernel()
956 	 *   - x86_64_start_kernel()
957 	 *   - relocate_initrd()
958 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
959 	 */
960 	free_init_pages("initrd", start, PAGE_ALIGN(end));
961 }
962 #endif
963 
964 /*
965  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
966  * and pass it to the MM layer - to help it set zone watermarks more
967  * accurately.
968  *
969  * Done on 64-bit systems only for the time being, although 32-bit systems
970  * might benefit from this as well.
971  */
972 void __init memblock_find_dma_reserve(void)
973 {
974 #ifdef CONFIG_X86_64
975 	u64 nr_pages = 0, nr_free_pages = 0;
976 	unsigned long start_pfn, end_pfn;
977 	phys_addr_t start_addr, end_addr;
978 	int i;
979 	u64 u;
980 
981 	/*
982 	 * Iterate over all memory ranges (free and reserved ones alike),
983 	 * to calculate the total number of pages in the first 16 MB of RAM:
984 	 */
985 	nr_pages = 0;
986 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
987 		start_pfn = min(start_pfn, MAX_DMA_PFN);
988 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
989 
990 		nr_pages += end_pfn - start_pfn;
991 	}
992 
993 	/*
994 	 * Iterate over free memory ranges to calculate the number of free
995 	 * pages in the DMA zone, while not counting potential partial
996 	 * pages at the beginning or the end of the range:
997 	 */
998 	nr_free_pages = 0;
999 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1000 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1001 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1002 
1003 		if (start_pfn < end_pfn)
1004 			nr_free_pages += end_pfn - start_pfn;
1005 	}
1006 
1007 	set_dma_reserve(nr_pages - nr_free_pages);
1008 #endif
1009 }
1010 
1011 void __init zone_sizes_init(void)
1012 {
1013 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1014 
1015 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1016 
1017 #ifdef CONFIG_ZONE_DMA
1018 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1019 #endif
1020 #ifdef CONFIG_ZONE_DMA32
1021 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1022 #endif
1023 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1024 #ifdef CONFIG_HIGHMEM
1025 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1026 #endif
1027 
1028 	free_area_init(max_zone_pfns);
1029 }
1030 
1031 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1032 	.loaded_mm = &init_mm,
1033 	.next_asid = 1,
1034 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1035 };
1036 
1037 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1038 {
1039 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1040 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1041 
1042 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1043 	__pte2cachemode_tbl[entry] = cache;
1044 }
1045 
1046 #ifdef CONFIG_SWAP
1047 unsigned long max_swapfile_size(void)
1048 {
1049 	unsigned long pages;
1050 
1051 	pages = generic_max_swapfile_size();
1052 
1053 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1054 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1055 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1056 		/*
1057 		 * We encode swap offsets also with 3 bits below those for pfn
1058 		 * which makes the usable limit higher.
1059 		 */
1060 #if CONFIG_PGTABLE_LEVELS > 2
1061 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1062 #endif
1063 		pages = min_t(unsigned long long, l1tf_limit, pages);
1064 	}
1065 	return pages;
1066 }
1067 #endif
1068