xref: /openbmc/linux/arch/x86/mm/init.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 #include <asm/hypervisor.h>
22 #include <asm/cpufeature.h>
23 #include <asm/pti.h>
24 
25 /*
26  * We need to define the tracepoints somewhere, and tlb.c
27  * is only compied when SMP=y.
28  */
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/tlb.h>
31 
32 #include "mm_internal.h"
33 
34 /*
35  * Tables translating between page_cache_type_t and pte encoding.
36  *
37  * The default values are defined statically as minimal supported mode;
38  * WC and WT fall back to UC-.  pat_init() updates these values to support
39  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
40  * for the details.  Note, __early_ioremap() used during early boot-time
41  * takes pgprot_t (pte encoding) and does not use these tables.
42  *
43  *   Index into __cachemode2pte_tbl[] is the cachemode.
44  *
45  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
46  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
47  */
48 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
49 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
50 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
51 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
52 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
53 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
54 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
55 };
56 EXPORT_SYMBOL(__cachemode2pte_tbl);
57 
58 uint8_t __pte2cachemode_tbl[8] = {
59 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
60 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
61 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
62 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
63 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
64 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
65 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
66 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
67 };
68 EXPORT_SYMBOL(__pte2cachemode_tbl);
69 
70 static unsigned long __initdata pgt_buf_start;
71 static unsigned long __initdata pgt_buf_end;
72 static unsigned long __initdata pgt_buf_top;
73 
74 static unsigned long min_pfn_mapped;
75 
76 static bool __initdata can_use_brk_pgt = true;
77 
78 /*
79  * Pages returned are already directly mapped.
80  *
81  * Changing that is likely to break Xen, see commit:
82  *
83  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
84  *
85  * for detailed information.
86  */
87 __ref void *alloc_low_pages(unsigned int num)
88 {
89 	unsigned long pfn;
90 	int i;
91 
92 	if (after_bootmem) {
93 		unsigned int order;
94 
95 		order = get_order((unsigned long)num << PAGE_SHIFT);
96 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
97 	}
98 
99 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
100 		unsigned long ret;
101 		if (min_pfn_mapped >= max_pfn_mapped)
102 			panic("alloc_low_pages: ran out of memory");
103 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
104 					max_pfn_mapped << PAGE_SHIFT,
105 					PAGE_SIZE * num , PAGE_SIZE);
106 		if (!ret)
107 			panic("alloc_low_pages: can not alloc memory");
108 		memblock_reserve(ret, PAGE_SIZE * num);
109 		pfn = ret >> PAGE_SHIFT;
110 	} else {
111 		pfn = pgt_buf_end;
112 		pgt_buf_end += num;
113 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
115 	}
116 
117 	for (i = 0; i < num; i++) {
118 		void *adr;
119 
120 		adr = __va((pfn + i) << PAGE_SHIFT);
121 		clear_page(adr);
122 	}
123 
124 	return __va(pfn << PAGE_SHIFT);
125 }
126 
127 /*
128  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
129  * With KASLR memory randomization, depending on the machine e820 memory
130  * and the PUD alignment. We may need twice more pages when KASLR memory
131  * randomization is enabled.
132  */
133 #ifndef CONFIG_RANDOMIZE_MEMORY
134 #define INIT_PGD_PAGE_COUNT      6
135 #else
136 #define INIT_PGD_PAGE_COUNT      12
137 #endif
138 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140 void  __init early_alloc_pgt_buf(void)
141 {
142 	unsigned long tables = INIT_PGT_BUF_SIZE;
143 	phys_addr_t base;
144 
145 	base = __pa(extend_brk(tables, PAGE_SIZE));
146 
147 	pgt_buf_start = base >> PAGE_SHIFT;
148 	pgt_buf_end = pgt_buf_start;
149 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
150 }
151 
152 int after_bootmem;
153 
154 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
155 
156 struct map_range {
157 	unsigned long start;
158 	unsigned long end;
159 	unsigned page_size_mask;
160 };
161 
162 static int page_size_mask;
163 
164 static void __init probe_page_size_mask(void)
165 {
166 	/*
167 	 * For pagealloc debugging, identity mapping will use small pages.
168 	 * This will simplify cpa(), which otherwise needs to support splitting
169 	 * large pages into small in interrupt context, etc.
170 	 */
171 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
172 		page_size_mask |= 1 << PG_LEVEL_2M;
173 	else
174 		direct_gbpages = 0;
175 
176 	/* Enable PSE if available */
177 	if (boot_cpu_has(X86_FEATURE_PSE))
178 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179 
180 	/* Enable PGE if available */
181 	__supported_pte_mask &= ~_PAGE_GLOBAL;
182 	if (boot_cpu_has(X86_FEATURE_PGE)) {
183 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
184 		__supported_pte_mask |= _PAGE_GLOBAL;
185 	}
186 
187 	/* By the default is everything supported: */
188 	__default_kernel_pte_mask = __supported_pte_mask;
189 	/* Except when with PTI where the kernel is mostly non-Global: */
190 	if (cpu_feature_enabled(X86_FEATURE_PTI))
191 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
192 
193 	/* Enable 1 GB linear kernel mappings if available: */
194 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
195 		printk(KERN_INFO "Using GB pages for direct mapping\n");
196 		page_size_mask |= 1 << PG_LEVEL_1G;
197 	} else {
198 		direct_gbpages = 0;
199 	}
200 }
201 
202 static void setup_pcid(void)
203 {
204 	if (!IS_ENABLED(CONFIG_X86_64))
205 		return;
206 
207 	if (!boot_cpu_has(X86_FEATURE_PCID))
208 		return;
209 
210 	if (boot_cpu_has(X86_FEATURE_PGE)) {
211 		/*
212 		 * This can't be cr4_set_bits_and_update_boot() -- the
213 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
214 		 * do any good anyway.  Despite the name,
215 		 * cr4_set_bits_and_update_boot() doesn't actually cause
216 		 * the bits in question to remain set all the way through
217 		 * the secondary boot asm.
218 		 *
219 		 * Instead, we brute-force it and set CR4.PCIDE manually in
220 		 * start_secondary().
221 		 */
222 		cr4_set_bits(X86_CR4_PCIDE);
223 
224 		/*
225 		 * INVPCID's single-context modes (2/3) only work if we set
226 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
227 		 * on systems that have X86_CR4_PCIDE clear, or that have
228 		 * no INVPCID support at all.
229 		 */
230 		if (boot_cpu_has(X86_FEATURE_INVPCID))
231 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
232 	} else {
233 		/*
234 		 * flush_tlb_all(), as currently implemented, won't work if
235 		 * PCID is on but PGE is not.  Since that combination
236 		 * doesn't exist on real hardware, there's no reason to try
237 		 * to fully support it, but it's polite to avoid corrupting
238 		 * data if we're on an improperly configured VM.
239 		 */
240 		setup_clear_cpu_cap(X86_FEATURE_PCID);
241 	}
242 }
243 
244 #ifdef CONFIG_X86_32
245 #define NR_RANGE_MR 3
246 #else /* CONFIG_X86_64 */
247 #define NR_RANGE_MR 5
248 #endif
249 
250 static int __meminit save_mr(struct map_range *mr, int nr_range,
251 			     unsigned long start_pfn, unsigned long end_pfn,
252 			     unsigned long page_size_mask)
253 {
254 	if (start_pfn < end_pfn) {
255 		if (nr_range >= NR_RANGE_MR)
256 			panic("run out of range for init_memory_mapping\n");
257 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
258 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
259 		mr[nr_range].page_size_mask = page_size_mask;
260 		nr_range++;
261 	}
262 
263 	return nr_range;
264 }
265 
266 /*
267  * adjust the page_size_mask for small range to go with
268  *	big page size instead small one if nearby are ram too.
269  */
270 static void __ref adjust_range_page_size_mask(struct map_range *mr,
271 							 int nr_range)
272 {
273 	int i;
274 
275 	for (i = 0; i < nr_range; i++) {
276 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
277 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
278 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
279 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
280 
281 #ifdef CONFIG_X86_32
282 			if ((end >> PAGE_SHIFT) > max_low_pfn)
283 				continue;
284 #endif
285 
286 			if (memblock_is_region_memory(start, end - start))
287 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
288 		}
289 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
290 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
291 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
292 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
293 
294 			if (memblock_is_region_memory(start, end - start))
295 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
296 		}
297 	}
298 }
299 
300 static const char *page_size_string(struct map_range *mr)
301 {
302 	static const char str_1g[] = "1G";
303 	static const char str_2m[] = "2M";
304 	static const char str_4m[] = "4M";
305 	static const char str_4k[] = "4k";
306 
307 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
308 		return str_1g;
309 	/*
310 	 * 32-bit without PAE has a 4M large page size.
311 	 * PG_LEVEL_2M is misnamed, but we can at least
312 	 * print out the right size in the string.
313 	 */
314 	if (IS_ENABLED(CONFIG_X86_32) &&
315 	    !IS_ENABLED(CONFIG_X86_PAE) &&
316 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
317 		return str_4m;
318 
319 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
320 		return str_2m;
321 
322 	return str_4k;
323 }
324 
325 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
326 				     unsigned long start,
327 				     unsigned long end)
328 {
329 	unsigned long start_pfn, end_pfn, limit_pfn;
330 	unsigned long pfn;
331 	int i;
332 
333 	limit_pfn = PFN_DOWN(end);
334 
335 	/* head if not big page alignment ? */
336 	pfn = start_pfn = PFN_DOWN(start);
337 #ifdef CONFIG_X86_32
338 	/*
339 	 * Don't use a large page for the first 2/4MB of memory
340 	 * because there are often fixed size MTRRs in there
341 	 * and overlapping MTRRs into large pages can cause
342 	 * slowdowns.
343 	 */
344 	if (pfn == 0)
345 		end_pfn = PFN_DOWN(PMD_SIZE);
346 	else
347 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
348 #else /* CONFIG_X86_64 */
349 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
350 #endif
351 	if (end_pfn > limit_pfn)
352 		end_pfn = limit_pfn;
353 	if (start_pfn < end_pfn) {
354 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
355 		pfn = end_pfn;
356 	}
357 
358 	/* big page (2M) range */
359 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
360 #ifdef CONFIG_X86_32
361 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
362 #else /* CONFIG_X86_64 */
363 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
364 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
365 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
366 #endif
367 
368 	if (start_pfn < end_pfn) {
369 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
370 				page_size_mask & (1<<PG_LEVEL_2M));
371 		pfn = end_pfn;
372 	}
373 
374 #ifdef CONFIG_X86_64
375 	/* big page (1G) range */
376 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
377 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
378 	if (start_pfn < end_pfn) {
379 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
380 				page_size_mask &
381 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
382 		pfn = end_pfn;
383 	}
384 
385 	/* tail is not big page (1G) alignment */
386 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
387 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
388 	if (start_pfn < end_pfn) {
389 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
390 				page_size_mask & (1<<PG_LEVEL_2M));
391 		pfn = end_pfn;
392 	}
393 #endif
394 
395 	/* tail is not big page (2M) alignment */
396 	start_pfn = pfn;
397 	end_pfn = limit_pfn;
398 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
399 
400 	if (!after_bootmem)
401 		adjust_range_page_size_mask(mr, nr_range);
402 
403 	/* try to merge same page size and continuous */
404 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
405 		unsigned long old_start;
406 		if (mr[i].end != mr[i+1].start ||
407 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
408 			continue;
409 		/* move it */
410 		old_start = mr[i].start;
411 		memmove(&mr[i], &mr[i+1],
412 			(nr_range - 1 - i) * sizeof(struct map_range));
413 		mr[i--].start = old_start;
414 		nr_range--;
415 	}
416 
417 	for (i = 0; i < nr_range; i++)
418 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
419 				mr[i].start, mr[i].end - 1,
420 				page_size_string(&mr[i]));
421 
422 	return nr_range;
423 }
424 
425 struct range pfn_mapped[E820_MAX_ENTRIES];
426 int nr_pfn_mapped;
427 
428 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
429 {
430 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
431 					     nr_pfn_mapped, start_pfn, end_pfn);
432 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
433 
434 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
435 
436 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
437 		max_low_pfn_mapped = max(max_low_pfn_mapped,
438 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
439 }
440 
441 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
442 {
443 	int i;
444 
445 	for (i = 0; i < nr_pfn_mapped; i++)
446 		if ((start_pfn >= pfn_mapped[i].start) &&
447 		    (end_pfn <= pfn_mapped[i].end))
448 			return true;
449 
450 	return false;
451 }
452 
453 /*
454  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
455  * This runs before bootmem is initialized and gets pages directly from
456  * the physical memory. To access them they are temporarily mapped.
457  */
458 unsigned long __ref init_memory_mapping(unsigned long start,
459 					       unsigned long end)
460 {
461 	struct map_range mr[NR_RANGE_MR];
462 	unsigned long ret = 0;
463 	int nr_range, i;
464 
465 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
466 	       start, end - 1);
467 
468 	memset(mr, 0, sizeof(mr));
469 	nr_range = split_mem_range(mr, 0, start, end);
470 
471 	for (i = 0; i < nr_range; i++)
472 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
473 						   mr[i].page_size_mask);
474 
475 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
476 
477 	return ret >> PAGE_SHIFT;
478 }
479 
480 /*
481  * We need to iterate through the E820 memory map and create direct mappings
482  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
483  * create direct mappings for all pfns from [0 to max_low_pfn) and
484  * [4GB to max_pfn) because of possible memory holes in high addresses
485  * that cannot be marked as UC by fixed/variable range MTRRs.
486  * Depending on the alignment of E820 ranges, this may possibly result
487  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
488  *
489  * init_mem_mapping() calls init_range_memory_mapping() with big range.
490  * That range would have hole in the middle or ends, and only ram parts
491  * will be mapped in init_range_memory_mapping().
492  */
493 static unsigned long __init init_range_memory_mapping(
494 					   unsigned long r_start,
495 					   unsigned long r_end)
496 {
497 	unsigned long start_pfn, end_pfn;
498 	unsigned long mapped_ram_size = 0;
499 	int i;
500 
501 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
502 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
503 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
504 		if (start >= end)
505 			continue;
506 
507 		/*
508 		 * if it is overlapping with brk pgt, we need to
509 		 * alloc pgt buf from memblock instead.
510 		 */
511 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
512 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
513 		init_memory_mapping(start, end);
514 		mapped_ram_size += end - start;
515 		can_use_brk_pgt = true;
516 	}
517 
518 	return mapped_ram_size;
519 }
520 
521 static unsigned long __init get_new_step_size(unsigned long step_size)
522 {
523 	/*
524 	 * Initial mapped size is PMD_SIZE (2M).
525 	 * We can not set step_size to be PUD_SIZE (1G) yet.
526 	 * In worse case, when we cross the 1G boundary, and
527 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
528 	 * to map 1G range with PTE. Hence we use one less than the
529 	 * difference of page table level shifts.
530 	 *
531 	 * Don't need to worry about overflow in the top-down case, on 32bit,
532 	 * when step_size is 0, round_down() returns 0 for start, and that
533 	 * turns it into 0x100000000ULL.
534 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
535 	 * needs to be taken into consideration by the code below.
536 	 */
537 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
538 }
539 
540 /**
541  * memory_map_top_down - Map [map_start, map_end) top down
542  * @map_start: start address of the target memory range
543  * @map_end: end address of the target memory range
544  *
545  * This function will setup direct mapping for memory range
546  * [map_start, map_end) in top-down. That said, the page tables
547  * will be allocated at the end of the memory, and we map the
548  * memory in top-down.
549  */
550 static void __init memory_map_top_down(unsigned long map_start,
551 				       unsigned long map_end)
552 {
553 	unsigned long real_end, start, last_start;
554 	unsigned long step_size;
555 	unsigned long addr;
556 	unsigned long mapped_ram_size = 0;
557 
558 	/* xen has big range in reserved near end of ram, skip it at first.*/
559 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
560 	real_end = addr + PMD_SIZE;
561 
562 	/* step_size need to be small so pgt_buf from BRK could cover it */
563 	step_size = PMD_SIZE;
564 	max_pfn_mapped = 0; /* will get exact value next */
565 	min_pfn_mapped = real_end >> PAGE_SHIFT;
566 	last_start = start = real_end;
567 
568 	/*
569 	 * We start from the top (end of memory) and go to the bottom.
570 	 * The memblock_find_in_range() gets us a block of RAM from the
571 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
572 	 * for page table.
573 	 */
574 	while (last_start > map_start) {
575 		if (last_start > step_size) {
576 			start = round_down(last_start - 1, step_size);
577 			if (start < map_start)
578 				start = map_start;
579 		} else
580 			start = map_start;
581 		mapped_ram_size += init_range_memory_mapping(start,
582 							last_start);
583 		last_start = start;
584 		min_pfn_mapped = last_start >> PAGE_SHIFT;
585 		if (mapped_ram_size >= step_size)
586 			step_size = get_new_step_size(step_size);
587 	}
588 
589 	if (real_end < map_end)
590 		init_range_memory_mapping(real_end, map_end);
591 }
592 
593 /**
594  * memory_map_bottom_up - Map [map_start, map_end) bottom up
595  * @map_start: start address of the target memory range
596  * @map_end: end address of the target memory range
597  *
598  * This function will setup direct mapping for memory range
599  * [map_start, map_end) in bottom-up. Since we have limited the
600  * bottom-up allocation above the kernel, the page tables will
601  * be allocated just above the kernel and we map the memory
602  * in [map_start, map_end) in bottom-up.
603  */
604 static void __init memory_map_bottom_up(unsigned long map_start,
605 					unsigned long map_end)
606 {
607 	unsigned long next, start;
608 	unsigned long mapped_ram_size = 0;
609 	/* step_size need to be small so pgt_buf from BRK could cover it */
610 	unsigned long step_size = PMD_SIZE;
611 
612 	start = map_start;
613 	min_pfn_mapped = start >> PAGE_SHIFT;
614 
615 	/*
616 	 * We start from the bottom (@map_start) and go to the top (@map_end).
617 	 * The memblock_find_in_range() gets us a block of RAM from the
618 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
619 	 * for page table.
620 	 */
621 	while (start < map_end) {
622 		if (step_size && map_end - start > step_size) {
623 			next = round_up(start + 1, step_size);
624 			if (next > map_end)
625 				next = map_end;
626 		} else {
627 			next = map_end;
628 		}
629 
630 		mapped_ram_size += init_range_memory_mapping(start, next);
631 		start = next;
632 
633 		if (mapped_ram_size >= step_size)
634 			step_size = get_new_step_size(step_size);
635 	}
636 }
637 
638 void __init init_mem_mapping(void)
639 {
640 	unsigned long end;
641 
642 	pti_check_boottime_disable();
643 	probe_page_size_mask();
644 	setup_pcid();
645 
646 #ifdef CONFIG_X86_64
647 	end = max_pfn << PAGE_SHIFT;
648 #else
649 	end = max_low_pfn << PAGE_SHIFT;
650 #endif
651 
652 	/* the ISA range is always mapped regardless of memory holes */
653 	init_memory_mapping(0, ISA_END_ADDRESS);
654 
655 	/* Init the trampoline, possibly with KASLR memory offset */
656 	init_trampoline();
657 
658 	/*
659 	 * If the allocation is in bottom-up direction, we setup direct mapping
660 	 * in bottom-up, otherwise we setup direct mapping in top-down.
661 	 */
662 	if (memblock_bottom_up()) {
663 		unsigned long kernel_end = __pa_symbol(_end);
664 
665 		/*
666 		 * we need two separate calls here. This is because we want to
667 		 * allocate page tables above the kernel. So we first map
668 		 * [kernel_end, end) to make memory above the kernel be mapped
669 		 * as soon as possible. And then use page tables allocated above
670 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
671 		 */
672 		memory_map_bottom_up(kernel_end, end);
673 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
674 	} else {
675 		memory_map_top_down(ISA_END_ADDRESS, end);
676 	}
677 
678 #ifdef CONFIG_X86_64
679 	if (max_pfn > max_low_pfn) {
680 		/* can we preseve max_low_pfn ?*/
681 		max_low_pfn = max_pfn;
682 	}
683 #else
684 	early_ioremap_page_table_range_init();
685 #endif
686 
687 	load_cr3(swapper_pg_dir);
688 	__flush_tlb_all();
689 
690 	x86_init.hyper.init_mem_mapping();
691 
692 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
693 }
694 
695 /*
696  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
697  * is valid. The argument is a physical page number.
698  *
699  * On x86, access has to be given to the first megabyte of RAM because that
700  * area traditionally contains BIOS code and data regions used by X, dosemu,
701  * and similar apps. Since they map the entire memory range, the whole range
702  * must be allowed (for mapping), but any areas that would otherwise be
703  * disallowed are flagged as being "zero filled" instead of rejected.
704  * Access has to be given to non-kernel-ram areas as well, these contain the
705  * PCI mmio resources as well as potential bios/acpi data regions.
706  */
707 int devmem_is_allowed(unsigned long pagenr)
708 {
709 	if (page_is_ram(pagenr)) {
710 		/*
711 		 * For disallowed memory regions in the low 1MB range,
712 		 * request that the page be shown as all zeros.
713 		 */
714 		if (pagenr < 256)
715 			return 2;
716 
717 		return 0;
718 	}
719 
720 	/*
721 	 * This must follow RAM test, since System RAM is considered a
722 	 * restricted resource under CONFIG_STRICT_IOMEM.
723 	 */
724 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
725 		/* Low 1MB bypasses iomem restrictions. */
726 		if (pagenr < 256)
727 			return 1;
728 
729 		return 0;
730 	}
731 
732 	return 1;
733 }
734 
735 void free_init_pages(char *what, unsigned long begin, unsigned long end)
736 {
737 	unsigned long begin_aligned, end_aligned;
738 
739 	/* Make sure boundaries are page aligned */
740 	begin_aligned = PAGE_ALIGN(begin);
741 	end_aligned   = end & PAGE_MASK;
742 
743 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
744 		begin = begin_aligned;
745 		end   = end_aligned;
746 	}
747 
748 	if (begin >= end)
749 		return;
750 
751 	/*
752 	 * If debugging page accesses then do not free this memory but
753 	 * mark them not present - any buggy init-section access will
754 	 * create a kernel page fault:
755 	 */
756 	if (debug_pagealloc_enabled()) {
757 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
758 			begin, end - 1);
759 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
760 	} else {
761 		/*
762 		 * We just marked the kernel text read only above, now that
763 		 * we are going to free part of that, we need to make that
764 		 * writeable and non-executable first.
765 		 */
766 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
767 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
768 
769 		free_reserved_area((void *)begin, (void *)end,
770 				   POISON_FREE_INITMEM, what);
771 	}
772 }
773 
774 void __ref free_initmem(void)
775 {
776 	e820__reallocate_tables();
777 
778 	free_init_pages("unused kernel",
779 			(unsigned long)(&__init_begin),
780 			(unsigned long)(&__init_end));
781 }
782 
783 #ifdef CONFIG_BLK_DEV_INITRD
784 void __init free_initrd_mem(unsigned long start, unsigned long end)
785 {
786 	/*
787 	 * end could be not aligned, and We can not align that,
788 	 * decompresser could be confused by aligned initrd_end
789 	 * We already reserve the end partial page before in
790 	 *   - i386_start_kernel()
791 	 *   - x86_64_start_kernel()
792 	 *   - relocate_initrd()
793 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
794 	 */
795 	free_init_pages("initrd", start, PAGE_ALIGN(end));
796 }
797 #endif
798 
799 /*
800  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
801  * and pass it to the MM layer - to help it set zone watermarks more
802  * accurately.
803  *
804  * Done on 64-bit systems only for the time being, although 32-bit systems
805  * might benefit from this as well.
806  */
807 void __init memblock_find_dma_reserve(void)
808 {
809 #ifdef CONFIG_X86_64
810 	u64 nr_pages = 0, nr_free_pages = 0;
811 	unsigned long start_pfn, end_pfn;
812 	phys_addr_t start_addr, end_addr;
813 	int i;
814 	u64 u;
815 
816 	/*
817 	 * Iterate over all memory ranges (free and reserved ones alike),
818 	 * to calculate the total number of pages in the first 16 MB of RAM:
819 	 */
820 	nr_pages = 0;
821 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
822 		start_pfn = min(start_pfn, MAX_DMA_PFN);
823 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
824 
825 		nr_pages += end_pfn - start_pfn;
826 	}
827 
828 	/*
829 	 * Iterate over free memory ranges to calculate the number of free
830 	 * pages in the DMA zone, while not counting potential partial
831 	 * pages at the beginning or the end of the range:
832 	 */
833 	nr_free_pages = 0;
834 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
835 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
836 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
837 
838 		if (start_pfn < end_pfn)
839 			nr_free_pages += end_pfn - start_pfn;
840 	}
841 
842 	set_dma_reserve(nr_pages - nr_free_pages);
843 #endif
844 }
845 
846 void __init zone_sizes_init(void)
847 {
848 	unsigned long max_zone_pfns[MAX_NR_ZONES];
849 
850 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
851 
852 #ifdef CONFIG_ZONE_DMA
853 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
854 #endif
855 #ifdef CONFIG_ZONE_DMA32
856 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
857 #endif
858 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
859 #ifdef CONFIG_HIGHMEM
860 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
861 #endif
862 
863 	free_area_init_nodes(max_zone_pfns);
864 }
865 
866 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
867 	.loaded_mm = &init_mm,
868 	.next_asid = 1,
869 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
870 };
871 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
872 
873 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
874 {
875 	/* entry 0 MUST be WB (hardwired to speed up translations) */
876 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
877 
878 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
879 	__pte2cachemode_tbl[entry] = cache;
880 }
881