xref: /openbmc/linux/arch/x86/mm/init.c (revision 9ac17575)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 
29 /*
30  * We need to define the tracepoints somewhere, and tlb.c
31  * is only compied when SMP=y.
32  */
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/tlb.h>
35 
36 #include "mm_internal.h"
37 
38 /*
39  * Tables translating between page_cache_type_t and pte encoding.
40  *
41  * The default values are defined statically as minimal supported mode;
42  * WC and WT fall back to UC-.  pat_init() updates these values to support
43  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
44  * for the details.  Note, __early_ioremap() used during early boot-time
45  * takes pgprot_t (pte encoding) and does not use these tables.
46  *
47  *   Index into __cachemode2pte_tbl[] is the cachemode.
48  *
49  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
51  */
52 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
54 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
55 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
59 };
60 EXPORT_SYMBOL(__cachemode2pte_tbl);
61 
62 uint8_t __pte2cachemode_tbl[8] = {
63 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
64 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
65 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
66 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
67 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
71 };
72 EXPORT_SYMBOL(__pte2cachemode_tbl);
73 
74 static unsigned long __initdata pgt_buf_start;
75 static unsigned long __initdata pgt_buf_end;
76 static unsigned long __initdata pgt_buf_top;
77 
78 static unsigned long min_pfn_mapped;
79 
80 static bool __initdata can_use_brk_pgt = true;
81 
82 /*
83  * Pages returned are already directly mapped.
84  *
85  * Changing that is likely to break Xen, see commit:
86  *
87  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
88  *
89  * for detailed information.
90  */
91 __ref void *alloc_low_pages(unsigned int num)
92 {
93 	unsigned long pfn;
94 	int i;
95 
96 	if (after_bootmem) {
97 		unsigned int order;
98 
99 		order = get_order((unsigned long)num << PAGE_SHIFT);
100 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
101 	}
102 
103 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 		unsigned long ret = 0;
105 
106 		if (min_pfn_mapped < max_pfn_mapped) {
107 			ret = memblock_find_in_range(
108 					min_pfn_mapped << PAGE_SHIFT,
109 					max_pfn_mapped << PAGE_SHIFT,
110 					PAGE_SIZE * num , PAGE_SIZE);
111 		}
112 		if (ret)
113 			memblock_reserve(ret, PAGE_SIZE * num);
114 		else if (can_use_brk_pgt)
115 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
116 
117 		if (!ret)
118 			panic("alloc_low_pages: can not alloc memory");
119 
120 		pfn = ret >> PAGE_SHIFT;
121 	} else {
122 		pfn = pgt_buf_end;
123 		pgt_buf_end += num;
124 	}
125 
126 	for (i = 0; i < num; i++) {
127 		void *adr;
128 
129 		adr = __va((pfn + i) << PAGE_SHIFT);
130 		clear_page(adr);
131 	}
132 
133 	return __va(pfn << PAGE_SHIFT);
134 }
135 
136 /*
137  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
138  * With KASLR memory randomization, depending on the machine e820 memory
139  * and the PUD alignment. We may need twice more pages when KASLR memory
140  * randomization is enabled.
141  */
142 #ifndef CONFIG_RANDOMIZE_MEMORY
143 #define INIT_PGD_PAGE_COUNT      6
144 #else
145 #define INIT_PGD_PAGE_COUNT      12
146 #endif
147 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
148 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
149 void  __init early_alloc_pgt_buf(void)
150 {
151 	unsigned long tables = INIT_PGT_BUF_SIZE;
152 	phys_addr_t base;
153 
154 	base = __pa(extend_brk(tables, PAGE_SIZE));
155 
156 	pgt_buf_start = base >> PAGE_SHIFT;
157 	pgt_buf_end = pgt_buf_start;
158 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
159 }
160 
161 int after_bootmem;
162 
163 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
164 
165 struct map_range {
166 	unsigned long start;
167 	unsigned long end;
168 	unsigned page_size_mask;
169 };
170 
171 static int page_size_mask;
172 
173 static void __init probe_page_size_mask(void)
174 {
175 	/*
176 	 * For pagealloc debugging, identity mapping will use small pages.
177 	 * This will simplify cpa(), which otherwise needs to support splitting
178 	 * large pages into small in interrupt context, etc.
179 	 */
180 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
181 		page_size_mask |= 1 << PG_LEVEL_2M;
182 	else
183 		direct_gbpages = 0;
184 
185 	/* Enable PSE if available */
186 	if (boot_cpu_has(X86_FEATURE_PSE))
187 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
188 
189 	/* Enable PGE if available */
190 	__supported_pte_mask &= ~_PAGE_GLOBAL;
191 	if (boot_cpu_has(X86_FEATURE_PGE)) {
192 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
193 		__supported_pte_mask |= _PAGE_GLOBAL;
194 	}
195 
196 	/* By the default is everything supported: */
197 	__default_kernel_pte_mask = __supported_pte_mask;
198 	/* Except when with PTI where the kernel is mostly non-Global: */
199 	if (cpu_feature_enabled(X86_FEATURE_PTI))
200 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
201 
202 	/* Enable 1 GB linear kernel mappings if available: */
203 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
204 		printk(KERN_INFO "Using GB pages for direct mapping\n");
205 		page_size_mask |= 1 << PG_LEVEL_1G;
206 	} else {
207 		direct_gbpages = 0;
208 	}
209 }
210 
211 static void setup_pcid(void)
212 {
213 	if (!IS_ENABLED(CONFIG_X86_64))
214 		return;
215 
216 	if (!boot_cpu_has(X86_FEATURE_PCID))
217 		return;
218 
219 	if (boot_cpu_has(X86_FEATURE_PGE)) {
220 		/*
221 		 * This can't be cr4_set_bits_and_update_boot() -- the
222 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
223 		 * do any good anyway.  Despite the name,
224 		 * cr4_set_bits_and_update_boot() doesn't actually cause
225 		 * the bits in question to remain set all the way through
226 		 * the secondary boot asm.
227 		 *
228 		 * Instead, we brute-force it and set CR4.PCIDE manually in
229 		 * start_secondary().
230 		 */
231 		cr4_set_bits(X86_CR4_PCIDE);
232 
233 		/*
234 		 * INVPCID's single-context modes (2/3) only work if we set
235 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
236 		 * on systems that have X86_CR4_PCIDE clear, or that have
237 		 * no INVPCID support at all.
238 		 */
239 		if (boot_cpu_has(X86_FEATURE_INVPCID))
240 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
241 	} else {
242 		/*
243 		 * flush_tlb_all(), as currently implemented, won't work if
244 		 * PCID is on but PGE is not.  Since that combination
245 		 * doesn't exist on real hardware, there's no reason to try
246 		 * to fully support it, but it's polite to avoid corrupting
247 		 * data if we're on an improperly configured VM.
248 		 */
249 		setup_clear_cpu_cap(X86_FEATURE_PCID);
250 	}
251 }
252 
253 #ifdef CONFIG_X86_32
254 #define NR_RANGE_MR 3
255 #else /* CONFIG_X86_64 */
256 #define NR_RANGE_MR 5
257 #endif
258 
259 static int __meminit save_mr(struct map_range *mr, int nr_range,
260 			     unsigned long start_pfn, unsigned long end_pfn,
261 			     unsigned long page_size_mask)
262 {
263 	if (start_pfn < end_pfn) {
264 		if (nr_range >= NR_RANGE_MR)
265 			panic("run out of range for init_memory_mapping\n");
266 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
267 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
268 		mr[nr_range].page_size_mask = page_size_mask;
269 		nr_range++;
270 	}
271 
272 	return nr_range;
273 }
274 
275 /*
276  * adjust the page_size_mask for small range to go with
277  *	big page size instead small one if nearby are ram too.
278  */
279 static void __ref adjust_range_page_size_mask(struct map_range *mr,
280 							 int nr_range)
281 {
282 	int i;
283 
284 	for (i = 0; i < nr_range; i++) {
285 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
286 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
287 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
288 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
289 
290 #ifdef CONFIG_X86_32
291 			if ((end >> PAGE_SHIFT) > max_low_pfn)
292 				continue;
293 #endif
294 
295 			if (memblock_is_region_memory(start, end - start))
296 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
297 		}
298 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
299 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
300 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
301 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
302 
303 			if (memblock_is_region_memory(start, end - start))
304 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
305 		}
306 	}
307 }
308 
309 static const char *page_size_string(struct map_range *mr)
310 {
311 	static const char str_1g[] = "1G";
312 	static const char str_2m[] = "2M";
313 	static const char str_4m[] = "4M";
314 	static const char str_4k[] = "4k";
315 
316 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
317 		return str_1g;
318 	/*
319 	 * 32-bit without PAE has a 4M large page size.
320 	 * PG_LEVEL_2M is misnamed, but we can at least
321 	 * print out the right size in the string.
322 	 */
323 	if (IS_ENABLED(CONFIG_X86_32) &&
324 	    !IS_ENABLED(CONFIG_X86_PAE) &&
325 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
326 		return str_4m;
327 
328 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
329 		return str_2m;
330 
331 	return str_4k;
332 }
333 
334 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
335 				     unsigned long start,
336 				     unsigned long end)
337 {
338 	unsigned long start_pfn, end_pfn, limit_pfn;
339 	unsigned long pfn;
340 	int i;
341 
342 	limit_pfn = PFN_DOWN(end);
343 
344 	/* head if not big page alignment ? */
345 	pfn = start_pfn = PFN_DOWN(start);
346 #ifdef CONFIG_X86_32
347 	/*
348 	 * Don't use a large page for the first 2/4MB of memory
349 	 * because there are often fixed size MTRRs in there
350 	 * and overlapping MTRRs into large pages can cause
351 	 * slowdowns.
352 	 */
353 	if (pfn == 0)
354 		end_pfn = PFN_DOWN(PMD_SIZE);
355 	else
356 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
357 #else /* CONFIG_X86_64 */
358 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #endif
360 	if (end_pfn > limit_pfn)
361 		end_pfn = limit_pfn;
362 	if (start_pfn < end_pfn) {
363 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
364 		pfn = end_pfn;
365 	}
366 
367 	/* big page (2M) range */
368 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
369 #ifdef CONFIG_X86_32
370 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
371 #else /* CONFIG_X86_64 */
372 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
373 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
374 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
375 #endif
376 
377 	if (start_pfn < end_pfn) {
378 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
379 				page_size_mask & (1<<PG_LEVEL_2M));
380 		pfn = end_pfn;
381 	}
382 
383 #ifdef CONFIG_X86_64
384 	/* big page (1G) range */
385 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
386 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
387 	if (start_pfn < end_pfn) {
388 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
389 				page_size_mask &
390 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
391 		pfn = end_pfn;
392 	}
393 
394 	/* tail is not big page (1G) alignment */
395 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
396 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
397 	if (start_pfn < end_pfn) {
398 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
399 				page_size_mask & (1<<PG_LEVEL_2M));
400 		pfn = end_pfn;
401 	}
402 #endif
403 
404 	/* tail is not big page (2M) alignment */
405 	start_pfn = pfn;
406 	end_pfn = limit_pfn;
407 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
408 
409 	if (!after_bootmem)
410 		adjust_range_page_size_mask(mr, nr_range);
411 
412 	/* try to merge same page size and continuous */
413 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
414 		unsigned long old_start;
415 		if (mr[i].end != mr[i+1].start ||
416 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
417 			continue;
418 		/* move it */
419 		old_start = mr[i].start;
420 		memmove(&mr[i], &mr[i+1],
421 			(nr_range - 1 - i) * sizeof(struct map_range));
422 		mr[i--].start = old_start;
423 		nr_range--;
424 	}
425 
426 	for (i = 0; i < nr_range; i++)
427 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
428 				mr[i].start, mr[i].end - 1,
429 				page_size_string(&mr[i]));
430 
431 	return nr_range;
432 }
433 
434 struct range pfn_mapped[E820_MAX_ENTRIES];
435 int nr_pfn_mapped;
436 
437 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
438 {
439 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
440 					     nr_pfn_mapped, start_pfn, end_pfn);
441 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
442 
443 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
444 
445 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
446 		max_low_pfn_mapped = max(max_low_pfn_mapped,
447 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
448 }
449 
450 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
451 {
452 	int i;
453 
454 	for (i = 0; i < nr_pfn_mapped; i++)
455 		if ((start_pfn >= pfn_mapped[i].start) &&
456 		    (end_pfn <= pfn_mapped[i].end))
457 			return true;
458 
459 	return false;
460 }
461 
462 /*
463  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
464  * This runs before bootmem is initialized and gets pages directly from
465  * the physical memory. To access them they are temporarily mapped.
466  */
467 unsigned long __ref init_memory_mapping(unsigned long start,
468 					unsigned long end, pgprot_t prot)
469 {
470 	struct map_range mr[NR_RANGE_MR];
471 	unsigned long ret = 0;
472 	int nr_range, i;
473 
474 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
475 	       start, end - 1);
476 
477 	memset(mr, 0, sizeof(mr));
478 	nr_range = split_mem_range(mr, 0, start, end);
479 
480 	for (i = 0; i < nr_range; i++)
481 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
482 						   mr[i].page_size_mask,
483 						   prot);
484 
485 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
486 
487 	return ret >> PAGE_SHIFT;
488 }
489 
490 /*
491  * We need to iterate through the E820 memory map and create direct mappings
492  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
493  * create direct mappings for all pfns from [0 to max_low_pfn) and
494  * [4GB to max_pfn) because of possible memory holes in high addresses
495  * that cannot be marked as UC by fixed/variable range MTRRs.
496  * Depending on the alignment of E820 ranges, this may possibly result
497  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
498  *
499  * init_mem_mapping() calls init_range_memory_mapping() with big range.
500  * That range would have hole in the middle or ends, and only ram parts
501  * will be mapped in init_range_memory_mapping().
502  */
503 static unsigned long __init init_range_memory_mapping(
504 					   unsigned long r_start,
505 					   unsigned long r_end)
506 {
507 	unsigned long start_pfn, end_pfn;
508 	unsigned long mapped_ram_size = 0;
509 	int i;
510 
511 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
512 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
513 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
514 		if (start >= end)
515 			continue;
516 
517 		/*
518 		 * if it is overlapping with brk pgt, we need to
519 		 * alloc pgt buf from memblock instead.
520 		 */
521 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
522 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
523 		init_memory_mapping(start, end, PAGE_KERNEL);
524 		mapped_ram_size += end - start;
525 		can_use_brk_pgt = true;
526 	}
527 
528 	return mapped_ram_size;
529 }
530 
531 static unsigned long __init get_new_step_size(unsigned long step_size)
532 {
533 	/*
534 	 * Initial mapped size is PMD_SIZE (2M).
535 	 * We can not set step_size to be PUD_SIZE (1G) yet.
536 	 * In worse case, when we cross the 1G boundary, and
537 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
538 	 * to map 1G range with PTE. Hence we use one less than the
539 	 * difference of page table level shifts.
540 	 *
541 	 * Don't need to worry about overflow in the top-down case, on 32bit,
542 	 * when step_size is 0, round_down() returns 0 for start, and that
543 	 * turns it into 0x100000000ULL.
544 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
545 	 * needs to be taken into consideration by the code below.
546 	 */
547 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
548 }
549 
550 /**
551  * memory_map_top_down - Map [map_start, map_end) top down
552  * @map_start: start address of the target memory range
553  * @map_end: end address of the target memory range
554  *
555  * This function will setup direct mapping for memory range
556  * [map_start, map_end) in top-down. That said, the page tables
557  * will be allocated at the end of the memory, and we map the
558  * memory in top-down.
559  */
560 static void __init memory_map_top_down(unsigned long map_start,
561 				       unsigned long map_end)
562 {
563 	unsigned long real_end, start, last_start;
564 	unsigned long step_size;
565 	unsigned long addr;
566 	unsigned long mapped_ram_size = 0;
567 
568 	/* xen has big range in reserved near end of ram, skip it at first.*/
569 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
570 	real_end = addr + PMD_SIZE;
571 
572 	/* step_size need to be small so pgt_buf from BRK could cover it */
573 	step_size = PMD_SIZE;
574 	max_pfn_mapped = 0; /* will get exact value next */
575 	min_pfn_mapped = real_end >> PAGE_SHIFT;
576 	last_start = start = real_end;
577 
578 	/*
579 	 * We start from the top (end of memory) and go to the bottom.
580 	 * The memblock_find_in_range() gets us a block of RAM from the
581 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
582 	 * for page table.
583 	 */
584 	while (last_start > map_start) {
585 		if (last_start > step_size) {
586 			start = round_down(last_start - 1, step_size);
587 			if (start < map_start)
588 				start = map_start;
589 		} else
590 			start = map_start;
591 		mapped_ram_size += init_range_memory_mapping(start,
592 							last_start);
593 		last_start = start;
594 		min_pfn_mapped = last_start >> PAGE_SHIFT;
595 		if (mapped_ram_size >= step_size)
596 			step_size = get_new_step_size(step_size);
597 	}
598 
599 	if (real_end < map_end)
600 		init_range_memory_mapping(real_end, map_end);
601 }
602 
603 /**
604  * memory_map_bottom_up - Map [map_start, map_end) bottom up
605  * @map_start: start address of the target memory range
606  * @map_end: end address of the target memory range
607  *
608  * This function will setup direct mapping for memory range
609  * [map_start, map_end) in bottom-up. Since we have limited the
610  * bottom-up allocation above the kernel, the page tables will
611  * be allocated just above the kernel and we map the memory
612  * in [map_start, map_end) in bottom-up.
613  */
614 static void __init memory_map_bottom_up(unsigned long map_start,
615 					unsigned long map_end)
616 {
617 	unsigned long next, start;
618 	unsigned long mapped_ram_size = 0;
619 	/* step_size need to be small so pgt_buf from BRK could cover it */
620 	unsigned long step_size = PMD_SIZE;
621 
622 	start = map_start;
623 	min_pfn_mapped = start >> PAGE_SHIFT;
624 
625 	/*
626 	 * We start from the bottom (@map_start) and go to the top (@map_end).
627 	 * The memblock_find_in_range() gets us a block of RAM from the
628 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
629 	 * for page table.
630 	 */
631 	while (start < map_end) {
632 		if (step_size && map_end - start > step_size) {
633 			next = round_up(start + 1, step_size);
634 			if (next > map_end)
635 				next = map_end;
636 		} else {
637 			next = map_end;
638 		}
639 
640 		mapped_ram_size += init_range_memory_mapping(start, next);
641 		start = next;
642 
643 		if (mapped_ram_size >= step_size)
644 			step_size = get_new_step_size(step_size);
645 	}
646 }
647 
648 void __init init_mem_mapping(void)
649 {
650 	unsigned long end;
651 
652 	pti_check_boottime_disable();
653 	probe_page_size_mask();
654 	setup_pcid();
655 
656 #ifdef CONFIG_X86_64
657 	end = max_pfn << PAGE_SHIFT;
658 #else
659 	end = max_low_pfn << PAGE_SHIFT;
660 #endif
661 
662 	/* the ISA range is always mapped regardless of memory holes */
663 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
664 
665 	/* Init the trampoline, possibly with KASLR memory offset */
666 	init_trampoline();
667 
668 	/*
669 	 * If the allocation is in bottom-up direction, we setup direct mapping
670 	 * in bottom-up, otherwise we setup direct mapping in top-down.
671 	 */
672 	if (memblock_bottom_up()) {
673 		unsigned long kernel_end = __pa_symbol(_end);
674 
675 		/*
676 		 * we need two separate calls here. This is because we want to
677 		 * allocate page tables above the kernel. So we first map
678 		 * [kernel_end, end) to make memory above the kernel be mapped
679 		 * as soon as possible. And then use page tables allocated above
680 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
681 		 */
682 		memory_map_bottom_up(kernel_end, end);
683 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
684 	} else {
685 		memory_map_top_down(ISA_END_ADDRESS, end);
686 	}
687 
688 #ifdef CONFIG_X86_64
689 	if (max_pfn > max_low_pfn) {
690 		/* can we preseve max_low_pfn ?*/
691 		max_low_pfn = max_pfn;
692 	}
693 #else
694 	early_ioremap_page_table_range_init();
695 #endif
696 
697 	load_cr3(swapper_pg_dir);
698 	__flush_tlb_all();
699 
700 	x86_init.hyper.init_mem_mapping();
701 
702 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
703 }
704 
705 /*
706  * Initialize an mm_struct to be used during poking and a pointer to be used
707  * during patching.
708  */
709 void __init poking_init(void)
710 {
711 	spinlock_t *ptl;
712 	pte_t *ptep;
713 
714 	poking_mm = copy_init_mm();
715 	BUG_ON(!poking_mm);
716 
717 	/*
718 	 * Randomize the poking address, but make sure that the following page
719 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
720 	 * and adjust the address if the PMD ends after the first one.
721 	 */
722 	poking_addr = TASK_UNMAPPED_BASE;
723 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
724 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
725 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
726 
727 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
728 		poking_addr += PAGE_SIZE;
729 
730 	/*
731 	 * We need to trigger the allocation of the page-tables that will be
732 	 * needed for poking now. Later, poking may be performed in an atomic
733 	 * section, which might cause allocation to fail.
734 	 */
735 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
736 	BUG_ON(!ptep);
737 	pte_unmap_unlock(ptep, ptl);
738 }
739 
740 /*
741  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
742  * is valid. The argument is a physical page number.
743  *
744  * On x86, access has to be given to the first megabyte of RAM because that
745  * area traditionally contains BIOS code and data regions used by X, dosemu,
746  * and similar apps. Since they map the entire memory range, the whole range
747  * must be allowed (for mapping), but any areas that would otherwise be
748  * disallowed are flagged as being "zero filled" instead of rejected.
749  * Access has to be given to non-kernel-ram areas as well, these contain the
750  * PCI mmio resources as well as potential bios/acpi data regions.
751  */
752 int devmem_is_allowed(unsigned long pagenr)
753 {
754 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
755 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
756 			!= REGION_DISJOINT) {
757 		/*
758 		 * For disallowed memory regions in the low 1MB range,
759 		 * request that the page be shown as all zeros.
760 		 */
761 		if (pagenr < 256)
762 			return 2;
763 
764 		return 0;
765 	}
766 
767 	/*
768 	 * This must follow RAM test, since System RAM is considered a
769 	 * restricted resource under CONFIG_STRICT_IOMEM.
770 	 */
771 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
772 		/* Low 1MB bypasses iomem restrictions. */
773 		if (pagenr < 256)
774 			return 1;
775 
776 		return 0;
777 	}
778 
779 	return 1;
780 }
781 
782 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
783 {
784 	unsigned long begin_aligned, end_aligned;
785 
786 	/* Make sure boundaries are page aligned */
787 	begin_aligned = PAGE_ALIGN(begin);
788 	end_aligned   = end & PAGE_MASK;
789 
790 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
791 		begin = begin_aligned;
792 		end   = end_aligned;
793 	}
794 
795 	if (begin >= end)
796 		return;
797 
798 	/*
799 	 * If debugging page accesses then do not free this memory but
800 	 * mark them not present - any buggy init-section access will
801 	 * create a kernel page fault:
802 	 */
803 	if (debug_pagealloc_enabled()) {
804 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
805 			begin, end - 1);
806 		/*
807 		 * Inform kmemleak about the hole in the memory since the
808 		 * corresponding pages will be unmapped.
809 		 */
810 		kmemleak_free_part((void *)begin, end - begin);
811 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
812 	} else {
813 		/*
814 		 * We just marked the kernel text read only above, now that
815 		 * we are going to free part of that, we need to make that
816 		 * writeable and non-executable first.
817 		 */
818 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
819 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
820 
821 		free_reserved_area((void *)begin, (void *)end,
822 				   POISON_FREE_INITMEM, what);
823 	}
824 }
825 
826 /*
827  * begin/end can be in the direct map or the "high kernel mapping"
828  * used for the kernel image only.  free_init_pages() will do the
829  * right thing for either kind of address.
830  */
831 void free_kernel_image_pages(const char *what, void *begin, void *end)
832 {
833 	unsigned long begin_ul = (unsigned long)begin;
834 	unsigned long end_ul = (unsigned long)end;
835 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
836 
837 	free_init_pages(what, begin_ul, end_ul);
838 
839 	/*
840 	 * PTI maps some of the kernel into userspace.  For performance,
841 	 * this includes some kernel areas that do not contain secrets.
842 	 * Those areas might be adjacent to the parts of the kernel image
843 	 * being freed, which may contain secrets.  Remove the "high kernel
844 	 * image mapping" for these freed areas, ensuring they are not even
845 	 * potentially vulnerable to Meltdown regardless of the specific
846 	 * optimizations PTI is currently using.
847 	 *
848 	 * The "noalias" prevents unmapping the direct map alias which is
849 	 * needed to access the freed pages.
850 	 *
851 	 * This is only valid for 64bit kernels. 32bit has only one mapping
852 	 * which can't be treated in this way for obvious reasons.
853 	 */
854 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
855 		set_memory_np_noalias(begin_ul, len_pages);
856 }
857 
858 void __weak mem_encrypt_free_decrypted_mem(void) { }
859 
860 void __ref free_initmem(void)
861 {
862 	e820__reallocate_tables();
863 
864 	mem_encrypt_free_decrypted_mem();
865 
866 	free_kernel_image_pages("unused kernel image (initmem)",
867 				&__init_begin, &__init_end);
868 }
869 
870 #ifdef CONFIG_BLK_DEV_INITRD
871 void __init free_initrd_mem(unsigned long start, unsigned long end)
872 {
873 	/*
874 	 * end could be not aligned, and We can not align that,
875 	 * decompresser could be confused by aligned initrd_end
876 	 * We already reserve the end partial page before in
877 	 *   - i386_start_kernel()
878 	 *   - x86_64_start_kernel()
879 	 *   - relocate_initrd()
880 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
881 	 */
882 	free_init_pages("initrd", start, PAGE_ALIGN(end));
883 }
884 #endif
885 
886 /*
887  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
888  * and pass it to the MM layer - to help it set zone watermarks more
889  * accurately.
890  *
891  * Done on 64-bit systems only for the time being, although 32-bit systems
892  * might benefit from this as well.
893  */
894 void __init memblock_find_dma_reserve(void)
895 {
896 #ifdef CONFIG_X86_64
897 	u64 nr_pages = 0, nr_free_pages = 0;
898 	unsigned long start_pfn, end_pfn;
899 	phys_addr_t start_addr, end_addr;
900 	int i;
901 	u64 u;
902 
903 	/*
904 	 * Iterate over all memory ranges (free and reserved ones alike),
905 	 * to calculate the total number of pages in the first 16 MB of RAM:
906 	 */
907 	nr_pages = 0;
908 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
909 		start_pfn = min(start_pfn, MAX_DMA_PFN);
910 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
911 
912 		nr_pages += end_pfn - start_pfn;
913 	}
914 
915 	/*
916 	 * Iterate over free memory ranges to calculate the number of free
917 	 * pages in the DMA zone, while not counting potential partial
918 	 * pages at the beginning or the end of the range:
919 	 */
920 	nr_free_pages = 0;
921 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
922 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
923 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
924 
925 		if (start_pfn < end_pfn)
926 			nr_free_pages += end_pfn - start_pfn;
927 	}
928 
929 	set_dma_reserve(nr_pages - nr_free_pages);
930 #endif
931 }
932 
933 void __init zone_sizes_init(void)
934 {
935 	unsigned long max_zone_pfns[MAX_NR_ZONES];
936 
937 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
938 
939 #ifdef CONFIG_ZONE_DMA
940 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
941 #endif
942 #ifdef CONFIG_ZONE_DMA32
943 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
944 #endif
945 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
946 #ifdef CONFIG_HIGHMEM
947 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
948 #endif
949 
950 	free_area_init(max_zone_pfns);
951 }
952 
953 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
954 	.loaded_mm = &init_mm,
955 	.next_asid = 1,
956 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
957 };
958 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
959 
960 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
961 {
962 	/* entry 0 MUST be WB (hardwired to speed up translations) */
963 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
964 
965 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
966 	__pte2cachemode_tbl[entry] = cache;
967 }
968 
969 #ifdef CONFIG_SWAP
970 unsigned long max_swapfile_size(void)
971 {
972 	unsigned long pages;
973 
974 	pages = generic_max_swapfile_size();
975 
976 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
977 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
978 		unsigned long long l1tf_limit = l1tf_pfn_limit();
979 		/*
980 		 * We encode swap offsets also with 3 bits below those for pfn
981 		 * which makes the usable limit higher.
982 		 */
983 #if CONFIG_PGTABLE_LEVELS > 2
984 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
985 #endif
986 		pages = min_t(unsigned long long, l1tf_limit, pages);
987 	}
988 	return pages;
989 }
990 #endif
991