1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/swapfile.h> 7 #include <linux/swapops.h> 8 #include <linux/kmemleak.h> 9 #include <linux/sched/task.h> 10 11 #include <asm/set_memory.h> 12 #include <asm/e820/api.h> 13 #include <asm/init.h> 14 #include <asm/page.h> 15 #include <asm/page_types.h> 16 #include <asm/sections.h> 17 #include <asm/setup.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include <asm/proto.h> 21 #include <asm/dma.h> /* for MAX_DMA_PFN */ 22 #include <asm/microcode.h> 23 #include <asm/kaslr.h> 24 #include <asm/hypervisor.h> 25 #include <asm/cpufeature.h> 26 #include <asm/pti.h> 27 #include <asm/text-patching.h> 28 #include <asm/memtype.h> 29 30 /* 31 * We need to define the tracepoints somewhere, and tlb.c 32 * is only compiled when SMP=y. 33 */ 34 #include <trace/events/tlb.h> 35 36 #include "mm_internal.h" 37 38 /* 39 * Tables translating between page_cache_type_t and pte encoding. 40 * 41 * The default values are defined statically as minimal supported mode; 42 * WC and WT fall back to UC-. pat_init() updates these values to support 43 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 44 * for the details. Note, __early_ioremap() used during early boot-time 45 * takes pgprot_t (pte encoding) and does not use these tables. 46 * 47 * Index into __cachemode2pte_tbl[] is the cachemode. 48 * 49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 51 */ 52 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 53 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 54 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 55 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 56 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 57 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 58 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 59 }; 60 61 unsigned long cachemode2protval(enum page_cache_mode pcm) 62 { 63 if (likely(pcm == 0)) 64 return 0; 65 return __cachemode2pte_tbl[pcm]; 66 } 67 EXPORT_SYMBOL(cachemode2protval); 68 69 static uint8_t __pte2cachemode_tbl[8] = { 70 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 71 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 72 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 73 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 74 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 75 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 76 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 77 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 78 }; 79 80 /* 81 * Check that the write-protect PAT entry is set for write-protect. 82 * To do this without making assumptions how PAT has been set up (Xen has 83 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache 84 * mode via the __cachemode2pte_tbl[] into protection bits (those protection 85 * bits will select a cache mode of WP or better), and then translate the 86 * protection bits back into the cache mode using __pte2cm_idx() and the 87 * __pte2cachemode_tbl[] array. This will return the really used cache mode. 88 */ 89 bool x86_has_pat_wp(void) 90 { 91 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; 92 93 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; 94 } 95 96 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) 97 { 98 unsigned long masked; 99 100 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; 101 if (likely(masked == 0)) 102 return 0; 103 return __pte2cachemode_tbl[__pte2cm_idx(masked)]; 104 } 105 106 static unsigned long __initdata pgt_buf_start; 107 static unsigned long __initdata pgt_buf_end; 108 static unsigned long __initdata pgt_buf_top; 109 110 static unsigned long min_pfn_mapped; 111 112 static bool __initdata can_use_brk_pgt = true; 113 114 /* 115 * Pages returned are already directly mapped. 116 * 117 * Changing that is likely to break Xen, see commit: 118 * 119 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 120 * 121 * for detailed information. 122 */ 123 __ref void *alloc_low_pages(unsigned int num) 124 { 125 unsigned long pfn; 126 int i; 127 128 if (after_bootmem) { 129 unsigned int order; 130 131 order = get_order((unsigned long)num << PAGE_SHIFT); 132 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 133 } 134 135 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 136 unsigned long ret = 0; 137 138 if (min_pfn_mapped < max_pfn_mapped) { 139 ret = memblock_phys_alloc_range( 140 PAGE_SIZE * num, PAGE_SIZE, 141 min_pfn_mapped << PAGE_SHIFT, 142 max_pfn_mapped << PAGE_SHIFT); 143 } 144 if (!ret && can_use_brk_pgt) 145 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 146 147 if (!ret) 148 panic("alloc_low_pages: can not alloc memory"); 149 150 pfn = ret >> PAGE_SHIFT; 151 } else { 152 pfn = pgt_buf_end; 153 pgt_buf_end += num; 154 } 155 156 for (i = 0; i < num; i++) { 157 void *adr; 158 159 adr = __va((pfn + i) << PAGE_SHIFT); 160 clear_page(adr); 161 } 162 163 return __va(pfn << PAGE_SHIFT); 164 } 165 166 /* 167 * By default need to be able to allocate page tables below PGD firstly for 168 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. 169 * With KASLR memory randomization, depending on the machine e820 memory and the 170 * PUD alignment, twice that many pages may be needed when KASLR memory 171 * randomization is enabled. 172 */ 173 174 #ifndef CONFIG_X86_5LEVEL 175 #define INIT_PGD_PAGE_TABLES 3 176 #else 177 #define INIT_PGD_PAGE_TABLES 4 178 #endif 179 180 #ifndef CONFIG_RANDOMIZE_MEMORY 181 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) 182 #else 183 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) 184 #endif 185 186 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 187 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 188 void __init early_alloc_pgt_buf(void) 189 { 190 unsigned long tables = INIT_PGT_BUF_SIZE; 191 phys_addr_t base; 192 193 base = __pa(extend_brk(tables, PAGE_SIZE)); 194 195 pgt_buf_start = base >> PAGE_SHIFT; 196 pgt_buf_end = pgt_buf_start; 197 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 198 } 199 200 int after_bootmem; 201 202 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 203 204 struct map_range { 205 unsigned long start; 206 unsigned long end; 207 unsigned page_size_mask; 208 }; 209 210 static int page_size_mask; 211 212 /* 213 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 214 * enable and PPro Global page enable), so that any CPU's that boot 215 * up after us can get the correct flags. Invoked on the boot CPU. 216 */ 217 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 218 { 219 mmu_cr4_features |= mask; 220 if (trampoline_cr4_features) 221 *trampoline_cr4_features = mmu_cr4_features; 222 cr4_set_bits(mask); 223 } 224 225 static void __init probe_page_size_mask(void) 226 { 227 /* 228 * For pagealloc debugging, identity mapping will use small pages. 229 * This will simplify cpa(), which otherwise needs to support splitting 230 * large pages into small in interrupt context, etc. 231 */ 232 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 233 page_size_mask |= 1 << PG_LEVEL_2M; 234 else 235 direct_gbpages = 0; 236 237 /* Enable PSE if available */ 238 if (boot_cpu_has(X86_FEATURE_PSE)) 239 cr4_set_bits_and_update_boot(X86_CR4_PSE); 240 241 /* Enable PGE if available */ 242 __supported_pte_mask &= ~_PAGE_GLOBAL; 243 if (boot_cpu_has(X86_FEATURE_PGE)) { 244 cr4_set_bits_and_update_boot(X86_CR4_PGE); 245 __supported_pte_mask |= _PAGE_GLOBAL; 246 } 247 248 /* By the default is everything supported: */ 249 __default_kernel_pte_mask = __supported_pte_mask; 250 /* Except when with PTI where the kernel is mostly non-Global: */ 251 if (cpu_feature_enabled(X86_FEATURE_PTI)) 252 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 253 254 /* Enable 1 GB linear kernel mappings if available: */ 255 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 256 printk(KERN_INFO "Using GB pages for direct mapping\n"); 257 page_size_mask |= 1 << PG_LEVEL_1G; 258 } else { 259 direct_gbpages = 0; 260 } 261 } 262 263 static void setup_pcid(void) 264 { 265 if (!IS_ENABLED(CONFIG_X86_64)) 266 return; 267 268 if (!boot_cpu_has(X86_FEATURE_PCID)) 269 return; 270 271 if (boot_cpu_has(X86_FEATURE_PGE)) { 272 /* 273 * This can't be cr4_set_bits_and_update_boot() -- the 274 * trampoline code can't handle CR4.PCIDE and it wouldn't 275 * do any good anyway. Despite the name, 276 * cr4_set_bits_and_update_boot() doesn't actually cause 277 * the bits in question to remain set all the way through 278 * the secondary boot asm. 279 * 280 * Instead, we brute-force it and set CR4.PCIDE manually in 281 * start_secondary(). 282 */ 283 cr4_set_bits(X86_CR4_PCIDE); 284 285 /* 286 * INVPCID's single-context modes (2/3) only work if we set 287 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 288 * on systems that have X86_CR4_PCIDE clear, or that have 289 * no INVPCID support at all. 290 */ 291 if (boot_cpu_has(X86_FEATURE_INVPCID)) 292 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 293 } else { 294 /* 295 * flush_tlb_all(), as currently implemented, won't work if 296 * PCID is on but PGE is not. Since that combination 297 * doesn't exist on real hardware, there's no reason to try 298 * to fully support it, but it's polite to avoid corrupting 299 * data if we're on an improperly configured VM. 300 */ 301 setup_clear_cpu_cap(X86_FEATURE_PCID); 302 } 303 } 304 305 #ifdef CONFIG_X86_32 306 #define NR_RANGE_MR 3 307 #else /* CONFIG_X86_64 */ 308 #define NR_RANGE_MR 5 309 #endif 310 311 static int __meminit save_mr(struct map_range *mr, int nr_range, 312 unsigned long start_pfn, unsigned long end_pfn, 313 unsigned long page_size_mask) 314 { 315 if (start_pfn < end_pfn) { 316 if (nr_range >= NR_RANGE_MR) 317 panic("run out of range for init_memory_mapping\n"); 318 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 319 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 320 mr[nr_range].page_size_mask = page_size_mask; 321 nr_range++; 322 } 323 324 return nr_range; 325 } 326 327 /* 328 * adjust the page_size_mask for small range to go with 329 * big page size instead small one if nearby are ram too. 330 */ 331 static void __ref adjust_range_page_size_mask(struct map_range *mr, 332 int nr_range) 333 { 334 int i; 335 336 for (i = 0; i < nr_range; i++) { 337 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 338 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 339 unsigned long start = round_down(mr[i].start, PMD_SIZE); 340 unsigned long end = round_up(mr[i].end, PMD_SIZE); 341 342 #ifdef CONFIG_X86_32 343 if ((end >> PAGE_SHIFT) > max_low_pfn) 344 continue; 345 #endif 346 347 if (memblock_is_region_memory(start, end - start)) 348 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 349 } 350 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 351 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 352 unsigned long start = round_down(mr[i].start, PUD_SIZE); 353 unsigned long end = round_up(mr[i].end, PUD_SIZE); 354 355 if (memblock_is_region_memory(start, end - start)) 356 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 357 } 358 } 359 } 360 361 static const char *page_size_string(struct map_range *mr) 362 { 363 static const char str_1g[] = "1G"; 364 static const char str_2m[] = "2M"; 365 static const char str_4m[] = "4M"; 366 static const char str_4k[] = "4k"; 367 368 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 369 return str_1g; 370 /* 371 * 32-bit without PAE has a 4M large page size. 372 * PG_LEVEL_2M is misnamed, but we can at least 373 * print out the right size in the string. 374 */ 375 if (IS_ENABLED(CONFIG_X86_32) && 376 !IS_ENABLED(CONFIG_X86_PAE) && 377 mr->page_size_mask & (1<<PG_LEVEL_2M)) 378 return str_4m; 379 380 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 381 return str_2m; 382 383 return str_4k; 384 } 385 386 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 387 unsigned long start, 388 unsigned long end) 389 { 390 unsigned long start_pfn, end_pfn, limit_pfn; 391 unsigned long pfn; 392 int i; 393 394 limit_pfn = PFN_DOWN(end); 395 396 /* head if not big page alignment ? */ 397 pfn = start_pfn = PFN_DOWN(start); 398 #ifdef CONFIG_X86_32 399 /* 400 * Don't use a large page for the first 2/4MB of memory 401 * because there are often fixed size MTRRs in there 402 * and overlapping MTRRs into large pages can cause 403 * slowdowns. 404 */ 405 if (pfn == 0) 406 end_pfn = PFN_DOWN(PMD_SIZE); 407 else 408 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 409 #else /* CONFIG_X86_64 */ 410 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 411 #endif 412 if (end_pfn > limit_pfn) 413 end_pfn = limit_pfn; 414 if (start_pfn < end_pfn) { 415 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 416 pfn = end_pfn; 417 } 418 419 /* big page (2M) range */ 420 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 421 #ifdef CONFIG_X86_32 422 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 423 #else /* CONFIG_X86_64 */ 424 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 425 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 426 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 427 #endif 428 429 if (start_pfn < end_pfn) { 430 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 431 page_size_mask & (1<<PG_LEVEL_2M)); 432 pfn = end_pfn; 433 } 434 435 #ifdef CONFIG_X86_64 436 /* big page (1G) range */ 437 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 438 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 439 if (start_pfn < end_pfn) { 440 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 441 page_size_mask & 442 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 443 pfn = end_pfn; 444 } 445 446 /* tail is not big page (1G) alignment */ 447 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 448 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 449 if (start_pfn < end_pfn) { 450 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 451 page_size_mask & (1<<PG_LEVEL_2M)); 452 pfn = end_pfn; 453 } 454 #endif 455 456 /* tail is not big page (2M) alignment */ 457 start_pfn = pfn; 458 end_pfn = limit_pfn; 459 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 460 461 if (!after_bootmem) 462 adjust_range_page_size_mask(mr, nr_range); 463 464 /* try to merge same page size and continuous */ 465 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 466 unsigned long old_start; 467 if (mr[i].end != mr[i+1].start || 468 mr[i].page_size_mask != mr[i+1].page_size_mask) 469 continue; 470 /* move it */ 471 old_start = mr[i].start; 472 memmove(&mr[i], &mr[i+1], 473 (nr_range - 1 - i) * sizeof(struct map_range)); 474 mr[i--].start = old_start; 475 nr_range--; 476 } 477 478 for (i = 0; i < nr_range; i++) 479 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 480 mr[i].start, mr[i].end - 1, 481 page_size_string(&mr[i])); 482 483 return nr_range; 484 } 485 486 struct range pfn_mapped[E820_MAX_ENTRIES]; 487 int nr_pfn_mapped; 488 489 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 490 { 491 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 492 nr_pfn_mapped, start_pfn, end_pfn); 493 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 494 495 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 496 497 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 498 max_low_pfn_mapped = max(max_low_pfn_mapped, 499 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 500 } 501 502 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 503 { 504 int i; 505 506 for (i = 0; i < nr_pfn_mapped; i++) 507 if ((start_pfn >= pfn_mapped[i].start) && 508 (end_pfn <= pfn_mapped[i].end)) 509 return true; 510 511 return false; 512 } 513 514 /* 515 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 516 * This runs before bootmem is initialized and gets pages directly from 517 * the physical memory. To access them they are temporarily mapped. 518 */ 519 unsigned long __ref init_memory_mapping(unsigned long start, 520 unsigned long end, pgprot_t prot) 521 { 522 struct map_range mr[NR_RANGE_MR]; 523 unsigned long ret = 0; 524 int nr_range, i; 525 526 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 527 start, end - 1); 528 529 memset(mr, 0, sizeof(mr)); 530 nr_range = split_mem_range(mr, 0, start, end); 531 532 for (i = 0; i < nr_range; i++) 533 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 534 mr[i].page_size_mask, 535 prot); 536 537 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 538 539 return ret >> PAGE_SHIFT; 540 } 541 542 /* 543 * We need to iterate through the E820 memory map and create direct mappings 544 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 545 * create direct mappings for all pfns from [0 to max_low_pfn) and 546 * [4GB to max_pfn) because of possible memory holes in high addresses 547 * that cannot be marked as UC by fixed/variable range MTRRs. 548 * Depending on the alignment of E820 ranges, this may possibly result 549 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 550 * 551 * init_mem_mapping() calls init_range_memory_mapping() with big range. 552 * That range would have hole in the middle or ends, and only ram parts 553 * will be mapped in init_range_memory_mapping(). 554 */ 555 static unsigned long __init init_range_memory_mapping( 556 unsigned long r_start, 557 unsigned long r_end) 558 { 559 unsigned long start_pfn, end_pfn; 560 unsigned long mapped_ram_size = 0; 561 int i; 562 563 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 564 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 565 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 566 if (start >= end) 567 continue; 568 569 /* 570 * if it is overlapping with brk pgt, we need to 571 * alloc pgt buf from memblock instead. 572 */ 573 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 574 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 575 init_memory_mapping(start, end, PAGE_KERNEL); 576 mapped_ram_size += end - start; 577 can_use_brk_pgt = true; 578 } 579 580 return mapped_ram_size; 581 } 582 583 static unsigned long __init get_new_step_size(unsigned long step_size) 584 { 585 /* 586 * Initial mapped size is PMD_SIZE (2M). 587 * We can not set step_size to be PUD_SIZE (1G) yet. 588 * In worse case, when we cross the 1G boundary, and 589 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 590 * to map 1G range with PTE. Hence we use one less than the 591 * difference of page table level shifts. 592 * 593 * Don't need to worry about overflow in the top-down case, on 32bit, 594 * when step_size is 0, round_down() returns 0 for start, and that 595 * turns it into 0x100000000ULL. 596 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 597 * needs to be taken into consideration by the code below. 598 */ 599 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 600 } 601 602 /** 603 * memory_map_top_down - Map [map_start, map_end) top down 604 * @map_start: start address of the target memory range 605 * @map_end: end address of the target memory range 606 * 607 * This function will setup direct mapping for memory range 608 * [map_start, map_end) in top-down. That said, the page tables 609 * will be allocated at the end of the memory, and we map the 610 * memory in top-down. 611 */ 612 static void __init memory_map_top_down(unsigned long map_start, 613 unsigned long map_end) 614 { 615 unsigned long real_end, last_start; 616 unsigned long step_size; 617 unsigned long addr; 618 unsigned long mapped_ram_size = 0; 619 620 /* 621 * Systems that have many reserved areas near top of the memory, 622 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will 623 * require lots of 4K mappings which may exhaust pgt_buf. 624 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure 625 * there is enough mapped memory that can be allocated from 626 * memblock. 627 */ 628 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start, 629 map_end); 630 memblock_phys_free(addr, PMD_SIZE); 631 real_end = addr + PMD_SIZE; 632 633 /* step_size need to be small so pgt_buf from BRK could cover it */ 634 step_size = PMD_SIZE; 635 max_pfn_mapped = 0; /* will get exact value next */ 636 min_pfn_mapped = real_end >> PAGE_SHIFT; 637 last_start = real_end; 638 639 /* 640 * We start from the top (end of memory) and go to the bottom. 641 * The memblock_find_in_range() gets us a block of RAM from the 642 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 643 * for page table. 644 */ 645 while (last_start > map_start) { 646 unsigned long start; 647 648 if (last_start > step_size) { 649 start = round_down(last_start - 1, step_size); 650 if (start < map_start) 651 start = map_start; 652 } else 653 start = map_start; 654 mapped_ram_size += init_range_memory_mapping(start, 655 last_start); 656 last_start = start; 657 min_pfn_mapped = last_start >> PAGE_SHIFT; 658 if (mapped_ram_size >= step_size) 659 step_size = get_new_step_size(step_size); 660 } 661 662 if (real_end < map_end) 663 init_range_memory_mapping(real_end, map_end); 664 } 665 666 /** 667 * memory_map_bottom_up - Map [map_start, map_end) bottom up 668 * @map_start: start address of the target memory range 669 * @map_end: end address of the target memory range 670 * 671 * This function will setup direct mapping for memory range 672 * [map_start, map_end) in bottom-up. Since we have limited the 673 * bottom-up allocation above the kernel, the page tables will 674 * be allocated just above the kernel and we map the memory 675 * in [map_start, map_end) in bottom-up. 676 */ 677 static void __init memory_map_bottom_up(unsigned long map_start, 678 unsigned long map_end) 679 { 680 unsigned long next, start; 681 unsigned long mapped_ram_size = 0; 682 /* step_size need to be small so pgt_buf from BRK could cover it */ 683 unsigned long step_size = PMD_SIZE; 684 685 start = map_start; 686 min_pfn_mapped = start >> PAGE_SHIFT; 687 688 /* 689 * We start from the bottom (@map_start) and go to the top (@map_end). 690 * The memblock_find_in_range() gets us a block of RAM from the 691 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 692 * for page table. 693 */ 694 while (start < map_end) { 695 if (step_size && map_end - start > step_size) { 696 next = round_up(start + 1, step_size); 697 if (next > map_end) 698 next = map_end; 699 } else { 700 next = map_end; 701 } 702 703 mapped_ram_size += init_range_memory_mapping(start, next); 704 start = next; 705 706 if (mapped_ram_size >= step_size) 707 step_size = get_new_step_size(step_size); 708 } 709 } 710 711 /* 712 * The real mode trampoline, which is required for bootstrapping CPUs 713 * occupies only a small area under the low 1MB. See reserve_real_mode() 714 * for details. 715 * 716 * If KASLR is disabled the first PGD entry of the direct mapping is copied 717 * to map the real mode trampoline. 718 * 719 * If KASLR is enabled, copy only the PUD which covers the low 1MB 720 * area. This limits the randomization granularity to 1GB for both 4-level 721 * and 5-level paging. 722 */ 723 static void __init init_trampoline(void) 724 { 725 #ifdef CONFIG_X86_64 726 /* 727 * The code below will alias kernel page-tables in the user-range of the 728 * address space, including the Global bit. So global TLB entries will 729 * be created when using the trampoline page-table. 730 */ 731 if (!kaslr_memory_enabled()) 732 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 733 else 734 init_trampoline_kaslr(); 735 #endif 736 } 737 738 void __init init_mem_mapping(void) 739 { 740 unsigned long end; 741 742 pti_check_boottime_disable(); 743 probe_page_size_mask(); 744 setup_pcid(); 745 746 #ifdef CONFIG_X86_64 747 end = max_pfn << PAGE_SHIFT; 748 #else 749 end = max_low_pfn << PAGE_SHIFT; 750 #endif 751 752 /* the ISA range is always mapped regardless of memory holes */ 753 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); 754 755 /* Init the trampoline, possibly with KASLR memory offset */ 756 init_trampoline(); 757 758 /* 759 * If the allocation is in bottom-up direction, we setup direct mapping 760 * in bottom-up, otherwise we setup direct mapping in top-down. 761 */ 762 if (memblock_bottom_up()) { 763 unsigned long kernel_end = __pa_symbol(_end); 764 765 /* 766 * we need two separate calls here. This is because we want to 767 * allocate page tables above the kernel. So we first map 768 * [kernel_end, end) to make memory above the kernel be mapped 769 * as soon as possible. And then use page tables allocated above 770 * the kernel to map [ISA_END_ADDRESS, kernel_end). 771 */ 772 memory_map_bottom_up(kernel_end, end); 773 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 774 } else { 775 memory_map_top_down(ISA_END_ADDRESS, end); 776 } 777 778 #ifdef CONFIG_X86_64 779 if (max_pfn > max_low_pfn) { 780 /* can we preserve max_low_pfn ?*/ 781 max_low_pfn = max_pfn; 782 } 783 #else 784 early_ioremap_page_table_range_init(); 785 #endif 786 787 load_cr3(swapper_pg_dir); 788 __flush_tlb_all(); 789 790 x86_init.hyper.init_mem_mapping(); 791 792 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 793 } 794 795 /* 796 * Initialize an mm_struct to be used during poking and a pointer to be used 797 * during patching. 798 */ 799 void __init poking_init(void) 800 { 801 spinlock_t *ptl; 802 pte_t *ptep; 803 804 poking_mm = copy_init_mm(); 805 BUG_ON(!poking_mm); 806 807 /* 808 * Randomize the poking address, but make sure that the following page 809 * will be mapped at the same PMD. We need 2 pages, so find space for 3, 810 * and adjust the address if the PMD ends after the first one. 811 */ 812 poking_addr = TASK_UNMAPPED_BASE; 813 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 814 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % 815 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); 816 817 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) 818 poking_addr += PAGE_SIZE; 819 820 /* 821 * We need to trigger the allocation of the page-tables that will be 822 * needed for poking now. Later, poking may be performed in an atomic 823 * section, which might cause allocation to fail. 824 */ 825 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 826 BUG_ON(!ptep); 827 pte_unmap_unlock(ptep, ptl); 828 } 829 830 /* 831 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 832 * is valid. The argument is a physical page number. 833 * 834 * On x86, access has to be given to the first megabyte of RAM because that 835 * area traditionally contains BIOS code and data regions used by X, dosemu, 836 * and similar apps. Since they map the entire memory range, the whole range 837 * must be allowed (for mapping), but any areas that would otherwise be 838 * disallowed are flagged as being "zero filled" instead of rejected. 839 * Access has to be given to non-kernel-ram areas as well, these contain the 840 * PCI mmio resources as well as potential bios/acpi data regions. 841 */ 842 int devmem_is_allowed(unsigned long pagenr) 843 { 844 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 845 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 846 != REGION_DISJOINT) { 847 /* 848 * For disallowed memory regions in the low 1MB range, 849 * request that the page be shown as all zeros. 850 */ 851 if (pagenr < 256) 852 return 2; 853 854 return 0; 855 } 856 857 /* 858 * This must follow RAM test, since System RAM is considered a 859 * restricted resource under CONFIG_STRICT_IOMEM. 860 */ 861 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 862 /* Low 1MB bypasses iomem restrictions. */ 863 if (pagenr < 256) 864 return 1; 865 866 return 0; 867 } 868 869 return 1; 870 } 871 872 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 873 { 874 unsigned long begin_aligned, end_aligned; 875 876 /* Make sure boundaries are page aligned */ 877 begin_aligned = PAGE_ALIGN(begin); 878 end_aligned = end & PAGE_MASK; 879 880 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 881 begin = begin_aligned; 882 end = end_aligned; 883 } 884 885 if (begin >= end) 886 return; 887 888 /* 889 * If debugging page accesses then do not free this memory but 890 * mark them not present - any buggy init-section access will 891 * create a kernel page fault: 892 */ 893 if (debug_pagealloc_enabled()) { 894 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 895 begin, end - 1); 896 /* 897 * Inform kmemleak about the hole in the memory since the 898 * corresponding pages will be unmapped. 899 */ 900 kmemleak_free_part((void *)begin, end - begin); 901 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 902 } else { 903 /* 904 * We just marked the kernel text read only above, now that 905 * we are going to free part of that, we need to make that 906 * writeable and non-executable first. 907 */ 908 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 909 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 910 911 free_reserved_area((void *)begin, (void *)end, 912 POISON_FREE_INITMEM, what); 913 } 914 } 915 916 /* 917 * begin/end can be in the direct map or the "high kernel mapping" 918 * used for the kernel image only. free_init_pages() will do the 919 * right thing for either kind of address. 920 */ 921 void free_kernel_image_pages(const char *what, void *begin, void *end) 922 { 923 unsigned long begin_ul = (unsigned long)begin; 924 unsigned long end_ul = (unsigned long)end; 925 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 926 927 free_init_pages(what, begin_ul, end_ul); 928 929 /* 930 * PTI maps some of the kernel into userspace. For performance, 931 * this includes some kernel areas that do not contain secrets. 932 * Those areas might be adjacent to the parts of the kernel image 933 * being freed, which may contain secrets. Remove the "high kernel 934 * image mapping" for these freed areas, ensuring they are not even 935 * potentially vulnerable to Meltdown regardless of the specific 936 * optimizations PTI is currently using. 937 * 938 * The "noalias" prevents unmapping the direct map alias which is 939 * needed to access the freed pages. 940 * 941 * This is only valid for 64bit kernels. 32bit has only one mapping 942 * which can't be treated in this way for obvious reasons. 943 */ 944 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 945 set_memory_np_noalias(begin_ul, len_pages); 946 } 947 948 void __ref free_initmem(void) 949 { 950 e820__reallocate_tables(); 951 952 mem_encrypt_free_decrypted_mem(); 953 954 free_kernel_image_pages("unused kernel image (initmem)", 955 &__init_begin, &__init_end); 956 } 957 958 #ifdef CONFIG_BLK_DEV_INITRD 959 void __init free_initrd_mem(unsigned long start, unsigned long end) 960 { 961 /* 962 * end could be not aligned, and We can not align that, 963 * decompressor could be confused by aligned initrd_end 964 * We already reserve the end partial page before in 965 * - i386_start_kernel() 966 * - x86_64_start_kernel() 967 * - relocate_initrd() 968 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 969 */ 970 free_init_pages("initrd", start, PAGE_ALIGN(end)); 971 } 972 #endif 973 974 /* 975 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 976 * and pass it to the MM layer - to help it set zone watermarks more 977 * accurately. 978 * 979 * Done on 64-bit systems only for the time being, although 32-bit systems 980 * might benefit from this as well. 981 */ 982 void __init memblock_find_dma_reserve(void) 983 { 984 #ifdef CONFIG_X86_64 985 u64 nr_pages = 0, nr_free_pages = 0; 986 unsigned long start_pfn, end_pfn; 987 phys_addr_t start_addr, end_addr; 988 int i; 989 u64 u; 990 991 /* 992 * Iterate over all memory ranges (free and reserved ones alike), 993 * to calculate the total number of pages in the first 16 MB of RAM: 994 */ 995 nr_pages = 0; 996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 997 start_pfn = min(start_pfn, MAX_DMA_PFN); 998 end_pfn = min(end_pfn, MAX_DMA_PFN); 999 1000 nr_pages += end_pfn - start_pfn; 1001 } 1002 1003 /* 1004 * Iterate over free memory ranges to calculate the number of free 1005 * pages in the DMA zone, while not counting potential partial 1006 * pages at the beginning or the end of the range: 1007 */ 1008 nr_free_pages = 0; 1009 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1010 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 1011 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 1012 1013 if (start_pfn < end_pfn) 1014 nr_free_pages += end_pfn - start_pfn; 1015 } 1016 1017 set_dma_reserve(nr_pages - nr_free_pages); 1018 #endif 1019 } 1020 1021 void __init zone_sizes_init(void) 1022 { 1023 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1024 1025 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1026 1027 #ifdef CONFIG_ZONE_DMA 1028 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 1029 #endif 1030 #ifdef CONFIG_ZONE_DMA32 1031 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 1032 #endif 1033 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 1034 #ifdef CONFIG_HIGHMEM 1035 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 1036 #endif 1037 1038 free_area_init(max_zone_pfns); 1039 } 1040 1041 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { 1042 .loaded_mm = &init_mm, 1043 .next_asid = 1, 1044 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 1045 }; 1046 1047 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 1048 { 1049 /* entry 0 MUST be WB (hardwired to speed up translations) */ 1050 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 1051 1052 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 1053 __pte2cachemode_tbl[entry] = cache; 1054 } 1055 1056 #ifdef CONFIG_SWAP 1057 unsigned long max_swapfile_size(void) 1058 { 1059 unsigned long pages; 1060 1061 pages = generic_max_swapfile_size(); 1062 1063 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { 1064 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 1065 unsigned long long l1tf_limit = l1tf_pfn_limit(); 1066 /* 1067 * We encode swap offsets also with 3 bits below those for pfn 1068 * which makes the usable limit higher. 1069 */ 1070 #if CONFIG_PGTABLE_LEVELS > 2 1071 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 1072 #endif 1073 pages = min_t(unsigned long long, l1tf_limit, pages); 1074 } 1075 return pages; 1076 } 1077 #endif 1078